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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

DAMPING IN PITCH OF LOW-ASPECT-RATIO WINGS
AT SUBSONIC AND SUPERSONIC SPEEDS

By Murrey Tobak
SUMMARY

The concept of indicial functions is applied to the analysis of the
aerodynamic phenomene associated with the short-period pitching mode of
wings in subsonic and supersonic flight. Simple physical relationships
are pointed out and are used to study the effect on the rotary-damping-
moment coefficient of changes in center-of-gravity position, Mach number,
aspect ratioc, plan form, frequency, and thickness. Qualitative conclu-
sions are drawn from the results of this investigation and are compared
with the results of experiments for a series of low-aspect-ratio wing-
body combinations having triangular, swept, and unswept wing plan forms.

Results of the experimental investigation, which were obtained by a
single-degree-of-freedom free-oscillation technique over the Mach number
ranges 0.6 to 0.9 and 1.2 to 1.9, were in good agreement with the results
of theoretical computations. The predictions of ranges of supersonic
Mach numter and center-of-gravity positions over which dynamic instabil-
ity may be expected, of the beneficial effect on the damping moment of a
reduction in aspect ratio, and of only a smell effect of thickness on the
damping moment were confirmed by the experimental results.

The occurrence at high subsonic Mach numbers of small-amplitude
self-sustained pitching oscillations is noted, and a hypothesis is
advanced for its explanation.

INTRODUCTION

In the classical study of the longitudinsl motion of an aircraft,
it is usually Tound that the motion resulting from a smaell equilibrium-
destroying disturbance consists of two modes: one, a lightly damped, low-
frequency motion at essentially constant attitude, called the phugoid
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oscillation; the other, a rotary-pitching and plunging oscillation of
high frequency (relative to the phugoid frequency) called the short-
period oscillation. The phugoid oscillation has generally been described
as resulting from a slow interchange of potential and kinetic energy as
»the aircraft experiences periodic variations in airspeed and sltitude.
The character of the phugoid motion as influenced by ailrspeed, altitude,
and aircraft geometry has been well understood for some time (see, e.g.,
ref. 1). The short-period motion, on the other hand, having in the past
been found to be highly damped and of short duration, has been the cause
of no concern. Its characteristics therefore have not been as fully
investigated as those of the phugold oscillation. With the advent of
flight at speeds approsching and exceeding the speed of sound, however,
the loss of rotary damping occurring in practically all ailrcraft at
speeds near the sonlic speed has caused renewed interest in the short-
period pitching mode. Unlike the easily controlled phugoid oscillation,
the deterioration of damping in the short-period mode is of serious con-
cern to the pllot, since the period of the oscillation can be of the
same order of magnitude as the pilot's reaction time. The oscillation
may therefore be difficult or even Impossible for the pllot to control
manually. Furthermore, the additional load imposed upon the airframe
due to a rapid growth of the amplitude of a negatively damped oscillation
makes possible the occurrence of structural faeilure. It is therefore of
considerable interest to obtain an understanding of the nature of the
short-period mode, parallel to that which has been gained of the phugoid
mode.

One means of viewlng the aerodynamic phenomens occurring during the
short-period oscillation from a fundamental standpoint is through appli-
cation of the concept of indiclal functions. In thils approach, the var-
lations with time of the aircraft angle of sttack and angular velocity
during the oscillation are replaced by a large number of small instanta-
neoug or step changes. The transient serodynamic reactions to these step
changes are termed "indicial functions,” and have been calculated theo-
retically for several classes of wings (refs. 2 to 6). By suitable
superposition of these results (refs. 7 to 9), the aerodynamic forces and
moments caused by the given maneuver can be studled. It will be the -
purpose of this report to make such a study for the simplified case of an
aircraft performing single-degree-of-freedom rotary oscillations. For
this maneuver, which corresponds to the short-perlod oscillation when the
plunging veloclity of the aircraft is zero, the use of simple physical
relationships assoclated with the Indicial function concept enasbles
qualitative gtudies to be made of the separate effects on the aerodynamic
forcese and moments of changes in Mach number, aspect ratic, plan form,
frequency, and thickness. Results of thig investigation are then com-
pared with the resulte of experiments wlth a group of low-aspect-ratic
wing-body combinations. The tests were conducted in the Ames 6- by 6-foot
supersonic wind tunnel and were similar in technique to those reported in
reference 10.

- o A .

n



NACA RM A52I0k4s coliinvinithiy - 3

Ap

NOTATION

aspect ratio, bz/S
1ift coefficient, lift/q,S
pitching-moment coefficient, pltching moment/qoSE

P"Po

pressure coefficient,

moment of inertis, slug-ft2

free-stream Mach number, Vo/ag

Reynolds number, based on wing mean aerodynamic chord
wing asrea, including portion encloged by body, sg ft
flight speed, ft/sec

speed of sound in free gtream, ft/sec

wing span, ft

wing root chord, ft

wing mean aerodynsmic chord,~§ Lf/a(local chord)zdy
basge of natural logarithms

JT

reduced frequency parameter, W3/2V,

local loading at plan-form surface,
pressure lower surface - pressure upper surface

a
angular velocity due to pitching, radians/sec

free-stream dynamic pressure, % poVoa, lb/sq ft

time, sec

time required following an instantaneous .change in angle of attack
or angular velocity for the transient 1ift or moment to attain
steady state, sec

—
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X,¥,2z rectangular coordinates
Xg.c. distance from leading edge of M.A.C. to aerodynemic center, ft
Xo distance from leading edge of M.A.C. to axis of rotation, ft

Ay  Xg.c. - %o

o angle of attack of wing center line with respect to free-gtream
direction (sketch a)

B Mo=-1]

V4 ratio of specific heat at constant pressure to that at constant
volume

) airfoil-thickness ratio, meximum thickness/chord

e angle of wing center line with respect to horilzontal axis
(sketch a)

v scute angle between wing plane of symmetry and trailing edge
(sketch p)

Po free-stream density, slugs/cu ft

w angular frequency of oscillation, radians/sec

Gg distance traveled, meassured in half M.A.C. lengths, in the time
interval tg, 2Vota/Z .

When o, @, and g are used as subscripts, a nondimensional deriv-
ative 1s indicated, and this derivative is evaluated as the independent
variable (a,&, or q) approaches zero. For example,

aC oC

Cma = [ amJ Cm&‘ = lm_

% dg->o0 3 &<

2VO *
a—>0
. 3Cy
T YT
2Vo g—>o

CinD iy
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THEORY

Application of Indicial Functions to the Aerodynamic
Theory of Unsteady Flows

One of the most useful tools in the study of unsteady flows is the
concept of indicisl aerodynamic functions which mey be defined briefly
ag the aerodynamic response of the alrfoil as a function of time to an
instantaneous chenge in one of the conditions determining the aerody-
nemic properties of the airfoil in a steady flow. Theoretical aerody-
namic indicial functions were first derived by Wagner (ref. 2) for the
two-dimensional wing in incompressible flow. More recently, these
results have been extended by Heaslet and Lomax to cover the compressible
case for both subsonic and supersonic speeds (ref. 4). In addition,
theoretical indicial functions have now been obtained for both wide and
slender triangular wings and rectangular wings, all for supersonic speeds
(refs. b to 6).

The indicial function derives its usefulness primarily through the
eage with which it lends itself to the powerful and well-established
methods of the operational calculus (refs.7 to 9). With the use of these
methods, the aerodynamic forces and moments caused by arbitrary motions
of the airframe can be studlied from & fundamental standpoint. Because of
the wide range of applicability of this means of epproach in unsteady flow
analyses, a considerable portion of the succeeding discussion is devoted
to the fundamentals involved.

Definition of coordinate system.- In the succeeding snalysis the
stablility system of axes is used. The origin of the coordinate system
is placed in the airfoil so that the y axis which is perpendicular to
the vertical plane of symmetry is coincident with the axis of rotation of
the airfoil; the positive branch of the =x axis is pointed in the direc-
tion of flight; and the =z axis lies in the vertical plane of symmetry,
positive downward. The angle of attack o is messured as the angle
between the chord plane of the airfoil and the xy plane, and is shown
as positive in sketch (a). The angle of pitch 6 is the angle between
the chord plane of the airfoil
and the horizontal plane (an
arbitrary reference) and is also
shown positive in sketch (a).
Forces are measured as positive
upward, whereas pitching moments
are positive when tending to
increase the angle of pitch in
the positive direction. When
the airspeed Vg, 1s constant
which corresponds to the

Flight path \

\

Sketch (a)

(R



6 SSANPTDRNET AL, NACA RM A52L.0ka

condition under study, the translatory and angulaer motions of the air-
foil with respect to any system of coordinates are defined if the time
higtories of the angle of attack « and the angle of pltch & and
their derivatives are known. For purposes of clarity, two different
hermonic motions of the aircraft ere shown, illustrating the difference
between a flight path which involves a constant angle of attack and a
varying angle of pltch (sketch (b)) and one which involves a constant
angle of pitch and & varying angle of attack (sketch (c)).

A ,
Flight path flight path
¥
angle of pitch = 8 ongle of pitch =0
angle of gttack = O angle of altack =
Sketch (D) Sketch (c)

Now consider the case of a wing executing harmonic rotary oscilla-
tions sbout the ¥y axis while the origin of the coordinate system
traverses a level path at constant velocity V,. This case corresponds
to that of a wind-tunnel model mounted to permit single-degree-~of-
freedom rotary oscillations, or to the short-period mode of an aircraft
in flight when the plunging velocity of the center of gravity is zero.
Here o and & are equal, so that the maneuver is defined by one vari-
able, the time history of either a or 6. Let the angle of attack
be o and the angular velocity be gq (q = d6/dt = da/dt). At any
ingtant, the normel velocity at any point on the airfoil surface is com-
posed of. two parts, one due to the instantaneous angle of attack aV,,
the other due to the angular velocity at the same instant ~-gx (see
sketch (d)). These are two of the instantaneous boundary conditions of
the unsteady flow.

normal velocity Yo
aue fo ongle of oftack o

2\

ot
g,x

normal velocity —gx due to
angular velocily g

Sketch (d)
SONEER RN

*»
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Solutions for the aerodynsmic forces and moments which correspond
to these boundary conditions may be derived by & number of methods
involving various degrees of approximetion. In succeeding sections,
the use of the concept of indicial functions and the principle of super-
position for this purpose will be i1llustrated and compared with other
current widely used methods.

Concept of indicial functions.- In order to illustrate this concept,
assume that the airfoil under consideration has been flying a level path
at zero angle of attack.. At some time, which is designated time zero,
the wing is caused to attain simultaneouely a constant angle of attack «
and anguler velocity q. The normal velocity of the flow next to the
surface of the alrfoil therefore changes discontinuously from zero to a
pattern that is constant with time and identical in shape to the pattern
shown previously in sketch (d). The 1ift and pitching moment that
result are of a transient character and attain their steady-state values
corresponding to these new boundary conditione only after a significant
interval of time has passed. It should be noted there exlsts an essen-
tial difference between the length of this time interval at subsonic and
supersonic speeds. At supersonic speeds, the vorticity shed into the
airfoil wake cannot influence the flow about the airfoil but at subsonic
speeds this influence exists for =11 time. The result is that the 1ift
and moment reach steady-state values in a finlte time at supersonic
speeds but approach these values asymptotically at subsonic speeds. In
elther case, however, the time responses in 1lift and moment to the step
changes in « and Q@ are termed indicial functions. Sketch (e) illus-
trates typicel subsonic and supersonic indicial 1ift responses to a step
change in the angle of attack.

e I
) ¥ - . _—
€ + M, <l c M>1
— e =G, (@) Go (1)
¢ I fﬂ
Sketch (e)
SN
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It is obvious that the time history of the wing motion during a
short-period oscillation may be broken down into an infinite number of
infinitesimelly small step changes in the angle of attack and step
changes 1in the anguler velocity. The summation of the indicial 1ift and
moment for these steps then yields the total 1ift and moment at any pre-
scribed time. In sketch (f), the mechanics of the procedure are illus-
trated for an arbitrary angle-of-atteck variation. Here, the given

angle~of-attack variation 1s
A replaced by a number of small
a step changes. Within each step
the corresponding response in
' 1ift is shown plotted for con-
- venlence. It is then apparent
that the total 1ift at time <
- 2 is equal to the sum of the

NS~ 7 increments of 1lift in each step
=— 7 /7 at time t. As indicated by
- ray e the leaders, however, it is
clear that the increments of

f_"

time 1t are equivalent to

I -
' 1lift for the wvarious steps at
I ‘ increments in the first step

— gt time t - tl. Alterna-

— r-t, — f  tively, then, the total 1ift
1, at time +t can be written as?t
4 -

Sketch (f)
t
N Jates

crl{t) = Crg{t)a(0) + L ch(t-tl-) = (t,)at, (1)
(o}

After a transformetion of variables, t - t; = T, and letting the incre-
ment of time spproasch zero, equation (1) can_be rewritten in a form of

Duhamel's integral (see, e.g., ref. 9)

or(t) = = [*org(na(t-mar (2)

lHere, and in the remaindeér of this report, the use of paerentheses 1s
reserved solely for the indication of functional dependence. Thus,
for example, in equation (1) the term Cr,(t-ti) is interpreted as .
the value of Cp, at time t - t3, whereas ﬁ% (t1) is the value
of Ax/At at time t,. All other enclosures indicate algebrailc
expressions in the usual sense. . ” '
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A similar procedure is carried out for the angular velocity
variation, whereupon the total 1ift coefficlent at the prescribhed
time t becomes

cr(e) = & [ op(Mats-nar + & [ op () m aleemar (3)

It should be pointed out that in this form equation (3) is applicable
to the analysis of arbitrary motions, the only restriction being that
the flight speed is constant. In the following sections, however, the
application of equation (3) is restricted to harmonic motions having a
single degree of freedom. The reasons for this restriction are two-
fold: first, the motions of a statically stable aircraft in response to
a disturbance are most generslly of a harmonic nature; and second, such
a restriction permits an assessment of the infiuence of the time rate
of the airfoil motions on the aerodynamic forces and moments.

Application of indicial functions to harmonic pitching oscillations.
Consider first a pure sinusoidal pitching oscillation, the angle of
attack being zero throughout the motion. The flight path for such a
motion has been illustrated in sketch (b). In this case, the angle of
pltch is given by

8(t) = 6oeT®t
where 6, is the maximum emplitude of oscillation and ® is the
angular frequency. The angular velocity is, of course, q(t) = 8 =
iwd, elwt = jwg(t). Imserting the value for q(t) in equation (3) and
performing the indicated operations, there results

cr(t) = - -2—2— e(t) j ch(-r)e-ideT + = eoch(t) (u)
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Note in sketch (g) that Cp (T) is equal to cL (t)-Fo(7), and that for
subsonic speeds F-(T) approaches zero as 7 approaches t.

. (1) Civﬁav

;AR A

2 ’
Sketch (g)
Replacing CLq('r) in equation (4) by this equality,
cp(t)  1wd Wi Lt —1wT
—_—— = C7, (T) + e Fo(T)e ar
) = 2 org(t) + e [FEa() (5)

For subsonlc speeds, let t approach infinlty. With this sub-
stitution, equation,(5) thereby repregents the 1ift coefficient due to
the harmonic pltching motion after the transient loading subsegquent to
the start of the motion has reached steady state. Then separating
equation (5) into components in-phase (real part) and out-of-phase
(imeginary part) with 6, there is obtained

CL f Fo(T) cos wrdr

o 2v, Vo (6)
Cy, _ o

Tove/av. Crg(w) - w [ Fo(T) ein wrdr

Introduce the nondimensional paramreters,

v

Q = —c-:-?- T number of half M.A.C. lengths traveled in time T
we ,

k = e— reduced frequency
2Vo
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In terms of these parameters, equation (6) becomes, for My<1,

%E = ¥° [ Fo(p) cos kpdQ
o]
. (7
1, (-}
—_— = -k (9 in k@d
q3/2V, Lq(®) -k [, F2(9) sin ko4

At supersonic speeds, equations (7) may be simplified somewhat
gince the bulld-up in 1ift is completed in a finite number of half
M.A.C. lengths of travel og. In equations (7), therefore, the upper
limits of the integrals may be replaced by og, since beyond that point
Fo(9) is zero.

o3
%L'. = k2 I aLFa(q>) cos k9dQ
°© P ?. Ua (8)
Mg >1
CL,

Oa
—= = Cr.(0g) - k F.(9) sin kPae
qa/avo Lq_ a8 IO 2(

Thus, it appears from equations (7) and (8) that there are both in-phase
and out-of-phase 1ift forces associated with the harmonic pitching oscil-
lation. Notice, however, in equations (8) that if the trigonometric
terms are expanded and the reduced frequency is required to be small
compared to unity (corresponding to the frequencies encountered in
dynamic stability work) terms contalning second and higher powers of k
will be very small compared to first-order terms. Thus, for slow fre-
quencies, the only force of consequence during the pitching oscillation
is the first order in frequency out-of-phase 1ift force, qE/2VO CLq(Ua).z

2This quantity ie, of course, the same 1ift force in phase with the
pitching velocity which would occur alone had the wing been executing
a steady turn (g constent). One of the chief advantages of the indi-
cial response method, at least for supersonic speeds, is the ease with
which the relative importance of the various terms contributing to the
total 1ift and moment can be agsessed and the sources of the important
contributions identified.

(RN,
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The phese relationships for the har-

9 monic pitching oscillation are indi-
qc ¢ (o) cated in sketch (h). It is evident
zg 7T from sketch (h) thet the total 1ift

leads the angle of pitch by nearly 900.

T/GL(’“”) Application of indicial functions
to harmonic plunging oscillations.-
Next, consider a pure.y sinusoidal
variation of the angle of attack, the
po ’g angle of pitch being zero throughout
A 2/ the motion. The flight path for this
-g¢ ‘/:f‘.(ﬂ sinkgdg I%(;}“M¢d¢ motion has been illustrated in
21, % ° sketch (c). Here, a equals apei®?,
where, as previously, oo and W are
the maximum amplitude and angular fre-
guency, respectively. Applying equa-
Sketch (k) tion (3) egain,

cp(t) toft-7] 4,

a .t
% 3 f; Cr(T)e

iwa(t) j't cj-_a('r)e"i“"rd-r + @l (t) (9)
o}

Now, as in the previous example, let CLm(T) = CLa(t) - F1(T) so that
equation (9) becomes

cr(t) = a(t)er (t) - iwa(t) j;t Fy(7)e™ % ar (10)

Again, introduce the nondimensional parameters @ and k, separate
equation (10) into its real and imaginary parts, and let @ approach
infinity for subsonic speeds and og for supersonic speeds. There
results '

k
C A
EL' = O (M) - x J; F, (9) sin kedg
A= ao, M0<l
A = 0g, M >1) (12)
C1, A '
-&?/-Ev: = = fO Fl((p) cos8s kCPd(P J

Gl



NACA RM A52LOk4a - 13

Notice in equations (11) for supersonic speeds that when the trigono-
metric terms are expanded for the slow frequency case, as was done in
the previous example, there appesrs an in-phase term of zero order

in k, afr,(0g), end en out-of-phase term of first order in k,

L3 o
- %E— ‘C) & F,(p)dp. These, then, are the principal contributions to the
o

1ift forces for the slow-frequency angle-of-attack varistion. The phase
relationships for this motion are shown graphically in sketch (i). For
this case, it is evident that the total-1ift force can lag behind the
angle of attack because of
the negative out-of-phase
contribution, &

- % )

. ae 8 Fl(q)) cos kod@ —a’%@i}sfnk¢d¢ ag (o)

2V, o o '/'z

Application of indicial
functions to harmonic rotary
oscillationg.- Finally, con-
sider the case of harmonic ] G, (fotal)
rotary oscillations. Here, — &% fF(p)cos kpdy
as previously mentioned, the 2% \&
normal veloclty over the -
wing surface is composed of |
contributions from both the
angular velocity and the Sketch (1)
instantaneous angle of
attack, so that the complete
expression in equation (3) must be employed to obtain the total lift.
However, for single-degree-of-freedom rotary oscilletions, a equals 6
eand & equals q, so that in this case the separate expressions given
for the harmonically pitching wing (egs. (7) and (8)) and the harmoni-
cally plunging wing (eq. (11)) can be combined to give the total 1ift
for a wing executing harmonic rotary oscilliations. Then, adding the
results of equations (7), (8), and (11), the in-phase and out-of-phase
components of the total 1ifit become

c
'E’L = Crg(d) - k J:“ F, (@) sin kode + k2 j;’“ Fo(®) cos kpd® (12a)
A=, M,<1
A=0g, My>1
C, Py A
Eé/_zv: = Cg(A) - k [T Fp(9) sin k9a® - [ Fi(P) cos kPP (12b)

P —
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The phase relationships for the rotary oscillation may, of course, also
be cbtained by directly adding the results glven in sketches (h) and (i).
The result of this addition is shown in sketeh (J).

q A
/}/m kJE(p)cos kpdg
(4

A
zgé [6,_ A= lﬁ‘(ﬂsmk,s d¢}

A
— g€ [F(@)coskpdy

2yl N
| - A
x{%}n&;-ugf%@ﬂka¢dg}

Sketch (J)

It will be noted in sketch (J3) that the total-1ift force can either lag
behind or lead the angle of attack, depending on the relative magnitudes
of the three terms comprising the out-of-phase 1ift. The total 1lift is
shown lagging behind the angle of attack in sketch (j), which situation,
for axis positions ahead of the polnt of concentration of the total 1lift,
gives rise to the possibility of the development of negatively damped

rotary oscillations.

Again, the complete frequency-dependent equations for the total
1ift of a wing in supersonic flow due to the rotary oscillation
(eas. (12), A = 0g) may be reduced to first order in k for the slow-
frequency case in the same manner as was described in the two previous

examples to give

CL
= = Crg(0a)

(13)
ag;gv- = CLg(oa) - ﬁ:a Fi(@)ae
(o]




3X

NACA RM A52L0La oM 15

For all three examples, the same procedure mey, of course, be used
to obtain the pitching-moment coefficient. Only the pitching-moment
equations for the rotary oscillstion are presented below, since the
correspondence between the 1ift and moment equations is obvious. For
the rotary oscilletion case, then,

A A
%rs = Cmg (M) - kj; Fo(P) sin kPAP + kzj; Fo(P) cos kPdP

A=, MO<l
1L
A=0g, Mo>1 (1)

é‘;v—o = Cpq () -k fok F, (P) sin kpdp - é” Fg(®) cos kpag

where, as previously,

Fg(®) = Cp (M) - Cpy ()

and

F4(CP) Cmq(x) - Cmq(q))
Again, reducing equations (14) for supersonic speeds (A=0gy) to first order
in frequency, there results

(15)
7T ~ Cnalee) - [ Te(®) @9

The complete frequency-dependent equations for the 1ift and pitching-
moment coefficients for the rotary-oscillation case (egs. (12) and (14))
describe completely the amerodynamic forces and moments resulting from
the single-degree-of-freedom pitching mode. For the purposes of the
present discussion, however, it is sufficient to limit consideration to
the simpler first order in frequency results of equations (13) and (15).
The significance of the effect of the higher-order terms on the out-of-
phase pitching-moment will be examined in a later section of this report.

With regard to the first-order results for the supersonic 1ift and
pltching-moment coefficients, it is instructive to note that the
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a, ag
quentities [ ®F,(9)ap and [ ® F4(9)a® in equations (13) and (15)

are represented geometrically by the areas of the shaded portions of
sketeh (k).

Cro

) ()
Sketch (k)

The manner in which these areas are affected by variations in Mach
number, aspect ratio, plan-form shape, and thickness will be used as a
guide in later sections of this report to determine the significance of
these parameters.

In the foregoing discussion, no mention has been made of reducing
the complete equations for the 1ift and moment coefficients at subsonic
speed (egs. (12) and (14), A=w) to first order in frequency as was done
for the equatlions noted as applying at supersonic speed. It is evident
that if the same procedure had been applied for subsénic speeds, the
area corresponding to the term ]; F1(¢)d¢ can either be finite or can
become infinitely large, depending on the manner in which the indiecial _
1ift function CLQ(Q) approaches 1ts steady-state asymptote as @ .
In the latter case, there exigte the interesting anamoly of an infinite
out-of-phase 1ift force as the frequency approaches zero. As can be
seen from the results of reference 4, such will be the case for the two-
dimensional wing. This result as the frequerncy approaches zero is not
peculiar to the indiciael analysis alone, but has been pointed out by a
number of authors using different approaches. Ag indicated by Miles
in reference 11, however, the ansmolous result can be considered to be
a consequence of assuming & two-dimensional flow, and there is reason
to believe that the difficulty as. the frequency approaches zero will not
exist for finite-span wings.

As has been mentloned previously, the use of the characteristic

areas f F, (9)39 and .f Fg(P)dP will be shown to be of considerable
value iﬁ)estimating the éhmping-in-pitch characteristics of wings at .
supersonic speeds. For the two-dimensional wing at subsonic speeds, the
singularity as k-»0 prevents the use of such a simplified approach

CONFIDENT Me
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without further study. However, rather than return to the use of the
full frequency-dependent equations ((12) and (14)), the reduction of

the eguations for the out-of-phase 1ift and moment to first order in
frequency will be mede in such a manner as to preserve the significance
of these areas. To accomplish this end, equation (12b) is reconsidered.
It is evident that the first integral in equation (12b) may be discarded,
since its contribution to the out-of-phase 1ift ig at least of second
order in frequency. The second integral is divided into two parts:

o -3

[ Fi(P)cos kPaP = fcpl F1(P)cos kPP + [ F1(P)cos kPaQ (16)

o ‘o P,
vhere @, is chosen such that F,(P;) is close to zero. The first
integral in equation (16), being bounded, then causes no difficulty.
Expanding the trigonometric term and retaining only the first term in
the expansion, there results L;%- Fl(w)dQ, which is t-e charsacteristic

ares out to the point @3;. Now for large values of @, F1(®) is approx-
imated in reference 4 by

Fi(9) = u{a i‘r 5" -ra%ﬂ-g}

where the values of p, @&, and b are dependent on Mach number, and are
given for Mgy = 0O, 0.5, and 0.8 in reference 4, TInserting this quantity
in the second integral in equation (16), we have

© ® cog k@ cos k@
chlFl(CP)cos ¥XPdP = p j;l)lm dQ + ub L:lw ae (17)

Performing the indicated integrations in equation (17, there is obtained
a term, pb/a+¢l, from the second integrsl, and a term, -uCi{F[a+¢l]

from the first integral. For small values of the argument, the cosine
integral is approximated by (see ref. 12),

ci {k[a+cpl]} & zn{yk[awll}

k[a+@,]~> 0
where 7y 1is Euler's constant, 1.78107.

Then, through the first order in frequency,

L _cpg(w) - [T F(0)a + Gloy k) (18)

o]

e, =
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where

G(?,,k) = [pln{rk[&ﬂ)l]} a+<P1:|

The out-of-phase moment for pitching about the leading edge follows from
the above development, with the added result of reference U4 that for
large values of @,

F.
Fa(P) & - 15@)
Then, through the first order,
c
ng—o cmq(“) = Fa(w)dq) - " G((Pl,k) (18b)

Thus, after fixing @,, choosing a (small) value of k, and computing
G(P, ,k), the finite areas corresponding to the terms - f J'F (P)aw

and - fqh Fg(P)d® can be assessed in the same manner as will be done

for thg supersonic case. The advantages of such a procedure will be
evident later.

Correspondence between indicial 1ift and moment analysis and other
methods.- Before proceeding further with applicetions of the iundicial -
response method, it 1s appropriste to diacuss the relationship of this
approach to other widely used methods.

Following the fundamental pepers of Bryan and Routh, which intro-
duced the basic differentisl equations of motion of rigid bodies and
their stability criterla, the historical development of the theory of
longitudinal motions of an aircraft evolved separately in two flelds of
research: dynamic stability and flutter. Workers in the dynamic stabll-
ity field soon found that the longitudinal oscilllations of a rigid air-
craft in flight were generslly of small reduced frequency. On this
basls, the constants due to the aserodynamic properties of the airframe
which appesr in the differential equations of motion were considered to
be independent of frequency. As a first approach to the problem of
obtaining the necessary aerodynamlc coefficients analytically, the
instantaneous normal velocity distribution at the surface of the airfoll
was assumed to be constant with time. The aerodynamic forces and moments
arising from the fixed boundary conditions were then calculated using
steady-flow theory. ILater, this assumption was realized to be an over-
simplification for the case of wing-taill combinations and an additional
term correct to the first order in frequency was added which accounted
for the lag in the tail pitching moment caused by the time required for
the vorticity discharge from the wing to reach the tail (see ref. 13).

SR,
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Since at low speeds the pitching moment of the teil far outwelghs sall
other contributions, the results from steady-flow theory together with
the term accounting for the vorticity lag satisfactorily predicted the
dynamic longitudinal motions of wing-tall combinations, and it was con-
cluded that the major aerodynamic effects had been accounted for. In
recent years, however, numerous authors (in particular, Miles; see, e.g.,
ref. 11) have pointed out that the above-mentioned theory overlooks
important contributions to the aerodynsmic forces and moments which,
though still within the first order in frequency approximation, arise
from time-dependent boundery condltions and must be calculated from
unsteady-flow theory. It has been shown by these authors that with
proper inclusion in the equations of motion of these coefficients, the
deterioration of damping in the short-period mode actually occurring for
aircraft flylng at speeds near the speed of sound can be successfully
predicted. The consequences of the assumptions involved in the classical
dynamic stability theory will be more evident from a brief review of the
equation of motion and boundary conditions for the single-degree-of-
freedom rotary oscillations of a rigid wing flying at constant supersonic
speed. At the very outset, the assumption is generally made that the
aerodynamic reactions to the motion of the alrframe depend only on the
snguler position and angular velocity and not upon angular accelerstions
or higher time derivatives. The equation of motion for the change in
pitching moment following a displacement from an eguilibrium position is
then written in the form of a power series:

I - [3Cm] A, 1 &e [azcm [ral® .
2S¢ [ J {a [ac/zvo]fevo {a[qc/evo VUav, L2 ] 21
{ %y [62/2Vo1% | { Boy ) L&/l (1)
21az/2v, 1 21 3% [q3/2V, ] o1

It should be remembered that for the rotary-oscillation case, the air-
foll is subjected to changes in both angle of attack « and angular
velocity q, and thal these motions produce normasl velocity patterns at
the airfoil surface which are different in character. Thus, although
for the single-degree-of-freedom case, & and @ are equal, nevertheless
their separate effects must be considered and 1t is therefore

e [e/av, 1 dlag/av, ]
Next, if it is assumed that the moments are linearly dependent on their
regpective variebles, the higher-order terms in equation (19) may be dis-
carded and the remaining partial derivatives considered as constants for
the given wing. There remaing, therefore, a linear second-order system
with constant coefficients. 1In order to calculate the coefficients

b=

necessary to include both in equation (19).



20 T, NACA RM A52L0ka

(termed stability derivaetives) theoretically it became necessary, for

lack of more refined theoretical methods, to assume that the instanta-

neous normal velocity of the flow at the surface of the wing was fixed

with respect to time. Thus, the partial derivative —Cm __ could
3lqz/2v,]

be calculated as the piltching moment due to a constant pitching rate,

that is, Cmq(Ua): while the derivative JdCp/da becomes the pitching

moment due to a constant angle of attack, that is, Cmy(0a). As a con-
sequence of fixing the normal velocity pattern in time, however, it was

necessary to assume that the derivative -——:—m“—i was zero. There

ac
was therefore no possibility for this theory to gredict the occurrence
of dynemic instsbility for a wing alone, since the only demping term
remaining is Cmq(Ga): which is always stabilizing. When the restriction
of constant normal velocity with time is lifted, however, the assumption
1s then made thet the stability derivetives in equation (19) may be calecu-
lated separately by fixing each of the independent varisbles o, G,
and ¢ in turn with respect to time. The derivatives Cmq(ca)
— (or .
3 [az/evo]( Cme)

can now be included and calculated as the pitching moment due to a con-
stant vertical acceleration, &V,. It should be emphasized that while
Cmq(ca) and Cm,(og) may be calculated from steady-flow theory by virtue

of the assumed Invarience with time of the normal velocity pattern, Cmg,
must be calculated from unsteady-flow theory since for constant &

the angle of attack varies linearly with time, as does the normal veloc-
ity of the flow at the surface. : :

and Cp (og) thus remain unchanged, but the derivative

It is clear that since the stability derivatives in equation (19) are
assumed to be independent of the frequency, the result for the serody-
namic pitchlng-moment coefficient is thereby limited to ome that is
correct only to the first order in frequency. For the single-degree-of-
freedom case, then, the in-phase and out-of-phase components of the )
total serodynamic pitching-moment coefficient correct to the first order
in frequency, become

'C-;E = Cma’<0'a)

Cm
q8/2v,

(20)
=_Cmq(0a) + Cmg(oa)

By comparison with the first order in frequency result from the indicial
response analysis (eq. (15)), it is evident that the two results are

e
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identical if the quantity —f Oa Fb(Q)d@ can be shown to be equivalent

to Cmaﬂca) To show this equlvalence, conslder a wing, initially in
level steady flight, which is suddenly forced down with constant vertical
acceleration G&V,. As seen in sketch (1), the angle-of-attack variation
in this case 18 o = &t, where & 18 a constant. Then applying the
counterpart of equation (3) for the

pitching moment

Cm(®) =~é% {f Cmg(T)a(t-T)dT

Inserting oft-T) = &l{t-1l, and per-
forming the 1ndicated differentiation,

Cp(t) = & J;t Cmg(T)AT

= .
Now replace Cp (T) by Cmy(t)-Fg(T) o o) it /
and let t be greater than tg.
Then Sketeh (1)

Cm(t) = a(t)Cm (ta) - & j:a Fg(T)dr

and nondimensionalizing, by replacing t and tg by E@/EVO and Eca/ZVO,
we have

G.C

Cn(®) = @) Cmg(0a) - — 2 Fa(P)de; P 20, (21)

(o]

Thus, the pitching moment proportional to the constant vertical acceler-
etion parasmeter &E/EVO, which is synonomous with the definition of the
stability derivative Cpgs, is found to be equivaelent to the pitching-

moment contribution due to & <For the first order in frequency-rotary-
oscillation case.® Therefore, the results of the indicisl response
method, when reduced to the first order in frequency for supersonic
speeds, are ldenticel to the results from the familiar first-order theory
used in dynsmic stability work.%

SBy the same procedure, the stability derivative CLQ(Ga) can be shown
to be equivalent to the term - f F,(9)do.

“4Notice in equation (21) that if Ua is replaced by infinity, the results
apply to subsonic speeds. For the two-dimensionel wing, the analogy

between Cpg end - L:,Fa(¢)d¢ then gives only the previously mentioned
singularity at infinity as k-—> 0. If the area corresponding to
f:’FSGP)dm were finite, however, the analogy would be equally useful
for subsonic as well as supersonic speeds.
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Workers in the field of flutter, who were concerned with frequencies
many times those encountered in dynemic stability analyses, required
theoretical information showing the behavior of the forces and moments
as affected by the frequency of oscillation, and therefore discarded the
first-order theory for more precise methods of analysis. One of the
most useful of these has been the "oscillating potential” theory, which
is based on periodic solutions of the time-dependent linearized equation
of compressible potential flow. The in-phape and out-of-phase 1ift and
moments are thereby determined, generally as functions of powers of the
reduced frequency, aspect ratio, Mach number, and position of the axis
of rotation. The application of this method, which developed primarily
as a result of Theodorsen's work for incompressible flow (ref. 14) has
recently produced a number of useful papers covering a wide variety of
wings at supersonic speeds (see, e.g., refs. 15 to 19). It has been
shown by & number of authors, in particular, Garrick, in reference 7,
that through the use of superposition methods the results for the aero-
dynamic coefficlents obtained from the oscillating potential theory are
wholly compatible with thoge of the indiclal response method for har-
monic motions (egs. (12) and (14)).

Thus the Indiclal response method embraces both the first-order
theory of dynamic stability and the oscillating potential theory, and,
in effect, bridges the gap between the fields of dynamic stability and
flutter. TFurthermore, the indicial response method overcomes the dis-
advantages of the two methods described above since, unlike the first-
order theory, the effects of frequency on the aerodynamic coefficients
can be determined, and, unlike the oscillating potential theory, the
method can be applied easily to the study of arbltrery motions. Finally,
the indicial response method represents a fundemental approach to the
problem of unsteady flow, and affords veluable insight into the physical
nature of the aerodynamic phenomens taking place.

Physical concepts relating to the indicial loading.~ It has been
shown that for even small frequencies, the pitching moment of an airfoil
in harmonic rotery motion can lag behind the angle of attack of the air-
foil. The magnitude of the lag depends on the character of the 1ndicial
response to a step change in angle of attack. It 1s therefore of
interest at this time to re-examine the physical nature of the flow
that contributes this lag.

Congider first the 1ift and moment at the instant the angle of
attack chenges, assuming that previous to time zero the wing has been
flying a level path at zero angle of attack. At t = 0, the wing begins
to sink, without pitching, with constant downward veloclity aV, while
mainteining its forward veloclty. The angle of attack therefore changes
discontinuously from zero to a comstant a. At the same instant, the
step change in angle of attack causes the emigsion of a compression wave
from each point on the lower surface of the wing and expansion waves

GRAETRENTRE
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from points on the upper surface. In the infinitesimal time during which
the starting action occurs, each section of the wing experiences the

same impulsive force, and by equating the impulse to the momentum trans-
mitted to the mass of fluid affected by the starting waves, the starting
1ift coefficient can easily be derived as La/My (see ref. 3). During
the infinitesimal starting time, the pressgure disturbances from the edges
of the airfoil, propagated at the speed of sound, travel an insignificant
distance and do not influence the remsinder of the airfoil. The 1ift
coefficlient is therefore independent of the wing plan form. This remsrk-
ably simple result for the starting 1ift coefficient, which is valid for
both subsonic and supersonic speeds, is thus dependent solely on the
flight Mach number. The starting pitching moment follows directly from
the above result, since by virtue of the uniformity of loading the aero-
dynsmic center is located at the wing centroid of area.

For values of time greater than zero, however, the situation differs
radically for the supersonic and subsonic speed ranges. Consider first
the supersonic case. As time passes, the spherical sound waves emitted
at t =0 grow in size with radius agt. The wing, however, is moving
forward at a faster rate than the rate of growth of the starting sound
waves end thus begins to emerge from the influence of these waves. This

is shown schematically in sketch (m). leading edge af 1=
! J

starting sound waves
from leading edge
at t=t,

envelops of
starfing waves N\ —
from leading
edge of =/,

/::——\\——/aading edge al t=1,

leading edge af =0
S — - \1
>

é L |

P P S
P =

e

Sketch (m)

At t = 0, the starting waves just cover the wing and the loading is
uniform as described previously. At t = t,, the starting waves have
grown in radius and the wing has begun to emerge from their influence.
On that portion of the wing which has emerged, region (1) in sketch (m),
the loading has already reached its steady-state value. Notice that in
this region the characteristic tip Mach cone has already formed. On the
portion of the wing uninfluenced by the starting waves from the edges,
region (3) in sketch (m), the loading is still uniform as at t = O.

In regions (2) and (4), the loading is influenced by the starting waves

SNSRI Rk T
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from the leading and side edges, and in these regions is thus different
from the loading in either regions (1) or (3). As time increases still
further, the uniform starting load quickly disappears as the sound waves
from the leading edge grow in size and as the wing moves forward. "
Finally, at time ta, the envelope of the starting waves from the lead-
ing edge is coincident with the trailing edge of the wing, and the
steady-state loading corresponding to the new angle of attack o has
been completely established over the wing. '

The above relationships can be shown more clearly for the entire
time interval zero to tg for a two-dimensionsl wing by plotting as a
function of time the position of the wing leading and tralling edges
end position of the envelopes of the sound waves which emsnate from the
leading and trailing edges at t = 0. Such a plot is shown in sketch (n).

frace of
leading edge

N\
-/i/éx \\
// frace of slarting

frace of sound waves from
tralling edge | /eading edge
b4
Sketch {n)

It is clear that at t = t; the regions of the wing (1), (2),
and (3) correspond to the same regions at 't = t3 for the wing shown
in sketech (m). For t =0 and in region (3) the loading i1s uniform and
is given by Ma/Mb. For t>tg and in region (1) the wing has out-
stripped the starting waves from the leading edge and has attained its
steady-state loading. For t<tg the chordwise loading is composed of
combinatlons of the loading in each of the three reglons as shown in
sketch (o0).5

5The reader will note the similarity between sketch (n) and sketches
depicting the boundary conditions for three-dimensional wings in
steady supersonic flow. Many researchers have pointed out the analogy
and 1t has been used to caslculate the pressure over a wing impulsively
starting from rest (refs. 3 and 4).
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Since the loading on the

wing attainsg its final
steady-state distribution

at precisely the time when
the wing has emerged entirely
from the influence of the
starting sound waves from

the leading edge (or apex),
the time to reach steady
state may be easily calculated
for any type of wing by means
of the geometric relationships
shown in sketch (p).

Sketch (o)
1
A T f
feading edge c,
a t=1 ¢ 47}

frace af t =1y
of starting sound wave
from apex 24

leading edge
at t=0

Sketch (p)
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It may be easily verified that tg, the time required for the wing to
attain its steady-state loading, is given by the following relationship:

ta Vo [Mg-cee v] V= 2 (22)

Notice that for wings having straight or swept-forward trailing edges
and straight or swept-back leading edges, equation (22) reduces to

- oo (23)
Vo [Mo-1]
In terms of the number of half M.A.C. lengths of travel, it thus appears

that for wings having stralght or swept-forward trailling edges and
straight or swept-back leading edges,

ta

2oy .20 Mo
Og = == ta = a [Mo-l] (21")

whereas for wings having swept-back trailing edges and straight or
swept-back leading edges,

2co Mo 2¢co
PRt = e * S > —_ v
a Mg-cse v’ Mg 2cBC V + 5 cos

> >(25)
¢ b 2 2¢o
ca = Moz {Mo + l--LT-E[Mo-l] s MoScscv+-—b—cosv
¢
MoZ - 1 )

The second of equations (25) applies to that range of Mach numbers for
which the trace of the starting sound wave from the apex 1s not tangent
to the trailing edge at t = tg.

Now conglider the subsonic case. Here the situation 1s more compli-
cated in that since 'the starting sound waves travel fester than the
wing, the wing never escapes their influence. Furthermore, the vortic-
ity shed by the wing at t = O can also influence the loading on the
wing since the disturbances created by the sghed vortiecity travel forward
at a faster rate than the wing. For these reasons, the indicial loading
at subsonic speeds approaches its steady-state distribution asymptoti-
cally with time. The situation for subsonic speeds will be more clearly
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evident from examination of sketch (q), which shows the relationship of
the traces versus time of the leading and trailing edges of a two-

dimensional wing flying at a subsonic Mach number to the traces of the

envelopes of the startlng sound waves.

11#-0,—47
a

) -

@ X

7 4

/// trace of

rd
,/, b frace of

4
i
sfarting sound waves
\ from /leading edge
frace of
leading edge +
/

frace of
trailing edge

Sketech (q)
Notice in sketch (q) that the starting
sound waves intersect the edges of the wing AA%
and that each intersection causes a new
sound wave to be emitted, which in turn will
intersect an edge. Furthermore, notice that
the vorticity shed from the trailing edge
at time zero can influence that portion of
the wing behind the sound wave trace
.labeled a-b. The influence of each succes-
sive sound wave reflection, however, is
weaker than the last, and as- the wing moves
away from the starting vortices their
influence diminishes, sc that at t = «» the
loading on the wing attalns its steady-state
distribution. The variation of the chord-
wise loading with time for the two-
dimensional wing flying at a subsonic Mach
number is shown in sketch (r). Notice that
for t >0, the chordwise loading is markedly
different from the loading at supersonic
speeds (sketch (o0)). However, for t =20

shed vorticity

starfing sound waves
from frailing edge

Sketch (r)
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and in the reglon corresponding to region (3) of sketch (q), the loading
1s uniform and equal to 4a/My, as in the supersonic case.

Damping in Pitch of Low-Aspect-Ratlo Wings

Previously (eq. (20)), it was shown that for single-degree-of-
freedom, slow-frequency, pitching oscillations of a wing, the principal
parameter contributing to the damping of the motion is the damping coef-
ficient Cp, + Cpg. This result, however, is not directly epplicable to
the case of an aircraft in flight, since generally additional damping is
provided by virtue of the fact that the aircraft experiences harmonic
vertical translatory oscillations as well as the rotary oscillations.

For the slow-frequency case, however, the effect of the second degree of
freedom on the damping can be determined by use of the relationships
given in reference 10. It is further shown in reference 10 that although
the effect of the translatory oscillation is usually to increase the
total damping, nevertheless, the parameter of primesry importance in
determining the magnitude and duration of the motion remalns the damping-
in-piteh coefficient Cmq + Cps. The remainder of this section is
therefore concerned with™a stﬁgy of the effect on this parameter of
certain important varlables. In particular, the effect of the position
of the center of gravity, and the effects of Mach number, asgpect ratio,
plan-form shape, frequency, and thickness will be examined, principally
by inepection of the indicial 1ift and moment responses to a change in
angle of attack.

Effect of static mesrgin.- From the previous discussion, it will be
remembered that at supersonic speeds the stabllity derivatives CL&(Ga)
end Cm&(oa) were shown to be equivalent to the indicial lift and moment

o g
expressions, - {)a'Fl(¢)dm and - [ & Fg(®)da®. Furthermore, it was shown

that these were the contributionsqwhich could cause the total 1ift and
moment during the short-period oscillation to lag behind the asngle of
attack. Hence, by inspection of equation (15), it is evident that since
Cmg(0a) is always stdbllizing, when Cp,(0g)is negative (corresponding
to & statically stable condition) the possibility of dynamic instability
in the form of negatively damped rotary oscillations arises when
Cmg(0a), the shaded area in sketch (k-ii), is larger than Cpy(oa).

Now since the normasl velocity at the surface of the wing due to the
instantaneous angle of asttack is congtant over the wing, the 1ift
derivative Crs which arises from this boundary condition is independ-
ent of the axis position and Cpg will therefore vary linearly with
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axis position. This variation is illustrated in sketch (s8), where Axg
represents the distance of the center of gravity from the serodynamic
center, measured positive forward of the serodynamic center.

ﬁ Gnq» GI‘H¢

Cm q+ Cm It /

7/

stable
\\ q
S A
+4X‘ \\\\~-____—”’ () /

unstable

Sketch (s)

The parameter Cy,, on the other hand, is a direct function of the

axis position, since it arises from a normal veloclty distribution that
varies directly as the distance from the axis. The moment coeffi-

clent C will therefore vary as the second power of the axis posi-
tion, and describes the parabolic shape shown also in sketch (s8). It

is evident from sketch (s) that the sum of Cp, and Cpg will be a
minimum at some value of the static margin, and that the sign

of Cmgq + Cmg at that point determines whether or not a region of axis
positidns will exist over which the wing can experience negstively
damped rotery oscillations. These qualitetive statements may be written

explicitly by considering the equetion for the damping in pitch about an
arbitrery axis,

Cmq + Cng = [cmq] + [%}O - A—’éﬂ I:CLq:L + CI&} -

(o]

JEJET (26)

vhere agaln Axgs refers to the distance of the center of gravity frc.
the aerodynamic center, and the subscripted terms are referred to an
axls through the aerodynamic center.

conmSSISELT
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Taking the derivative of equation (26) with respect to Axo/é, and
setting the result equal to zero, there is obtained the axis location
8t which. the damping in pitch 1s a minimum

|

ax,  {lorgl + CL&}
: hC1g,

y

When equation (27) is inserted into equation (26), the minimum value of
the damping in pitch 1s given as

(] ]

], ] ] o ] ol o

and hence, a region of instability will exist if -

{ [cqu; [G‘“&L I B { [%L rorg} >0 (29)

If equation (29) is greater than zero, the boundaries of the region of
axis positions over which instebllity is possible sre of course given by
setting equation (26) equal to zero end solving for Axo/E.

201‘1

mxo ﬁclq] O+CL5& . / { [.CL;{:I I;CL&'}Z . {[Cmq]o+ [cmd,]o. (30)

Notice in both sketch (s) and equation (30) that for a given Mach number
there will be two axis positions at which the damping in pitch vanishes.
Then if the above procedure is carried out for a series of Mach numbers,
one may trace out a curve as shown in sketch (t) which forms the locus
of Mach numbers end axis positions at which the damping in pitch 1s zero.
This locus thus delineates the regions of Mach number and axis position
for which dynamic instability is and is not theoretically possible.

Buch loel, covering a wide variety of wings at supersonic speeds, have
been presented by a number of authors. Watkins, for example, presents
supersonic boundary curves for rectangular and trisngular wings in refer-
ences 16 and 17. At subsonic speeds, Miles' reduction of Possio's
development to first order in frequency (ref. 11) can be used to form a
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stability boundary curve for the two-

dimensional wing for a given (small)

reduced frequency. Such a curve 1s pre- A
sented for the entire Mach number range A%,
in Pigure 1, where, here + X, is the 3

distance of the axis of rotation behind
the leading edge and k, the reduced fre-
quency, 1s 0.01l for subsonic speeds and
approaches zero for supersconic speeds.
Notice in figure 1 that at both subsonic unstable
and supersonic speeds, the range of Mach
numbers over which dynamic instability is o
possible is largest for center-of-gravity 1.0 M,
positions forward of the aerodynamic l
center. Purther, the largest range of

axis positions over which dynamic insta-
bility is possible occurs near My = 1. Sketch (t)

Both of these characteristics are true as well for three-dimensional
wings at supersonic speeds (see, e.g., refs. 16 to 19).

stable

Effect of Mach number.- Next consider the effect of Mach number on
the damping in pltch of & two-dimensional wing with axis at the leading
edge. The variation with Mach number of the indicisl pitching-moment
response to a change in o will first be examined, using the information
given in the previous sections and the indiciasl curves given in refer-

a
ence L4, At supersonic speeds, the manner in which - ap (p)do, the
L o a

aree corresponding to Cpg, is affected can then be assessed and com- _
pared with Cp,(0s). At subsonic speeds, use is made of equation (18b).
It is evident in equation (18b) that by fixing k and choosing @,

such that the quantity % G(@l,k) ig the same at each Mach number, one
@
is free to compare finite areas - £)1'F3(¢)dm on an equivalent basis.

As has been mentioned previously, the starting 1ift, at any Mach
number, is 4a/My and is concentrated at the midchord. At My = O,
therefore, there is an initisl Infinite pulse in the pitching moment
about an axis coincident with the lesding edge after which the indicial
curve drops to =n/4 and begins to grow asympotically toward its steady-
state value =n/2. At low subsonic Mach numbers other than zero, the
initial pitching moment is less than infinite but very large, being
2/Mo, and then fallg before growing toward the steady value ﬁ/EB. As
the Mach number increases +toward 1.0, the starting pitching moment
falls while the asymptotic value grows, until at My = 1.0 the indicial
curve becomes unbounded in asymptotlc moment.
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As seen in sketch (u), the effect of increasing the Mach number at
subsonic speeds is therefore to increase rapidly the area corresponding

to the destabilizing moment contribution, - Ljﬁ Fé(¢)d¢.

EER IR ‘\"\' i pr———
Nh““qp\

V“N'

0 20 3o 40 50 &

Sketch (u)

In sketch (u), k was chosen to be 0.011 and the values of @; were
picked such that - = G(¢1,k) was +4.88 at each Mach number. In the

following dlscussion, the damping moment - f ! Fe(@)de + 4.88 will be
referred to as Cpy for convenience.

At supersonic sgpeeds, the initial value of the pitching moment 2/Mo
continues to drop with increasing Mach number, but here the steady-state
pitching moment also begins to fall and at a faster rate than the start-
ing moment, being 2/B. Even more important, as the Mach number increases,
the number of half-chord lengths traveled to reach steady state decreases
rapidly, being 22, for example, at My = 1.1, as compared to 4 at My = 2.
As seen 1n sketch (v), the area representing Cmg therefore shrinks
repidly with increasing supersonic Mach number and becomes relatively
unimportant st Mach numbers greater than 2. The trend of Cpg with
Mach number through the range 0<My<2 is more clearly evident in
sketch (w). It is seen that Cmg, 1s positive, or destabllizing,
throughout the Mach number range and that its effect is most important
at Mach numbere near 1.0. Also shown plotted for comparison in sketch ()
is the variation of Cmg with Mach number. When the parameters are
added, it 1s evident that the damping moment Cmq + Cm& for the two-

dimensional wing with axis at the leading edge 1s destabilizing in the
Mach number range O<M,<1l.hklkh.

ORI o
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Sketch (V)

Effect of aspect
ratio.- To illustrate the
effect of aspect ratio, —l0
it is convenient to 4
compare the supersonic ________:25——”//
damping-in-pitch char-
acteristics of a group of o
triangular wings bhaving = [T~ -
subsonic leading edges.
The wings are of equal
area and differ only in
aspect ratio. As was Cmg» Gmg { n * Gy
done previously, the 7
indicial 1ift responses 20 Cng (k=-0ll)
to a change 1in angle of
attack will first be
examined. The effect of
aspect ratio on the char-
acteristic area repre-
senting Cr, cen then be Sketch (w)
assessed.

10

30

As has been mentioned previously, the starting 1lift coefficient
after a step change in o is independent of aspect ratio and is there-
fore equal to hm/Mo for each wing. The perameter og, the number of
half M.A.C. lengths required to reach steady state, is also the same for
each wing, being a function only of Mach number. The steady-state 1ift
coefficient, on the other hand, is a function of aspect ratio and

e
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decreases as the aspect ratio is reduced. Thue, as shown schematically
in sketch (x), as the aspect ratio becomes smaller, the characteristic

Ciq

;;:£:§§§S§y gl rrm =~ ——
KX/ /L.
o "

Sketch (x)

ares representing Crg decreases rapidly.e For the wing of smallest
aspect ratio, CLg may be positive since the area below the steady-
state 1ift coefficient is more than compensated for by the ares above,
It is evident, therefore, that a reduction in aspect ratio has a highly
stebilizing effect on the damping in pitch, since for positive values
of the static margin the development of s destabilizing damping moment
is possible only when CL& is negative. Thisg result is shown in
sketch (y) vhere, for an sxis of rotation located at 0.25 & gnd Mo=1.2,
the damping parameters sre bresented as functions of aspect ratio,
Since for triangular wings the 1ift due to & is concentrated at g g,

-3
Cm& 1s equal to g CL&' The variation of cm& with aspect ratio

shown in gketch {y) then follows directly from the trend of Crs, shown
in sketch (x). Also Plotted in sketch (¥) 18 the variation of Cmq

sTheoretical indicial curves have not yet been calculated for the
triangular wing with subsonie leading edges. The curves drawn in
sketch (x) are estimstes of the true shapes, and are intended only
to indicate the trend of the charscteristic area with aspect ratio.
The exact variation of CLé with aspect ratio can be computed from
the results of reference 20. -

L ARMREDENT TAL>
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Sketch (y)

with aspect ratio (ref. 20). It is apparent that although Cmq becomes

more stabilizing with increasing aspect ratio, the destabilizing effect
of Cmg predominates, and the trend of the net damping moment is seen
to become highly destabilizing as the aspect rastio is incressed.

By the same reasoning, the variation with aspect ratio of the
damping moments of other types of wings can be shown to be similar (see,
e.g., refs. 11, 21, 22, and 23). A notable exception, however, is the
triangular wing with supersonic leading edges, whose damping in pitech
hes been shown to be independent of aspect ratio (see refs. 18 and 19).
This characteristic may be anticipated from a study of the indicial
response curves, since not only are the initial pitching moment Qm@(o)
and the half M.A.C. lengths traveled to reach steady state (ca) inde-
pendent of aspect ratio, but, unlike the subsonic-edged triangular wing,
the steady-state pftchﬁng moment Cma(ﬂa) is also independent of aspect

AX
—L2 .. Inspection of the resulis of reference 4 then

ratio, being - E

reveals that the indiciael variation Cm¢(¢) between zero and og and
the steady-state parameter Cmq(ca) are likewise independent of aspect
ratio.

Effect of plan-form shape.- Next, consider the effect of plan-form
shape on the supersonic damping in pitch of a group of wings having the
seme aspect ratio. 1In order to make use of readily avallable theoretical
results and yet compare these results with the experimental date to be

GOMETTEN T
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glven later, three wings of aspect ratio 3 are chosen, having the trian-
gular, swept, and rectangular plan forms shown in sketch (z).

Ax3
A=53.1°

Sketch (z)

As hes been shown in the section entitled "Effect of static margin,'
the tendencies of the wings toward dynamic instabillity can be compared
comprehensively by plotting their stability boundaries. For this com-
parison, then, use is made of equation (30). The stability derivatives
which appear in equation (30) were computed from the theoretical results
of references 11, 20, 22, and 23. Results of. these calculations are
shown in figure 2, wherein the stability boundaries for the three wings
are shown as a function of axis position and Mach number. (Note that
the axls position for each wing is measured as the distance from the
leading edge of the M.A.C. of the wing, and that the dimensions are non-
dimensionalized on an equilvalent basis by referring them to the M.A.C.
of the triangular wing.) It is clear from inspection of figure 2 that
at any Mach number the triangular wing has the smallest range of axis
positions over which dynamic instability is possible and the rectangular
wing, the largest.

The differences in the demping characteristics of the triasngular
and rectangular wings will be more clearly understood by a qualitative
study of "their indicial 1ift responses for a Mach number of 1.2, and an
examination of the distribution of loading due to & for the two wings.
Congider first the indicial 1ift responses.

Again, the starting 1ift coefficient i1s independent of plan~form
shape and is ka/My for esch wing. For the rectangular wing, the
1lift drops abruptly after time.zero due to the loss in 1ift in the
regions of the wing influenced by the formstion. of the tip Mach cones
and the starting waves from the side edges (see sketch (m)). Then as
the wing beging to emerge from the influence of the starting waves, the
1ift begins to recover, rises toward its steady-state value (given
by eq. 6.3-2 of ref. 11), and attains this value after 12 half-chord
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lengths of travel (eq. (24)). The variation is shown in reference L4 and
is redrawn in sketch (aa). As mentioned previously, theoretical indicial

. SN 4=3
/ G (%)

“ - M, =12
4 - , = 1.
7 7AN

A=3
2 v v T
£ 10 5 ¢ 20

Sketch (aa)

1ift results have not yet been developed for trianguler wings having
subsonic leading edges. However, the variation shown in sketch (aa) is
considered to be a reasonsble estimate of the true shape, being based on
knowledge of the steady-state 1ift (ref. 20), the time to reach steady
state (eq. (24)), and the assumption that the shape of the varjation
would be similer to that of the wide triangular wing (ref. 4), The

curve was adjusted within the known end points until the area correspond-
ing to Cps agreed with that given for this parameter in reference 20.
It is evident from examination of sketch (aa) that because of the initial
loss in 1ift and the larger steady-state 1ift for the rectangular wing,
Crg for this wing is significantly more negative than that for the tri-
angular wing. Next, it is shown in references 11 and 21 that with the
exception of regions influenced by tip Mach cones, the loading due to &
(for @ >'Ua) for wings having swept-back leading edges increases linearly
from zero along rays from the spex; whereas for rectanguler wings the
loading due to & increases linearly from zero along chord lines. These

characteristics place the center of loading due to & at m ¢y for the

triangular wing and approximestely % ¢qg for the rectangular wing.”

Then for an axis of rotation passing through the aerodynamic centers of
the wings, the moment arm for the 1lift due to & for the triangular

7Due to the influence of the tip Mach cones, the center of loading due
to & is shifted forward somewhat from the position it has for the
two-dimensionel wing. Calculations for the A = 3 rectangular wing
at M, = 1.2 show that the center of loading is at 0.605 co.

COELL




38 GQUETTETHTATS NACA RM A52LOka

wing is f? co or % ¢; whereas for the rectangulsr wing it 1s approxi-

mately % co.8 Thus, not only is the negative out-of-phase 1lift contri-

bution Crg for the rectangular wing significantly larger than that for
the triangular wing, but the destabilizing damping moment - % Cig 1s

larger yet, due to the larger moment arm. Calculations for the steady
pitching parameter for an axils through the aerodynamic center
(refs. 11 and 20) then’'reveal that C for the triangular wing is more

negative than for the rectangular wing. The net result is therefore a
considerably larger damping moment for the triangular wing than for the
rectanguler wing. The result of this comparison, however, should not be
interpreted as a recommendetion that the triangulasr rather than the rec-
tangular wing be used on aircraft from a dynamic stability standpoint.

To obtaln adequate gtatic stability, the rectangular wing would generally
be employed in combination with a tail surface, whereas the triangular
plan form may be sufficiently airworthy without the use of a tail. The
addition of a tail surface in effect reduces the aspect ratio of the
rectangular wing, which reduction, as noted previously, has a highly
gtabilizing effect on the damping in pitch. The tailless triangular wing
may therefore experience more difficulty at Mach numbers near 1.0 than a
rectanguler wing-tail combination. - : '

Effect of frequency.- The previous discussion has been restricted
to the analysis- of & harmonic motion that is of vanishingly small fre-
quency. This limitation arcse as a consequence of discarding =11 but
first order in frequency terms in the expansions of equations (12)
and (14). The question arises: when the frequéncy can no longer be con-
pidered small, what effect has the frequency on the damping in pitch?

Previously, the trigonometric terms in equation (14) were expanded
and, assuming Kk +to be very smsll, terms of order k2 and higher were
eliminated. It was then found theat the loss in demping from that pro-
vided by the steady demping parsmeter Cmq(ca) weas assoclated with the
destabilizing moment contribution corresponding to the term

- Lfa F5(P)dP. Now, however, we discerd the restriction of small k
and perform grephically the integrations evident in equation (1k) for
supersonic speeds for seversl values of k. The procedure 1s indicated
in sketch (bb). It is apparent from sketch (bb) that the effect of
increasing k 1is to reduce the area corresponding to the destabilizing

of
moment contribution - f e Fo(@) cos kodp., There appears another
()

SAgain, due to the influence of tip Mach cones, the aerodynamic center is

shifted forward from % co to 0.4h43 cg. The moment arm 1s therefore
0.163 cq- '

-
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Sketch (bb)

destabilizing contribution, -k Lca'F4(¢) gin kQdP, but quite evidently
its effect 1s small compared to the reduction in the term

- fo Oa Fg(9) cos kPdp. Notice further in sketch (bb) that the effect of
increasing k becomes of marked importance when the half-period of

oscillation is the same order of magnitude as the time for the indicial
response to reach steady state. As shown in sketch (bb) for the fre-
quency ko, the a.rea@ then begins to subtract from, so that the
destebllizing contribution -.gob‘Fs(Q) cos kP3P can be very smsll. We
may therefore expect that increasing the frequency of oscillation has &
stebilizing effect on the damping in pitch. Thie conjecture 1s sub-
stantiated in figures 3 and 4, where the supersonic stability boundary
curves for aspect ratio 4 triangular and rectangular wings are shown
plotted for various reduced frequencies. These curves were obtained
from calculations based on the results of references 16 and 17. Notice

that for both wings the region of possible instability is diminished as
the frequency is increased.

From the results of the analysis for supersonic speeds, we may
further expect that the stabilizing effect of increasing the frequency

WP ot i S e
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will be of even more importance at subsonic speeds, for here the indicial
variation Fg(®) dies out at infinity. The half-period of oscillation
is therefore always smeller than the time to reach steady state.

The situation for the term - f°° Fg(?) cos kPdP is shown in sketch (ce).
o

- £8)

— E(P)coskf %

Sketch (cec)

It is evident in sketch (cc) that the destabilizing moment
- f Fa(®) cos kPdP diminishes rapidly as the frequency is increased.

The effect of this reduction on the deampling in pitch can be illustrated
by plotting the subsonic damping-moment coefficient against reduced
frequency for the two-dimensional wing (with axis at the leading edge)
for Mach numbers 0, 0.5, and 0.8. The results, which were obtained
from reference 4, are shown in figure 5. It is seen in figure 5 that
the large destabllizing effects of the moment contributions

- f F3(¢) cos kPiP and -k f Fy(P) sin kPdP are confined to a rela-
tively ngrrow range of reduced frequencies. Notice further in figure 5
that the range of frequencies for which instabllity is possible is small
at My = 0 (0<k<0.04) and grows with incressing Mach number. This is
belleved to be the primery reason why unsteady 1ift effects were found
to be unimportant at low speeds but are of great importance at speeds
neer the sonic speed.
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Effect of thickness.- In this section, the concepts regarding the
indicial functions discussed in previous paragraphs will be used to
examine the effect of profile thickness on the damping in pitch of a
two-dimensional wing flying at a supersonic Mach number.

It will be recalled that for low fregquencies the damping in pitch
may be considered to be the sum of the damping moment due to steady
ritching, Cmq(oa), and the area representing Cmg on the plot of the
pitching-moment response to a step change in angle of attack
(sketch (k-11)). The airfoil thickness, of course, influences both
these parameters. For the purpose of this analysis, it will be con-
sldered sufficiently accurate to study the effects of thickness only on
the steady parameter Cmq(Ua) and on the end values Cp,(0), Cpy,(0g)
and og of the indicial response curve. It will then be assumed that
shape of the indicial response curve is not apprecisbly altered by thick-
nesg effects, whereupon the masjor effect of thickness on Cpm: can be
assessed by adjusting the response curve given by the linearized theory
to fit the corrected values of Cp (0), Cp,(og) and og.

It has been shown by Busemann (see, e.g., ref. 24) that the loading
at an element of a lifting airfoil may be represented by

% - Cl [Uu-61+2d,] + 02 {O’ua-0'12+2@ [Uu"‘O'Z] } (31)

where
2

J Mo -1
_ DI - hMgE-1]
| 2[My2-11°

Cl=

Ca

and o0, and o; are the local slopes of the upper and lower surfaces,
respectively, measured with respect to the chord line, TFor the gpecial
cage of an ailrfoil that is symmetrical about the chord line,

o, equals g3 and equation (31) reduces to the following:

L2 o 290, + haCgo (32)
a4 1 2-0

For the sake of simplicity, in what follows equation (32) will be used
for the local loading rather than equation (31). The results will there-
fore be valid only for airfoils that are symmetrical about the chord line.

=i
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The 1ift on the airfoil due to angle of attack is obtained simply by
integration of equation (32) across the chord.

1 Co Ap
C — == dx
L( o) %o J; i

|
N
Q
[
+

CLCL( O'a) = Uud-x ( 33)

Similarly, the moment due to angle of attack, measured sbout the leading
edge, is :

1 - .1 Co ap
Cp' (0g) = ~ 4; ” x dx
Cm' ke c
Cma"(o'a) = mica) =~ Cy -20—22 fO ° OyuX ax (3)4-)

When both the leading and trailing edges are on the chord line, equa-
tions (33) and (34) reduce to the following:

Cre(oa) = 2C;

(35)

-Cl-i-

Cmg' (0g)

where  1s the enclosed area of the airfoll section.

The local loading glven by equation (32) is still applicable for
the steady pltching case with this added provision: that now a repre-
sents the local angle of attack. For an airfoil pitching about 1ts
leading edge, the variation of o with chordwise distance is given
by o = qx/V,, wvhere q 1s the pitching velocity. Then again, for the
1ift due to pitching,

cu(os) =2 0 R ax
Crq'(0g) = oL’ (gg) = 2C; + .8_0_2 f°° o, x dx (36)
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Likewise, the pitching moment due to pitching about the leading edge 1s

cut (oa) = - Lo [ 2B x ax

Cn' (0a) b 8C2 co
Con .t w2\l _ T, o 22 Zax (37
mq (Ua) q-co/avo 3 1 coa fo U‘ux

The primes on the parameters indicete that the moments are measured about
and the wing i1s pitching about the leading edge.

In order to illustrate the result given by equation (37), the
damping moment due to steady pitching has been computed for a family of
airfoils having symmetrical biconvex parebolic arc sections. The
results are presented in Pigure 6. The dashed line in figure 6 repre-
sents the theoretical locus of Mach number and leading-edge angle for
bow-wave detachment (ref. 24). Since the requirements of the second-
order theory are violated to the left of this line, the damping curves
there are not rigorously correct, and therefore are terminated a short
distance beyond the line.

To determine the effect of thickness on the parameter, Cmg', it is
assumed that the shape of the indicial pitching-moment verilation is not
significantly affected by thickness. When this assumption is mede, it
becomes necessary only to correct the initial and final ordinates of the
indicial curve Cmy'(o) and Cmy'(oa) and the number of half-chord lengths
traveled to reach steady state, gg. The response curve is adjusted to
fit these new end values, so that the areas representing the cor-
rected Cpg' can then be determined.

The effect of thickness on the final ordinate of the indicial curve,
Cm,'(0a), has already been determined (eq. (34)). Now consider the
starting 1ift and moment. ' '

Assume first a thin flat wing to be flying at zero angle of attack
in a uniform stream of density py. At time zero, it starts to sink
with downward velocity Vga. The impulsive start causes a plane com-
pression wave to be emitted from the lower surface at the speed of sound,
which is constant throughout the stream. (The pressure and therefore
the temperature is sensibly constant.) At the seme instant, a plane
expansion wave is emitted from the upper surface and travels at the same
velocity in the opposite direction. At the end of an infinitesimal time
period At, the wing has sunk a digtance VgpoAt. The sound waves have

RS e
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moved a distance agAt in both directions. The mass of fluid affected
is 2pgeoapAt. Then, from Newton's second law, one may write

(fu-f1) At = 2pycoacht Voo

where fy, and f; are the forces per unit span on the upper and lower
surfaces, respectively. Converting to coefficient form, it then appears
that

(o} fu-f3 L

@ % poVOEcom Mo

For the wing of finlte thickness for which the pressure varies along the
chord, a different result is expected. The wing 1s assumed to have been
flying at zero angle of attack for a perlod of time long enough for the
flow to have established itself around the surface. In this case, the
density, temperature, and therefore the speed of sound, vary along the
chord due to the curvature of the surface. At time zero the wing again
starts to sink, but the compression asnd expansion waves are propagated
gt different retes at various chordwise positions so that

At [fa-£11(x) = 2 B‘-’; (x) -a% (%) P oAt Voo

and the .starting 1ift becomes

cr(o) __h fco-&-idx ' (38)

From reference 2k, the variation of p/py &/a; with Cp 1s found to be

+1

2 Yy '
L AP o] (39)

Po 8o 2

where Cp is the pressure coefflcient at a point on the surface when
the airfoil is at zero angle of attack. Again, from reference 2k,

C. = P-Po

vhere p and p, are, respectively, the pressure at a point on the sur-
face of the airfoll and the free-stream static pressure.
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For the symmetricel biconvex parabolic arc airfoil considered
earlier, the local slope o, 1is given by

ou=25[1-%0-‘} (41)

where & dis the thickness rstio.

Then expanding equation (39) in a binomial series, retaining terms
through the second order in o, and performing the integration indicated
by equation (38), there results for the starting 1lift coefficient

Cr (o) = ﬁl‘; 1+o.ohM0252[2oc2-M02012]} (42)

A similar procedure can be carried out for the starting pitching-moment
coefficlent, measured about the leading edge

Cmg'(0) = - —= [ "&£ Z x &

- Eeg 1+0.04M,Z [200,8% Mg = ¢, 8°-10C, 5] } (43)

Cug? (o)

It is necessary also to consider the effect of thickness on the time
required for the loading on the airfoil subjected to a step change in

angle of attack to reach steady state. As was seen in sketches (n)

and (p), the time to reach steady state is exactly equivalent to the
time required for the wing to escape the influence of the sound waves
emitted from the leading edge at the start of the motion. For purposes
of analysis, the situation 1s reversed by requiring that the wing remain
stationary in & fluld moving with supersonic velocity V,, and causing
a sound wave to be emitted at the leading edge of the wing. To an
observer standing on the upper surface of the airfoil, there will appear
to be two wave fronts whose velocities tangent to the surface are

[V+ta] and [V-a], where V and a are the local stream velocity and local
speed of sound, respectively. Then the time required for the slower
wave front to clear the airfoil is given by

+ o 2
%=fa@=f% dx =&/“_ﬁ££1 ()
o o [V-a]cos[tan'lou] Vo Jo [V/ag-a/egl

*nunu;;;szﬂg!
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It is therefore necessary to obtain V/a, and a/ey as functions of
chordwise location x. Again, in reference 24 these quantities are
found to be functions of the local pressure coefficient Cp-

7-1 1
5 Ll
L= [l + o CP] 27
2

1
: 2 s
Vo[22 f1-[2 }+M02
ao 7-1 ao . J
Expanding equetions (45) through the second power of Cp and N/l+cu?
through the second power of o,, there is obtalned

1
M, co[} + 3 auz] dx
ty = —— = (46)
Vo M,-11 Y5 1-k,Cpt+i Cp

) (45)

I
il

where
0.50Mg + 0.10Mg2
K.1=
My -1
0.129M,[Mg2~1] + 0.03M,*
K2= Mo-l

The pressure coefficient Cp 1s now assumed to be that existing at

a point on the surface when the airfoil is at zero angle of attack. This
sssumption, of course, introduces some error since the angle of attack
has changed discontinuously from zero to « at t = O. However, if we
require thet o be less than 82, then the error introduced through
neglect of the effect of the change in o« on the pressure coefficient

is negligible. Then, as in the starting 1ift problem,

Cp = Ca0y + Cpoy® (¥7)
Inserting equstion (47) into equation (46), dividing numerator by denom-

inator, and agaln retaining terms through the second power in oy, there
results :

Mo o I 2 2 1 2} 48
. E 14C c -k _]c.2+= Ll g ax (48)
tg Vo [Mo-l] L[ [ 1“10’u+{ K, Cat [Kl Kgl -+ 5 } u

B e e -l
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For the symmetrical biconvex parabolic arc airfoil, oy 1s repleced by
equation (U41), whereupon for this airfoil the time to reach gteady
state becomes

tg = —2M0 _ [1.¢] (49)
Vo[Mo"l]
where
2
E = % nlCZ+[|412-n2]012+-;3}

Alternatively, in terms of the number of half-chord lengths of travel,

oa = 22 b = =2 (et (50)

The effect of thickness on the demping parameter Cms' can now be
estimated approximately by adjusting the indicial pitching-moment curve
obtained from the linearized theory to the end values given by equa-
tions (34), (43), and (50), and then measuring the area corresponding to
the "“corrected” Cmg- The process is indicated in sketch (dd) below,

and the adjustment formulas are given by equations (51).

s} | ;
] ] A
¥ Aqqlﬂgl
—v .
ACM;IO) l i

chéagj,hhu”kud theory
[ 4

qq;ﬁn), adjusted

P
o ¢° ®, o) P

A

Sketch (dd)
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Cag,,' (9,) = Cag" () - Aty (o) - % [aéma*(oa) - Acma'(o)}
(51)
q)]_ = -o%i' Ual

where
ACpg'(0) = Cmg (0} = Cmg, ' (o)
ACp, ' (o) = Cmao'(Uao) - Cmal'(ﬂal)

and the subscripts o and 1. indicate values corresponding to the linear-
ized theory end the adjusted theory, respectively. Notice also in
sketch (dd) that the area corresponding to the adjusted value of Cpy'
is glven by the following expression:

Cmg,," = Cmg,’ +(¥)- oa, ACny'(oa) (52)

. The parsmeter Cmg' for pitching about the leading edge has been
computed, using equations (35) to (52) for the same family of airfoils
as that discussed previously and the results added to those obtained
for Cpg' (eq. (37)). The total demping moment Cmy' + Cpy' 1s shown
plotted ‘as a function of Mach number in figure 7. t is evident from
examination of figure 7 that the effects of thickness are small and are
in the destabilizing direction with increasing thickness ratio. It
should be noted thst this result does not agree with those of Jones and
of Wylly in references 25 and 26 which indicate that the effect of thick-
ness is extremely stabilizing. In reference 27, however, Van Dyke takes
igsue with the results of references 25 and 26, and offers an alternate
golution correct to the second order in thickness. From this result,
the following relationship for the demping-moment coefficient for pitch-
ing about the leading edge can be deduced:

], ], [+ PAE2]

where [?mq'+cm&} is the damping-moment coefficient obtained from the

linearized theorf)énd
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7+1 Mo=
N = —_——
2 B
A =1 for biconvex airfoils
A =-% for double-wedge airfoils

The trend of the demping-moment coefficient with thickness obtained from
this result agrees closely with that obtained in the present paper.

EXPERIMENT

Wind Tunnel

The experimental investigation of the damping-in-pitch charecter-
istics of the various model configurations was conducted in the
Ames 6- by 6-foot supersonic wind tunnel. In this tunnel, the Mach num-
ber can be varied continuocusly within the subsonic speed limits 0.60 to
choking, and at supersonic speeds from 1.20 to 2.00. The total pressure
can also be changed at any time within the limits 3 pounds per square
inch absolute to atmospheric. A complete description of the wind tunnel
is given in reference 28.

Models

The pertinent dimensions of the five wing-body configurations
investigated in the present report are shown in figure 8. All the wings
had sectione which were symmetrical in streamwise pleanes and 3 percent
thick. Wings having leading-edge sweep angles less than or equal to 45°
(wings ¢, 4, and e in fig. 8) hed biconvex circular-arc sections in
streamwise plenes with maximum thickness at S50-percent chord. Wings
having leading-edge sweep angles greater than h5° (wings & and b in
fig. 8) had NACA 0003-63 sections in streamwise plenes. The wings were
identical in plen form and section shape to those investigated in the
series of force tests reported in references 29 to 33. Strength consid-
erations required that wings c, 4, and e be built of steel. Wings a
and b were bullt of aluminum.

The models were filtted with bodies such that the distance from the
apex of the body to the wing-body intersection was the same for each
model. Also, the ratio of wing area to body maximum cross-sectional area
was 17.9 for each model. Forward of the point of maximum rsdius, the

R R L L *t!._-‘
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bodies were of thin laminated wood construction and were identical in
shepe to those of references 29 to 33. The aluminum afterbodies were
cylindrical in shape and terminated at the trailing edges of the wings
to permit the models to be deflected with sufficient amplitude when
mounted on the support structure. '

Model Support System

The support system used in the present investigation was the same
as that developed for the single-degree~of-freedom free-oscillation
experiments of reference 10. The interested.reader is referred to that
report for a detalled description of the oscillation mechanism. For
the present tests, two changes were made in the system which served to
improve the accuracy of the data. The changes and the reasons for them
are as follows:

1. The vertical flexure pivots which provided vertlcal restraint
in the tests of reference 10 were replaced by bearings after it was
found that the heavier models of this investigaetion caused the pivots
to twist laterally when the model was given its initial displacement.
An undesirsble yawing oscillation was thereby induced which destroyed
the linearity of the system. Installation.of the bearings entirely elim-
inated this yawing tendency. The damping due to friction in the bearings
was somewhat larger than that of the flexure pivots, but by frequent
checking of the wind-off damping and regular replacement of the bearings
it wag possible to masintain the tare damping well within acceptable
limits.

2. A stiffening strut was installed between the sting support and
the tunnel ceiling in order to remove the possibility of coupling between
the model oscillation and the resonant mode of the sting support. The
infiluence of the strut on the aerodynamic forces at subsonic speeds was
investigated by removing the strut and recording data for one of the
models at a frequency sufficiently below the sting resonant frequency to
avold excessive sting vibrations. Results obtained with the strut
ingstalled and removed agreed within the experimental accuracy.

By effectively eliminating both yawing tendencies of the model and
vibrations of the sting support, it can be seen from comparison of the
present results with those of reference 10 that the deviations between &
number of observations at a given Mach number were markedly reduced.

bR LoV S Y E
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Scope of Tests

Investigation of the damping-in-pitch characteristics of the wvarious
model configurations was conducted over a supersonic Mach number range
of 1.20 to 1.90 and, where possible, over a subsonic Mach number range
of 0.60 to 0.90. The Reynolds number for the major portion of the tests
was held constant at 1.6 X 10® per foot. Additional data for one of the
models was obtained at Reynolds numbers of 1.0 X 10% per foot and
3.2 x 108 per foot.

All the tests were conducted with the models at a mean angle of
attack of OO, the angle being measured from the mean line of the sting
support to the axis of the test section. For each oscillation, an ini-
tial displecement of 150 wag imparted to the model by means of the
pneumatically actuated pawl arrangement described in reference 10.

Other important variables are listed below for the five wing-body
configurations investigated:

Range of moment Axes of
of inertia, rotation, Range of reduced
Model slug - ft° % M.A.C. frequency

A = 2 triangular 0.0534 -~ 0.0589 35, b5 0.012 - 0.037
A = 3 triangular .0368 -~ .oho2 25, 35 .018 - .0%0
A = b triangular O0Lb9l - .0512 25, 35, 45 .007 - .0kl
A = 3 swept .0549 -~ .057T6 25, 35 011 - .025
A = 3 unswept .0k22 -« 0488 20, 35, W .007 - .025

Reduction of Data

The technique used in this investigation for reducing an experi-
imental oscillaetion-decay record to the damping-in-pitch coefficient
Cmy + Cmg was identical to that described in reference 10. Briefly,
this technique involves plotting the envelope of the oscillation-decay
curve against time on semilogarithmic graph paper. If the damping of
the system is & linear function of the angular velocity, this plot will
be a straight line, the slope of which is proportional to the damping
term. Calibrations for the model moment of inertia and the damping due
to internal friction, and stenderd measurements for the density and
velocity of the air stream then enable one to reduce the aerodynamic
damping term to coefficient form. The aerodynamic restoring moment C
can be obtained from measurements of the frequency of oscillation and
8 calibration for the static spring constant of the system. Results for

T
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the restoring moment sbout two axes of rotation a known distance apart
then permit calculation of the lift-curve slope CLa‘

Corrections to Dats

No wind-tunnel=wall corrections were made to the subsonic results
for any of the measured stability derivatives. - To the suthor's knowl-
edge, no corrections have been developed for application to the forces
acting on a finite-span wing oscillating in & compressible fluid.
Tunnel~regonant-frequency effects were investigated by use of refer-
ence 34, and it was found that the range of frequencies used in this
investigation was well below the lowest calculated tunnel resonant fre-
quency. In view of the fact that the subsonic damping moments measured
for the A = 4 triangular wing in the present investigatlon asgreed
reasonably well with the results for a similar wing obtained during an
investigation in the Ames 12-foot wind tunnel (ref. 35), it is believed
that the effect of the tunnel walls on the damping in pitch was not
significant.

A subsonic correction could have been made to the static parameters
Ciy, and Cpy- However, since this correction would have been very small,

and in view of the uncertainty involved in applying static corrections
to the results of dynamic measurements, it was decided not to make the
~ eorrection.

The effects of constriction of the flow at subsonic speeds by the
tunnel walls were taken into account by the method of reference 36.
This correction amounted to, at most, a 2-percent increase in the Mach
number and in the dynamic pressure over that determined from a calibra-
tion of the wind tunnel without a model 1in place.

For the tests at supersonic speeds, no corrections were required to
be made on either the aerodynamic measurements or the air-stream
properties.

The reader is referred to reference 10 for a discussion of the
precision of the datae. Since the method of reduction of the data was
the same as that of reference 10, the uncertainty in the recorded value
of a given dasmping coefficient remained of the order of £0.02. However,
by virtue of the elimination of yawing tendencles in the model and sting-
support vibrations, the standard devietion of a number of observatlons
at a given Mach number was reduced from +0.06 to *0.03.
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RESULTS

Damping Coefficlents

The basic experimental results for the demping coefficient Cmq4‘cm&
for the five wing-body configurations investigated are shown in fig-
ures 9 to 13. In cases where data could be obtained at subsonic as well
as supersonic speeds, these results are shown plotted through the Mach
number range 0.60 to 1.90 for ready comparison of the magnitudes of the
coefficients in the two speed ranges. Also shown plotted in figures 9
to 13 are the theoretlcal results for the demping coefficient Cm, + Cmg,
at supersonic speeds for the wings alone. In addition, theoretic
results for the triangular wing-body combinations, considering inter-
ference effects, are shown 1n figures 9 to 1ll. The sources of these
theoretical results are references 11, 16 through 23, and 37. The exper=-
imental results for subsonic speeds are not compared with theory, since
a rigorous linearized theory for triangular, swept, or unswept wings
osclllating in & subsonic compressible flow has not yet been developed.
A very approximaste analysis for Cmq and Cpmy for the aspect ratio 4
triangular wing was presented in reference 10. In this development, the
perameter Cps was aspproximated using the incompressible theory of ref-

erence 8 for the elliptic wing. However, a more rigorous analysis for
the elliptic wing in compressible flow (ref. 11) has indicated that the
result of reference 10 for Cpg may be incorrect. The good agreement
between the experimental subsonic results of reference 10 and the sub-
sonic theory of reference 10 may be fortuitous.

The results for the three triangular wings (figs. 9 to 11) and the
swept wing (fig. 12) show that in the supersonic speed range, in every
cage, the linearized first-order-in-frequency theory provides a reliable
guide for obtaining both the magnitude and trend with Mach number of the
damping coefficients. Of particular importance are the theoretical
predictions of ranges of Mach number over which the wings could experi-
ence negatively demped oscillations. The experimental results for
the A = 3 +triangular wing (fig. 10) are inconclusive in this regard
since the theoretically predicted unstable range occurs in the low super-
sonic Mach number range, 1.0 to about 1.08, where it was not possible to
obtain data. The predictions by the theory of larger unsteble ranges
for the A = 4 +triangular wing and the A = 3 swept wing were borne out
by the experimental results, as shown in figures 11 and 12 by the exper-
imental points plotted below the &bcissas. In the absence of svailable
theoretical results for unswept wings, the experimental results for the
unswept wing are compared with theoretical damping coefficients for a
rectangular wing of aspect ratio 3 (fig. 13). It is seen from examina-
tion of figure 13 that the theoretical prediction of a rather large
region of instability for an axis of rotation at 0.20¢ (fig. 13(2)) is

.. :li:.q?ﬂ*
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borne out by the experimental results but that the theory falls to pre-
dict the reversal in trend of the damping coefficients at low supersonic
Mach numbers for axes of rotation closer to the serodynamic center
(figs. 13(b) and (c)). It is cleer from these results that the effects
of taper can be imporiant and should be considered for an accurate theo-
retical appraisal of the damping-in-pitch characteristics of unswept
wings.

It should be mentioned that at a Mach number of 0.90, the damping
of the A = b4 triangular wing (fig. 11) and the A = 3 triangular and
swept wings (figs. 10 and 12) were highly nonlinear with angle of attack,
being stabilizing for angles of attack of 5 and decreaslng steadily to
zero at sbout 1°. The dashed lines for this Mach number shown in fig-
ures 10, 11, and 12 are intended to indicate the range of this nonlinear
variation. Further discussion of the phenomenon is withheld to a later
section of this report. The above-mentioned difficulty was not encoun-
tered with the A =2 triangular wing, and the value of Cmq + Cmg,
at My = 0.9 for this wing (fig. 9) represents the damping throughout
the amplitude renge. Subsonic results for the ungwept wing could not be
obtained due to the highly erratic behavior of the aerodynamic restoring
moment which generally was so strongly destaebilizing as to counterbalance
the spring restoring moment and force the model against its stops.

Reynolds Number Effects

For the A = 2 triengular wing at supersonic speeds (fig. 9),
damping coefficients have been obtained at three Reynolds numbers rang-
ing from 1.18 X 108 to 3.77 X 108, while at subsonic speeds (fig. 9) they
have been obtained at 1.18 X 10® and 1.89 x 108. In both cases, it is
evident that at least within the range of Reynolds numbers at which data
were recorded there is no significant effect of scale. It is reasonable
to assume that a similar lack of scale effects exisgts for the other wings
as well.

Aercelastic Effects

In figures 1l to 23, the static paremeters Cp, and Cr, for the
five wings are compared with force-test measurements of similar wings
(refs. 29 to 33). Such a comparison is useful as an indication of the
importance of aeroelastic effects on the aerodynamic properties of the
less rigid models of the present tests. The fact that at supersonic .
gpeeds there is excellent asgreement between the two experiments for the
lift-curve slope CLa’ whereag the present resgults for Cma are
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consistently smaller, is attributed primaerily to the difference in the
body shapes of the models of the two investigatious. In the force-test
investigation, the afterbodies were carried beyond the trailing edges of
the wings, which would tend to shift the centers of pressure of the wing-
body combinations farther rearward while leaving the total 1ift essen-
tially unchanged. From this reasoning, it is concluded that aeroelastic
effects on the aerodynamic coefficients of the present tests are of
secondary importance. At subsonic speeds, there are differences in mag-
nitude of both CI, @nd Cm,. However, in view of the fact that no large
effects of aeroelapticity were found et supersonic speeds where the
dynamic pressure is greatest, it is believed that the differences

in Cr, and Cmy, at subsonic speeds are not due to aeroelastic effects.
It must therefore be stated that at the present time the differences at
subsonic speeds are not understood.

Transfer of Axes

Sufficient information has been given in figures 9 to 23 to permit
the transfer of the damping-in-pitech results at supersonic speeds to
axes of rotation other than those used during the tests. Such a trans-
fer, if valid, of course greatly increases the range of spplicabllity
of the given data. The validity of the transfer equation (given in
appendix A) depends primarily on the invariance of the stebility deriv-
atives with changes in angle of attack and angular velocity and could be
best checked by experimental means. Checks on the method are provided
in figures 11(c) and 13(c) for the A =& <trianguler wing and A = 3
unswept wing, respectively. Shown in these figures are the experimentael
damping coefflcients obtained during the investigation and coefficients
for the same axis position computed, by means of the transfer equation,
from the results of experiments at two other axis positions. It is
evident that the transferred results portray the actual data with suffi-
cient accuracy to establish the validity of the method.

DISCUSSION

Effect of Aspect Ratio

It will be remembered from the discussion in the theoretical section
of this report that the linearized theory indicates that a decrease in
agpect ratio has a highly stabilizing effect on the damping in pitech of
a triangular wing with subsonic leading edges. This indication is con-
firmed in figure 24, wherein the damping in pitch is shown as & function
of Mach number for the three triangular wings having their axes at 0.35¢.
It is noteworthy that the A = 2 wing shows no tendency toward dynamic
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instability in the Mach number range 1.2 to 1.9, that for Mp<1l.2 the
trend of the damping coefficients of the A = 3 wing 1s toward insta-
bility, and that a range of instability exists for the A = 4 wing. It
is of further interest to note that for Mach numbers greater than 1.67,
in which range the. leading edges of the A = 3 and A = 4 wings are
supersgonic, the damping coefficients for these wings are essentially the
same. This serves &g a partial confirmation of the theoretical predic-
tion of reference 19, wherein it is shown that the damping coefficients

of triangular wings having supersonic leading edges are independent of
agpect ratio.

A more comprehensive way of compering the tendencies of the wings
toward dynamic ingtability would be to show the entire ranges of axis
positions and Mach numbers over which dynamic instability 1s possible,
that is, to plot the stability boundary curves for the three wings.

In the Msch number range 1.2 to 1.9, however, only the A = L4 wing has
a region of instability and this curve 1s shown, compared with the theo-
retical curve, in figure 25. "

The preceding comparison (fig. 24) was useful primarily for verify-
ing the theoretical prediction regarding the role played by aspect ratlo
in determining the tendency of a triangular wing toward dynamlic ingtabil-
ity. A comparison of the actual magnitudes of the damping moments was
masked, however, by the fact that the coefficlents for the three wings
were referred to theilr own respective characteristic lengths. In the
following comparison, an attempt is made to overcome this dilfficulty by
posing the question: Given three triangular wings of aspect ratlos 2, 3,
and 4, of equal area, and required to have the same restoring moment
(in ft-1b) at a Mach number of 1.4, how do the physical megnitudes of
the demping moments compare? For this purpose, the aspect ratio 3 wing
1s chosen as a gtandard, required to have a static mergin of 0.05
at Mg =1.4, and the demping moments of all the wings referred to the
M.A.C. of the aspect ratio 3 wing. The comparison on this basis is
shown in figure 26. It is evident from examinatlion of figure 26 that on
this basis also, the effect of decreasing the aspect ratio is beneficial
to the damping in pitch, the aspect retlo 2 wing having the largest
deamping moments throughout the range of test Mech numbers, and the aspect
ratio 4 wing the smallest.

Effect of Plan-Form Shape

For this comparison, use is made of the results for the aspect
ratio 3 triangular, swept, and unswept wings. Flrst, the prediction
made in the section entitled "Theory" regarding the tendencies of
three similar wings toward dynamic insteblility is examined by comparing
their stability boundaries. From the preceding section, it will be

(AP pp—
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recalled, however, that no region of instability exists for the A = 3
trianguler wing in the Mach number range 1.2 to 1.9. It is apparent,
therefore, that as predicted by the theory the triangular wing is
superior in this regard. The stability boundary curves for the swept

and unswept wings, with axis position referred to the leading edge of

the M.A.C., are compared in figure 27. Again, the theoretical predic-
tion is borne out for, as seen in figure 27, a considerably larger region
of instability exists for the unswept wing.

Next, the magnitudes of the damping moments are compared by choosing
the A = 3 triangular wing as a standard, with a static margin of 0.05
at Mo = 1.4, and, as in the previous section, requiring that the wings
have equal restoring moments at this Mach nunmber. The comparison is
shown in figure 28. On this basis, it is again apparent that the trian-
gular wing is the superlor wing, followed in order by the swept and
unswept wings.

Notice in figures 26 and 28 that since the damping coefficients of
all five wings investigated are referred to the M.A.C. of the A = 3
trianguler wing and since all wings have equal restoring moments at
Mo = 1.4, the results of figures 26 and 28 may be compared directly.
Here it appears that the A = 2 triangular wing is the most desirsble
wing from a longitudinsl-dynamic-stablility stendpoint, and the A = 3
unswept wing the least desirgble. As mentioned previously, however,
1t should not be inferred that the result of this comparison implies
8 recommendation for the use of triangular rather than unswept wings.
Obviously, the addition of tell surfaces could alter considersbly the
relative damping-in-pitch merits of the wings investigated.

Effect of Thickness

It has been shown by the results of experiments (figs. 9 to 12)
that the supersonic linearized potential theory provides & reliable
basis for predicting the low-frequency damping-in-pitch characteristics
of thin wings of finite spen. Considersble doubt has been shed, however,
over the ability of the lineasrized theory to predict the dynamic behavior
of wings that camnnot be classified as thin. In recent years, a number
of reports have been issued (refs. 25, 26, and 38) which indicate that
second-order thickness effects have a profoundly stabilizing effect on
the damping in pitch of two-dimensionsl wings. In particular, refer-
ence 26 indicates that by increasing the thickness of an infinite-span
wing from zero to only 4-1/2 percent, the rather large region of insta-
bility predicted by the linearized theory is completely eliminasted. In
contrast to these results, the approximate anslysis of this paper
(see Theory) indicates that thickness effects are relatively small, the

destabilizing effect on Cmq bﬁlﬂﬁaﬁﬁiﬁiﬁléy canceled by a stabilizing
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effect on Cpg. In view of these conflicting results, it is of some
interest to obteln additional experimentsl data which would serve to
clarify the issue. Of particular interest are the effects of thickness
for finite-span wings. In this case, a limited comparison can be made
between the experimental results for .the 3-percent A = L4 triangular
wing of this report and the results of reference 10 for two 6-percent
triengular wings having the same aspect ratio. Aside from the differ-
ences in profile and small differences in the dimensions of the bodies,
the models and test conditions of the two experiments were almost iden-
tical. The comparison is shown in figure 29. It is seen that for this
wing, the effects of thickness are small and are in the direction of
decreasing stability with increasing thickness. Of primary importance
is the fact that all the wings exhibit regions of Mach number over which
dynamic instability is experienced.

Although admittedly the experimental evidence in figure 29 is not
conclusive, nevertheless in the light of these results it is difficult
to accept those results which indicate that large stabilizing effects of
thickness are present on infinite-span wings, especially in view of the
fact that the behavior of a triangulasr wing with supersonic edges is in
meny weys qulte similar to that of an infinite-span wing.

Effect of Nonlinearities

From exemination of the experimental oscillation~decay records at
both low subsonic and all supersonic speeds, it wes -evident that the
assumption of a linear second-order system was well Justified. Aside
from a moderate amount of scatter, a decay curve could be fitted by an
exponential curve over a wide range of amplitudes, verifying that the
damping parameter was essentlally independent of amplitude. At high sub-
sonlc speeds, however, this linear behavior was no longer true for most
of the wings tested. As an example, figure 30 shows the oscillation—
decay record for the A = 3 triangular wing at Mgy = 0.90. It is seen
that after an initial displacement the amplitude of oscillation quickly
dies out to a low level, but there sustains itself indefinitely.
Similar phenomens have slso been reported in the forced oscillation
experiments of reference 35 for a wing-body combination having a trian-
gular wing of aspect ratio 4 end in flight tests of various high-gpeed
aircraft, particularly taillless aircraft. The deleterious effects of
such susteined oscillations on the qualities of an sircraft as a gun
platform or from a structural standpoint are obvious. It is therefore
of considerable importance to gain an understanding of the phenomenon,
with a view toward advencing means of eliminating 1t.

At the present time, insufficilent information, either theoretical
or experimental, is avallable to ensble a complete and authoritative
WNETDENTIT
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description of the physical event; a tentative hypothesis is therefore

advanced instead, which would appear to fit the observed facts. It must
be emphasized, however, that in the light of additional informstion, the
assumptions and conclusions drawn here may require considerable revision.

Specifically, the observed facts are these: (1) The damping
coefficient is highly nonlinear, being negative or stebilizing for angles
of sttack greater than about 1°, and zero at 1°. The possibility that
the nonlinearity is caused entirely by scale effects and/or wind-tunnel-
wall interference ig ruled out by the fact that similar behavior is
observed in full-scale flight tests. (2) The frequency of oscillation
is essentially constant throughout the amplitude range, implying that
the restoring moment is & linear or nearly linear function of the angle
of attack.

From these observations, 1t is hypothesized that the characteristic
differential equation governing the motion is of -the form

& +P(a,d) & + K% = 0

where @(a,d) represents the demping coefficient as a nonlinear function
of the angle of attack and angular velocity, and I and K are constants.
It is therefore necessary to search for a mechanism that can affect the
damping moment to & much larger degree than it does the restoring moment.
In this regard, 1t is pertinent to first review some of the character-
istics of wings in steady transonic flow. It is well known that at high
subsonic Mach numbers, the essentlal feature of the flow is the appear-
ance of shock waves on the wing as the speed of alr over the wing surface
exceeds the local speed of sound. These shock waves cause large changes
in the pressure and also promote flow separation near the shock wave,

due to the presence of adverse pressure gradients. The effects of these
disturbances on the pitching-moment characteristics of an unswept wing
of aspect ratio 3 are shown in reference 39 and reproduced as curve (a)
in sketch (ee). Notice that Cm

the slope of the pitching *
moment is positive for small
angles of attack, indicating !
that the aircraft would be = (6) modified wing —=———
statically unstable in that -3

range. It was also 1lJus-
trated in reference 39 that
by reducing the curvature of
the wing profile near the
trailing edge, thereby - Sketch (ee)

reducing the tendency toward separation, the positive slope through zero
could be eliminated. This result is shown as curve (b) in sketch (ee).
By virtue of the beneficial effect of reducing separation, it 1s argued

(a) basic wing .
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here that in the absence of separation and strong shocks on the basic
wing, the variation of pitching moment with angle of attack would be

nearly linear, as shown by curve (a) in sketch (ff), and that the effects
of these disturbances can
+ c be lumped into an additional
’ m moment variation, curve (b),
(a) such that the sum of (a)
and (b) then gives the
observed nonlinear variation.

For triangular wings,
(D) the reversal in slope of the

pitching moment at small

angles of attack does not
Sketch (£f) appear (see refs. 29, 30,
and 31). This, however, does not preclude the presence of the nonlinear
variation due to separation. For a triangular wing with center of grav-
ity at, say, the guarter M.A.C. point, the slope of the pitching-moment
curve can be quite large. As seen in sketch (gg), the linear varia-
tion (a) can then greatly outweigh the effect of the nonlinear curve (b),
wlth the result that a scarcely evident nonlinearity appears in the
combined curve,

The preceding exemples were taken from the
results of static measurements, where the angle
of attack 1s simply the angle between the chord
line of the wing and the free-stream direction.
When the wing is oscillating, however, esch
point €& measured from the axis of rotation

experiences an additional angle of attack
at/Vy, due to the angular velocity. Then if
the steady-state pitching-moment variation
caused by the separation (curve (b) in
sketch (gg)) is approximated in the range

O<a<apgy bY

Sketch (gg)
Cp(a) = aa - ba®

in the unsteady case it is,

<a+— —a[oz,+-—o:l-b[a.+%]3 (54)
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where now & 1is assumed to be the distance from the axis to the point
at which the additional 1ift due to separation is concentrated.® Now,
since for slow frequencies &E/VO is much smaller than q, all but
first-order terms in & are neglected so that equation (54) becomes

Cm = a [a-bcd®] + %g- [a-3ba®] (55)
o
The cheracteristic equation of motion then becomes

ac

Q- — . 2% [a-3002] | - @ -ba® =
L 2V, {[Cmqwmal + 2 [a-30 ]j {Cmm+[abcr ]} o (56)

where [cmqfcm&] and Cm, are the (constant) stability derivatives which
would be present in the sbsence of separation. Thus, it appears that
although the effect of the nonlinearity on the restoring moment csn be
insignificant, the possibility still remsins that the damping moment can
be profoundly affected in the event that [cmqfcm&l is sufficiently small.
Notice that when [cmqfcmd] + 2¢a/E is greater than zero and if the non-
linear term in the reéstoring moment can be ignored, equation (56) takes
on the form

& - 286(1-ua®) + k%a = 0 (57

Equation (57) is then recognized as being the well-known Van Der Pol
equation of nonlinear mechanics. It is evident that for small values
of o +the deamping term is negative, leading to a divergent oscillation,
whereas for larger a, the demping term is positive. A stable regime
therefore will exist where o = ,/1l/p and oscillations of either large
or small amplitude will converge to that regime.

Thus, by the assumptions of an additional nonlinear pitching-moment
variation caused by flow separation and a& sufficiently small demping
moment in the absence of separation, the observed phenomenon of a small-
amplitude self-sustained oscillaticn cen be hypothetically explained as
being due to the destabilizing effect of the nonlinearity in the restor-
ing moment on the damping moment.

SIt is recognized that usually the nonlinear effects of shock-weve
boundary-layer interection and flow separetion are markedly reduced
during nonsteady motions. However, for the low-frequency oscillations
of the present tests (of the order of one cycle per 100 chord lengths
of travel), it is believed that the effects of separation, though per-
haps less severe than for the steady case, are nevertheless still
present.

)
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CONCLUSIONS

The results of a theoretical and experimental investigation of the
single-degree-of-freedom damping in pitch of a seriles of low-aspect-ratio
wing-body combinations made at subsonic and supersonic speeds lead to the
following conclusions:

1. In the Mach number range 1.2 to 1.9, theoretical and experimen-
tal values of the damping-in-pitch coefficient + Cpy were in good
agreement for trisngular wings of aspect ratios 2, 3, and 4, and swept
wing of aspect ratio 3.

2. Theoretical predictions of the existence of ranges of center-
of-gravity positions for a range of Mach numbers greater than 1.2 over
which dynamic instebility may be expected for the aspect ratioc 4 trian-
gular wing and the aspect ratio 3 swept and umswept wings were confirmed
by the experimental results.

3. The prediction by the theory of the beneficlal effect on the
damping in pitch at supersonic speeds of a reduction in aspect ratio was
borne out by the results of experiments for the trianguler wings having
aspect ratios 2, 3, and 4. In the Mach number range 1.2 to 1.9, the
aspect ratio 2 wing had the largest damping moments throughout the range
of Mach numbers and the aspect ratio L wing, the smallest.

k. Experimental results for the stability boundaries in the super-
sonic speed range of three wings of aspect ratio 3 having triangular,
swept, and unswept plan forms confirmed the theoretical prediction
regarding the relative magnitudes of the region of Mach number and
center-of-gravity position in which dynemic instability could be experi-
enced. In the Mach number range 1.2 to 1.9, no reglon of instability
exigted for the trlangulsr wing. The region of instability for the
wnswept wing was considerably larger than for the swept wing.

5. The effects of proflle thickness on the damping in pitch at
supersonic speeds of triangular wings of aspect ratio 4 and thickness
ratios of 3 percent and 6 percent were found to be small and in the
direction of decreasing stability with increasing thickness ratio.

6. The occurrence at a Mach number of 0.9 of small~amplitude self-
sustained oscillations of the triangular wing of aspect ratio 4 and the
triengular and swept wings of aspect ratio 3 was ettributed to a desta-
bilizing effect on the damping moment of nonlinearities in the aero-
dynamic restoring moment. '

Ames Aeronautical ILaborstory
Nationel Advisory Committee for Aeronautics

Moffett Field, Calif.
By ST ST O

GOREIDENT IALD
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APPENDIX A

TRANSFER OF AXES

The problem to be solved may be posed as: QGiven the damping
coefficient Cmq_+ Cmg, and the restoring-moment coefficient Cmm about

two axes of rotation, a known distance apart, find the dsmping coefficient
about an arbitrary axis.

For single-degree-of-freedom rotary oscillations about axis (1) the
demping coefficient is written as

= = =2
1 o o )
where the axis (o) is chosen as a reference axis, [cmq_ + Cm&]lis known,

and X; is the known (nondimensionslized) distance of axis (1) ahead of
axis (o). For pitching about axis (2), the demping coefficilent is

[cmq + Cm&:la = [cmq + cm&]o + ﬁa[cmajlo - iz[ch + 01&]0 - 2:‘:220LEJL (a2)

where [cmq + Cm&,:' and X2 are known.

2
The relationship of the axes (1) and (2) to the reference axis (o) is

shown in sketch (hh). Note that if the reference axis (o) is chosen to
be coincident with the axis passing through -

the aerodynamic center, then the quentities +x '__; ‘
'4
- - X
Z‘l[cmm] and axz[omm] in equations (Al) __
°© o () (2) (o)

and (A2) are zero. Since and
(a2) Cme Cae Sketch (hh)

are known, the parameters CIa and Cma may be determined from
0

Cr =
Lo %1 — %o \ (43)
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With Clu and [cmm] determined, it is now poseible to solve equa~-

o
tions (Al) and (A2) simultaneously.

Let [qu + Cm&] = &
1
[Cmq -+ Cm&] =b
2 -
Q[Cmm] = C
o
ECIQ, = d
\
a-b — c[%; — X,] + a[x1® - £.7)
Then [CL + CL&'] = - = e
.q 3"1 - ;‘2
o

| (a)

[Cmq * cmm} =8 — E[c-e] + 8%, = £
(o] /

The damping coefficlent about an arbitrary axis, with X referred to
axis ?Jgg and measured as posltive ahead of axis (o), is therefore,

[cmq + cmmJ - f4 % - e - R (A5)_
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Figure 12.— Experimental damping-in-pilch coefficients for the wing-
body combination having a swspt! wing of aspect ratio 3.
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Figure 13.— Experimental damping-in-pitch coefficients for the wing -
body combination having  an unswep? wing of aspect ratio 3.
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Figure 14.— Experimental pifching - moment -curve slopes for the wing -
body combination having a Iriangular wing of aspect ratio 2.
Axes of rolation af 0.35¢ and 0.45¢.
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Figure 15.— Experimental pitching - momen! -curve slopes for the wing-
body combination having a friangular wing of aspect ratio 3.
Axes of rotation af 0.25¢ and 0.35¢.
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Figure 16.— Experimental pilching -momeni -curve slopes for 1he wing -
body combinaltion having a Iriangufar wing of aspec! ratio 4.
Axes of rofation at 0.25¢, 0.35¢, and 0.45¢.
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Figure 17.— Experimental pitching—moment -curve slopes for the wing-
body combination having a swep! wing of aspect rafio 3.
Axes of rofation at 0O.25¢ and 0.35¢,
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Figure 18.— Experimental pifching-moment -curve slopes for fthe wing-

body combination having
Axes of rotation at 0.20¢, 0.35¢, and 0.40¢.
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Figure 19.— Experimental lift -curve slopes for the wing-body
combination having a friangular wing of aspect rafio 2.
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Figure 20.—Experimental [ift -curve slopes for the wing-body
combination having a Iriangufar wing of aspect ratio 3.
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Figure 2I.—Experimental liff -curve slopes for the wing-body
combination having a Iriangular wing of aspect ratio 4.
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Figure 22.— Experimental lift —curve slopes for the wing- body

combination having a swept wing of aspect rafio 3.
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Figure 23 — Experimental [ift-curve slopes for the wing-body
combination having an unswepl! wing of aspect ratio 3.
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Figure 24.— Comparison of experimental damping-in-pitch coefficients for Ihree wing -body
combinations having frianguilar wings of aspect ratios 2, 3, and 4. Axes al 0.35¢.
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Figure 25.— Comparison of theoretfical and experimental single-
degree -of- freedom Sshort-period pitching stability
boundaories for a wing-body combination having o

friangular wing of aspect raotio 4.
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Figure 27.— Comparison of experimental single- degree —of ~
freedom short —period pitching stability boundaries for Iwo
wing — body combinations having swept and unswept wings

of aspect ratio 3.
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Figure 28.—Comparison of magnitudes of experimental rotary damping moments for three
wing -body combinations having friangular, swept, and unswept! wings of aspect ratio 3.
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Figure £9.- Comparison of experimental damping-in-pifch coefficlents for lhree wing - body
combinations having triangulor wings of aspect ratio 4 and thickness rotios of 3 and 6 percent.
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Figure .30. ~ Oscillograph record af Mach number 0.90 for the wing-body combination
having a triangular wing of aspect ratio 3.
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