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The data indicated no marked change in M e t  performance with slight 
I blunting of both spike (rtip/riaet = 0.017) and c m l  l i p  (r aip/rinlet - - 

0.0042), w h i l e  a conhination of the bluntest  spfke and cowl l i p  
(rtip/rwet = 0.068 and r~~p/rFnlet = 0.0170, respectively) reduced 
the over-all peak pressure  recovery  about 6 counts. For this investiga- 
tion the cowl-Up angles were stmultaaeously  reduced as the blunting was 
increased,  resulting in essentially  constant cowl pressure  drag f o r  all 
degrees of cowLLLp blunting. The cowl pressure-drag rise was only 
0.00'7 f o r  the range of Up  bluntness  studied. 

Analysis indicates that air-breathing engines are a feasible means 
of propulsion a t  high Mach numbers. A t  these flight speeds  aerodynmlc 
heating c m  raise the surface  temgeratures above the allowable  lFmits, 
especially  near  stagnatian regions such as the cowl Hp and spike tlp. 
One method of reducing  the high stagnation-point  heat flux t o  these re- 
gions i s  to use  bluntness. Ln do- so, apace i s  d a o  provided t o  house 
a cooling sy6tem i n  the event one i s  needed. Although no major aerody- 
namic heating problem 9s apparent at a Mach number of 3.0, the d a t a  re- 
ported  herein and information  presented in reference 1 at a Mach nmber . 

*Title, Unchsseied. 
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of 4.95 should  be  useful in making an intelligent  compromise  between 
structural and aerodynamic  requirements for a Ugh Mach number  design 
inlet.  The  Fnvestigation 8 conducted at a Mach  number of 3.0 and at 
a Reynolds number of 2.5X10 per foot in t h e  NACA Lewis 10- by IO-foot 
supersonic  wind  tunnel. 
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SYMBOLS 

inlet  capture  area, 1.183 sq f t 

maximum projected  frontal area of  model, 1.483 sq ft 

diffuser-exit flaw area, 0.961 sq ft 

drag coefficient, D/- 

pressure  coefficient,  (pz - so)/% 
*a@; 

inlet mass-flow ratio, p3v+,/’p,v& 

t o t a l  pressure 

total-pressure  recovery 

distortion parameter 

static  pressure 

dynamic  pressure 

radius 

velocity 

angle of attack 

spike-position  parameter, angle between  axis of symmetry 
and line frm spike  tip  (projected  tip on blunt 
spikes) to  point of focused  campression 

density of air 

. 

. 
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I Superscript: - 

cowl 

external 

i n l e t  

internal 

local 

U P  

Inaxbum 

miRimum 

t i p  

conditions in f r ee  stream 

conditions at  diffuser exLt 

area-weighted value 

The basic t e s t  vehicle, a 16.46-fnch-maximum-dlameter, 102-hch- 
long model, i s  shown instal led in the tes t   sect ion in figure 1. The 
model eqloyed an &symmetric  external-campressLon i n l e t  wtth inter- 
changeable cowls and spike Ups. A scale drawing of t he   i n l e t  with 
mFlJrfmum carponat bluntness, including  the  spike coordFtlEttes, i s  pre- 
sented i n  figure 2. 

Scale drawings of the interchEtngeable spike  tfps and cowls along 
with the cowl coordinates  are given in figure 3. The basic  isentropic 
canpression spike was d e s i s e d  by the method. & reference 2 wlth the 
p o b t  of focused compression at the cowl l i p .  The spike had an i n i t i a l  

, cone U-angle of 13.65O, with a mEwdmum of 35' of ccpqpressive turnfng, 
and a  design  spike-position  parameter 8 of 23.60°. The interchangeable 
spike t ips  were of 0-, 1/8-, 1/4-, and l/it-inch radii, having respective 
radius ratios rt/r- of 0, 0.017, 0.034, and 0.068 ( rb  = 7.365 in.) . 
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The stremUne a t  the  focal  point of the ccanpression f i e l d  generated 
by the sharp-tipped  spike determFned the  contour of the interm1 surface 
of the  sharp-lip Cowl; the  surface was designed t o  capture the flow with- 
out  inducing any internal  carpression. Cowl-Up bluntness was achieved 
by adding  various l i p  radii to   the  point  of focused ccsnrpressim symmetri- 
cal ly  w i t h  respect to  the  focal-point  streamline. This design method re- 
s u l t e d   i n  lower external  l ip  angles  for  the more rounded leading-edge 
cowls.  Cowl-lip radii of 0, 1/32, 1/16, and 1/8 inch,  corresponding t o  
radius  ratlos rZip/rin of 0, 0.0042, 0.0085, and 0.0170, with respec- 
t ive  external  l ip  angles of 4Z0, 40°, 38O, and 33' were investigated. 
A l l  of the cowls under consideration had 8 projected area 20 percent of 
the maximum f ronta l  area. 

The cowls were extensively surveyed with static-pressure  orffices, 
which when integrated over the  projected cowl area determined the cowl 
pressure drag. The cowl pressure  drag i s  defined as the  force  acting on 
that portion of the cowl between the stagnation point and the beginning 
of the  external  cylindrical  section of the model. A l l  the configurations 
were tes ted W F t h  a ram-scoop boundary-layer-bleed  system at  the  spike 
shoulder, removing approxFmately 5 percent of the maximm capture mass 
flow  (fig. 2) . A force  balance was aployed  in   the model, from which the -+ total external drag was obtained. 

All of the performance data presented were obtained a t  a free-stream 
Mach  number of 3.0. Performance of the  sharp-lip cowl with the various 
spike  t ips i s  presented i n   f i g u r e  4. Because of the nonfocusing of the 
compression shock system, improvement i n  mass-flow characterist ics could 
be obtained by retracting  the  spike 8 -11 amount from the design point; 
however, slight lo s ses   i n  peak pressure  recovery  resulted  in lqost in- 
stances. In  one case  (fig.  4(c) ), the loss  i n  peak recovery  reached 
approximately 5 counts.  Considering  the  design  spike  position (8 = 
23,60°), spike-tip  blunting had no marked effect  on the i n l e t  mass-flow 
characteristics. The small differences  noted can be a t t r ibu ted   to  the 
tolerances  in  the  spike-translation unit. This indicates that, within 
the blunting  tested,  the shock structure i s  essentfally independent of 
t h e   t i p  contour  and i s  a function only of the  basic  spike  design. 

The e f l ec t  of rounding the  spike t i p  on i n l e t  performance with 
blunt-leading-edge cowls i s  presented in   f igures  5 t o  7. The resul ts  
indlcate a trend similar t o  that of the data for  blunted  spike tips with 
sharp cowl. Blunting  the  spike from a sharp t i p   t o  a radius  ratio of' 
0.068 in  combination w i t h  the cowls of various  radius  ratios reduced the 
peak pressure  recoveries  approximately 3 counts, as can be seen i n  f ig-  
ures 5, 6, and 7. Comparison of figures 4( a) and (a) with figures 5 
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t o  7 shows a decrease of I t o  4 counts i n  mass flow when the caw1 l i p  i s  
blunted. Thrts occurs  because the stagnation point  moves inside  the cowl 
l i p  as blunting is  added t o  the cowl l i p ,  

The over-all drag coefficients as affected by spike  blunting  are 
shown in   f igure  4. Only the bluntest spike (radius r a t i o  = 0.068) caused 
an increase in  the  over-all drag coefficient, on the order of 0.02, 
probably as  a result of a smLl  mount of s p i U g e .  The slope of the 
drag curves during subcrit ical  inlet opention appeazed t o  be  constant 
for  the  various  degrees of spike blunting  investigated. However,  when 
blunting was added t o  the cowl l ip ,  the t o t a l  drag coefficient  progres- 
sively  increased, probably because of additive drag due t o  the attendant 
spillage. 

The flow distortion was essentially  unaffected  by  blunting of the 
in l e t  components, e d i s to r t ion  values of only 0.04 being  recorded. 

The effect  of spike-tip  blunting on performme is  sumnaarized i n  
figure 80 In all cases the peak and crit ical   pressure  recoveries were 
only slightly  influenced by spike  blunting. In general,  pressure re- 
coveries w e r e  reduced  approldznately 2 counts a s  a result of romdlng the 
t i p  from a pointed spike t o  a radius r a t l o  of 0.068 spherical nose. 

Figure 9 ,summarizes the effects of cowl-lip  blunting on inlet per- 
formance. The curves in  the figure  without  established data points were 
obtained from figure 80 Rounding the cowl leading edge t o  a radius r a t i o  
of 0.0085 ked 0- mall adverse  effects on the inlet performance. Ln- 
creasing  the cml-Up radius r a t i o  t o  the maxFmum of 0,0170 decreased c r i t -  
ical  pressure  recovery  apprordmately 8 cosmts (f ig ,  9(a)). It is appzent  
fram figures 8 and 9 that a small degree of inlet component blunt- 
ing, with a radiu r a t i o  of 0.017 f o r  the  spike and a radius r a t io  of 
0.0042 f o r  the cowl l ip ,  resulted in essentf&y RO adverse  effects an 
the fnlet performance. 

The design method employed i n  the cowl-71p design  resulted i n  lmr 
external l i p  angles f o r  the  blunter cowls. The effect  of external l i p  
angle and cowl-Up blunting on the cowl pressure drag during critical 
inlet  operation is presented in figure 10. ExgerFmental drag data of 
COWIS with a sharp leading edge (re. 3) bving the same r a t io  OT pro- 
jected cowl area. t o  the naxhmm f ronta l  area (0.20) and with contours 
similar t o  those of the  present tests are compared with the present data 
in   f igure  lO(a) . The drag penalty  associated  merely with the roundin@; 
of the cowl leading edge f r o m  a sharg l i p  t o  a radius ratio of 0.0170 is 
depicted by the shaded region in the  figure, Comparing the drag coeffi- 
cient of the cowls tested, it i s  apparent that the reduction in external 
U p  angle was approx-itely enough t o  counterbalance the drag r i s e  result- 
ing frcm blunting, lea- only a r i s e  of 0.007 go- fram sharp t o  the 
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most blunt. Eowever, the  drag rise due to  blunting can be considerable, 
as indicated by comparing the sharp-cowl value with the blunt. As seen 
i n   f i g u r e  lo(&>, this r i s e  can be as much as 0.074 fo r  a cowl with ex- 
ternal l i p  angle of 33' and a radfus  ra t io  of 0.0170. For the data of 
this report,  the drag penalty due to  blunting appears t o  be linear w i t h  
increasirig l i p  bluntness, as shown i n  figure 10(b). 

Typical  pressure  distributions  over  the cowl swrfaces  are shown i n  
figure ll. The extensive  static-pressure  instrumentation  revealed that 
the  stagnation  streamline moved inward with increasing cowl bluntness. 

Schlieren  photographs of supercr i t ical  inlet operation wlth the 
various  spike  t ips and the sharp cowl are shown i n  f igure 1 2  . A l inear  
projectl.Cn  forward of the established  conical shock wave on the blunt 
spike  intersects a t  8 p o h t  ahead of the sharp spike  tip,  but  the 
established shock wave angle i s  less than that of the one generated by 
the sharp-tip cone. These compensating e f fec ts  appeared t o  make the lo- 
cation of the Fnitial spike shock wave w i t h  respec t   to  the cowl l i p  
essentially independent of the spike-tip  bluntness. 

CONCLUDING REMARE 

The ef fec t  of cowl-lip  and  spike-tip  blunting on i n l e t  performance 
was investigated on 89 &symmetric external-compression i n l e t  at  a Mach 
number of 3.0. Slight  blunting of the i n l e t  components ( rad ius   ra t io  af 
0.017 for the   spike  t ip   ahd  radius   ra t io  of 0.0042 for  the cowl leading 
edge) had no apparent  adverse  effects on i n l e t  performance. The combi- 
nation of the most blunt spfke (radiua  ratio of 0.068) and cowl (radius 
r a t i o  of 0.0170) reduced the peak pressure  recovery  about 6 counts. Al- 
though there would be an appreciable  drag  penalty  associated with blunt- 
ing the cowl leading edge while  maintaining  the external l i p  angle con- 
s tant ,  the blunting can be done s o  that the  external  l ip  angle i s  reduced, 
thus  reducing the drag penalty  associated with blunting. 
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Figure 1. - Model inetalled in test seation. 
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Figure 3. - Scale drawluge of blunt cowls anb spikes. 
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Drag coefficient, 
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'cam Stable  limit 

Cowl pressure drag 
(pressure integration) 
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(b) Spike 4: 
rt/rin, 0.068. 

Figure 5. - Effect on M e t  performance of cowl-lip blunting 
(rZip/rin = 0.0042) at k c h  number 3.0 with and  wlthout spike- 
t i p  blunt k g .  
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(a) Spike I: rt/rh, 0. (b) Spike 4: rt/rw, 0.068. 

Figure 6. - Effect on inlet performance of cowl-lip blunting 
(rzidria = 0.0085) a t  Mach number 3.0 with and without spike- 
t i p   b lun t  h g  . 
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(a) Spike 1: rt/rin, 0. (b)  Spike 4: rt/rb, 0.-068. 

Figure 7. - Effect on i n l e t  perfollnsnce of cowl-lip blunt- 
k g  (rZip/rin = 0.0170) at Mach rider 3.0 with and 

without spike-t ip blunting. 
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(a )  Caw1 11 rII$Pln, 0. (b) Cowl 2: ru / r ln ,  0.0042. 
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Figure 8 .  - Bffeot of spike-tlp b h n t i n g  on performance. 
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;(b) Spike 2: rt/rin,0.017. 

( a )  Spike 3: rt/rin, 0.054. (d )  Splke 4: rt/rin, 0.068. 

Figure 9. - EfFect af c d - l l p  blunting on perParmance. 
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(b)  rag increment due to blunting. 

Figure 10. - EPfect of cowl - l ip  blunting and external lip angle on cowl 
pressure-drag  coefficient during cr i t ical  inlet  operation. 
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Figure 12. - Schlieren photographs of supercritical W e t  operation with various 
spike t i p s  and sharp-lipped cowl. . 
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