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TRANSONIC  CHARACTGRISTICS O F  A 45' SWEPTBACK 

WING-FUSELAGE COMBINATION 

By Joseph M. Hallissy and Donald €3. Bowman 

An investigation has been  conducted i n  the Langley 16-foot transonic 
tunnel on a body of revolution  with a sweptback wing having i t s  O.25-mean- 
aerodynamic-chord point  located at the maximum body diameter and also at 
1.2 mean aerodynamic chords  behind the maximum di-ter. The fuselage 
had a fineness r a t io  of  10, while the 45O swept wing had an aspect  ratio 
of 4.0, a taper r a t i o  of 0.6, and ut i l ized  NACA 65m6 airfof i   sect ions 
p a r a l l e l  t o  the plane of symmetry. L i f t ,  drag, and pitching moments were 
measured at Mach numbers from 0.6 to 1.03 and at angles of a t tack to 260 
at the lowest speeds and t o  Bo at the highest speeds. For the w i n g  in 
the forward  position, the forces and moments were neewed, on the wing 
in the presence of the fuselage as wel l .  a s  on the complete  configuration. 

Results of the tests tndicate that, below Bo angle of attack, moving 
the wing t o  the aft position  did  not affect the lift or  drag of' the wing- 
fuselage combination. A t  higher  angles  of attack the l i f t  and drag were 
both  reduced i n   t h e  wing-aft configura%lon. The variations of pitching 
moment about the 0 . 2 ~ - m e a n - a e r o ~ c - c h o r d  point with l i f t  were similar 
for   the two configurations but had a more positive slope f o p  the wing-  
aft model; about h U  of t h i s  change being due to  the  contribution of 
the fuselage a l o e  re la t ive   to  the pitch  axis. 

IKCRODUCTION 

There have been several  indications (see, for  example, refs. 1 and 2) 
tha t  an improvement i n  the performance of configurations  Wtended f o r  
operation at transonic  speeds m i g h t  be effected by a longitudinal change 
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of  position of a sxeptback wing relative  to  the-fuselage.  It was reasoned * 
that the Improvement  would result from 8 reduction i n  unfavorable KLng- 
fuselage  interference, or .perhaps from the attainment of favorable . 

interference . . .  .. . .  

"his paper presents   the  resul ts   offorce measurements made on-a 
wing-f'ueelage configuration with the 45°-sweptb&ck wing mounted at t m -  
longitudinal  loca-&ions .on the Aselage. For the configuration w i t h  the 
wing In the mmdL or  forirard  location  force measurements are presented 
f o r  the wLng in the  presence o f t h e  body as well as for the complete 
configuration. The Lucy 16-foot transonic  tunnel was uti l ized in 
t h i s  investigation. The recent repowering of this tunnel. ha6 provided 
a f a c i l i t y  i n  which tests can be conducted i n  the transonic speed range 
at reasonably high Reynolds numbers. 

SYMBOLS 

CD 

CL 

Cm 

- 
C 

D 

L 

M 

%/4 

P 

P O  

P .  

9 

drag coefficient, D/qS 

lift coefficient, L/qS 

%/4 pitchiqg-moment .coefficient , 
qFS 

wing me& &rodynamic chord 

drag 
- .- 

lift 

Mach  number 

pitching moment about 0.2% . 

. . . .  . .  

prqssure coefficient, 
P - Po 

Q 

free-stream s t a t i c  pressure 

local static  pressure 

free-stream dynamic pressure, pv*/2 
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S wing area 

v free-stream velocity 

X chorilwlse distance from leading edge of mean aerodynamic  chord 

a angle of a t tack  re la t ive to test-section  center line 

P free-stream  density 

APPARATUS AND MEZEODS 

Tunnel.- These tests were conducted i n  the Langley 16-fmt transonic 
tunnel, a f u l l  description  of which i s  given in reference 3. The test  
section is  the slotted  transonic type and is octagonal in shape. The 
tunnel sped i s  contFnuously variable  throughout  the Mach number range. 

Model.- The wing-fuselage model used is geometrically similar t o  
that used in a number of investigations carried out in o ther   fac i l i t i es .  
(See refs .  4, 5, and 6 f o r  examples of t h e e  investigations.) The w i n g  

of the quarter-chord line, a taper   ra t io  of 0.6, and an aspect  ratio of  
4.0. Ordinates f o r  the NACA 6A-series a i r fo i l   sec t ions  may be found in 

t ive  to   the  fuselsge,  and checks  of the completed model indicated that 
these objectives were achieved t o  within fO.lo. 

.L has NACA 65~006-aikfoi l   sect ions  paral le l   to  the air stream, 45O sweep 

d . reference 7. The wing w a s  designed t o  have no twist o r  incidence rela- 

The transonic body of revolution was constructed of magnesium and 
has a bask fineness  ratio of 12, but i s  cut  off at five-sixths of the 
length i n  order   to   a t tach the *del support st ing ,  thus giving a fine- 
ness r a t io  of 10. Fuselage  ordinates are given i n  figure 1. 

The model was tested wlth the w i n g s  mounted i n  two positions. In 
the first configuration,  hereinaf'ter  called the Hng-normal configura- 
tion, the quarter  chord of the mean aerodynamic chord was located at the 
maxim body d i e t e r .  In the second  configuration, hereinafter referred 
to as the wing-aft  configuration, the quarter  chord of the meas aerodynamic 
chord w a s  located 22 inches o r  1.197F t o  the rear of the maxinnm body 
diameter. The actual change of position was accomplished by shifting the 
body forwaxd w h i l e  the wing and balance for  obtaining  forces and moments 
remained Pn the sate  re lat ive  posi t ion  in  the tunnel. The terms wing- 
normal and wing-aft configuration a,lways- refer t o  the complete w i n g -  
fuselage  configuration i n  t h i s  paper. , .  - 

Dimensional details of the model and a sketch showing the wing in  
both  positions are shown in   f igure  1. Figure 2 is  a photograph of the 

* model fnstalled in the test   section. 
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For that- part of the tests i n  .which force-s. on the w i n g s  outside the 
fuselage were measured, the +ng was attached  to the balance and the 
fuselage wae supported by the, s t i q '  independent of the  balance. In order ' 

that  there shouid be no physical  int,erference, a gap was maintained t 

mound the wing-fuselage  juncture. This gap was n o t a t  the wing surfaces, 
but was some distance above and below the  surfaces as sketched i n  CLg- 
ure  3.  Tests of the w i n g s  outside the- fuselage were conducted  with the 
wings mounted in the .normal position only. 

Model support system. - =e main model m r P p 0 f - t .  I s  a single swept 
..  .. . .  

cant i lever   s t rut ,   detai ls  of which are given in figure 4, !The model 6 

sting  attached  to the strut,.  -diverged  uniformly from t h e  fiselage base - 
rearward f o r  36 inches. When the  Fuselage was mounted in the forward 
position (wing-aft configuration) a =-inch cylindrical  section of s t ing 
was exposed. ' In order t o  make the s t ing shape the same Fn the viciniky 
of the  fuselage base f o r  both configurations, th is  cylindrical  section 
was covered by a fa i r ing  24.75 inches long wi$h the same uniform diver- 
gence as the sting. 

- .. 

. .  

The angle of attack can be varied from- -5O t o  159  using a straig;ht * 

sting  coupling. Added angle-of'=attack range i s  obtained by using a ' 

loo. coupling in the sting as show in f igure-  4. The sting support-xtrut 
is mounted on a circular-arc  track,  the  geometric  center of which is i n  
the  center of' the .  air stream near , the.  model.. Thus, the model was near. 
the center of the tinme1 at all angles o h t t a c k .  

. .. - 

. . .  . . . .  

Instmmkntation.- An . & t e n d  strain-gage  balance was used to  measure . . 
the forces and moments on the model. The e s t h t e d  accuracy of the  coef- 
fYcient  of lift is f O . O 1  and of  pitching moment i s  kO.005. Estimated 
drag-coefficient-accuracy i s  f0.001 at-low  angles of attack,  increasing 
to  kO.005 at the highest angles of attack. 

. .. . ... 

Throughout the tests an atitempt was made t o  set the model at the 
exact angle of .attack  desired at each test point. To the indicated angle 
of attack was added a predetermined .incre.ken.tal. wgle  due t o  load on the . 
model support s t ru t ,  st&, -and- balance. This fncremental angle, which 
approached 2O under some conditions, wad determined by a statiq calibrF- 
t ion of model angular deflection a s  a function of  pitching moment and 
normal-force  loads, made with  the. model  mounted in the tunnel. The esti- 
mated over-all  accuracy in angle of attack was fO.lO. This estimate i s  
based on the repeatabil i ty of  deflectfon measurements made during Me . 

stat ic   cal ibrat ions of the model support. 

. ,  

. .. 

. .  
. .  .. ." 

The Mach number was determiied on the  basis of the calibration 
described i n  reference 3 which w a s  ma;de wfth the  tunnel empty except fo r  
an axial s t a t i c  survey-  tube and the 88me -suppoli-ting st-nt used i n  the . 
present tests. Surveys of the Mach number along the test-section  center 

. .  

. 
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l ine  in  the  vicinity of the model indicate  variations  not  greater than 
fO .002. Mach numbers in th i s  report are given to the nearest 0.01. 

5 

The base  pressure was measured by twr. tubes which terminated a few - 
'inches  inside the base 'of the model arid pressure was indicated on mercury 
mELnometer boards. The indicated  pressure was photo-recorded. The esti- 
mated accuracy of measurement of base pressure  coefficient i s  *0.005. 

T e s t  conditions.: Data &re obtained at t-p Mach numbers f r o m  
0.60 t o  l..O3. Test  points were taken at 2O Increments from angles of 
attack of -20 t o  260 at Mach n m k r  0.6, and t o  80 at Mach number 1.03. 
The allowable stress on the model support  structure  limited  the angle- 
of -attack  range at the higher Mach number. 

Figure 5 Bhows the Reynoids  nuuiier range f o r  the t e s t  t o  be f r o m  
,4.75 X lo6 to 3.95 X lo6. These VEtlues a re  baaed on a meanserodynamic- 
chord length of 1.531 feet .  

Although there i s  no c o n t k l  over the absolu-. moisture  content of 
the air in an atmspheric wind tunnel such as the Langley  16-foot  tran- 
sonic  tunnel, high stagnation  temperatures may be used t o  of fse t - the  
relat'ively w e t  a i r  of the locality.  Stagnation dew point was measured 
at all t e s t  points and this Mabled a calculation of humidity  conditions 
in  t&e tunnel test section. It was determined  that.unsaturated free- 
sti.eam conditions  prevailed f o r  almost  every  point dszrfng these tests. 
Because of the higher   local   veloci t ies   in   the model f low field there are 
many instances of local supersaturation,  but since it is  indicated i n  
reference 8 that consi&rable  supercooling  can  occur f o r  a  short t h e  
without  resulting in condensation  shock, it i s  believed that the data 
are free from the .e f fec ts  of  such phenomena. 

Data reduction.- No KLnd-tunnel corrections were appiied  to  the 
data. The s lo t ted  throat  is designed d t h  an o p e n - d l  t o  solid-wall 
a r ea   r a t io   i n  the test regfon  such that, f o r  all subsonic  speeds,  the 
wall interference should be zero. Presently  available  experimental 
evidence from the Langley  16-foot and 8-foot  transonic  tunnels and corn-. 
paxisonq with  interference-free  sources of data  indicate that this  
ob3ective has been achieved fo r  sll subsonic Mach numbers up t o  and 
fncbdfng a Mach number of lrOO ( re fs .  9 and 10). A t  s l igh t ly  higher 
speed, Mach number 1.02 o r  1 .O3, some interference  probably exists, as 
is  indicated by these same references, but the amount and ef fec t  of . this  
interferelice is  believed t o  be very small. 

The angle of attack  used is that measured relat ive to the test- 
section  center line. The l i f t  curves pass so close t o  the  origin that 
it is apparent that the average flow angularity  experienced by the model 
was very small, and accordingly 120 correction has been made .  - 



No tare determinations  other  than  base -pr.esmzre measureent were 
made in connection with these tests, and the basic  drag data presented 
have not  been  modifled  by  base.pressm-e or  other  adjustments. T h i s  
does not  affect the va l id i ty  .of .comparisons in this report,  but care 6 

should be exercised if comparisons are made with other data. F o L  
certain of . the  analysis figures, however, the drag..values have been 
adjusted as will be. rioted.  subsequently. 

: . 

.. -. 

. .  

For cer ta in  of the figures  the Porce,data fbr thgfuselage  alone 
were subtracted from the -wing-fiselage data"in .order to obtain data f o r  
the w i n g  plus..ing-fuseiage  interference. The fuselage-alone  .data needed 
for this process were obtained in  separate tests, but are nokreport-ed 
i n  t h i s  paper a s  they are' essentially  the same as  those reported i n  
reference 5. 

. "- 
" 

.. 

. ,  
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DISCUSSION 

Comparison of Aerodynamic Characteristics of Wing-Normal 

and Wing-Aft- Configurations 

- L i f t . -  Upon examining the  basic lift-data ( f ig .  6) i n s  immediately 
apparent that there are no important-  differences between lift curves fo r  
the two w i n g  positions below the- -break in   the  curve a t a  lift coefficient 
ofa;tscrut 0.6; above the  break  the  curves  diverge somewhat. The wing- 
normal configuration shows the better characteristics, with the lift . 

curve  breaking less sharply, and, at some speeds, at a higher  angle  than 
the  wing-afY-lift  curve. The differences- a$ .a" given -le, however, are 
small. A t  the 1owest"ach numbers tested,. where it was possible t o  obtain 
dataat  the higher angles of attack, it can be seen that this  gain of the 
wing-normal configuration  disappears as the  lift curve.turns upwwd 
toward maximum lift. A t  an angle of attack of 26O at a Mach  number o f  
0.60 the wing-aft lift coefficient is the higher. It i s  not  possible  to 
say whether this would also be true at higher-Mach numbers. 

Figure 7 shows lift-curve slopes obtained in  these tests. The wing- 
n o m  and wing-aft lift curves being similar below 0.6 lift, coefficient, 
an average  lift-curve slope has been determined for   the two cowgura-  
t ions for the  l f f t -caeff icfent  range from 0 to  0.4. 

. -  

. .  

D r q .  - Figure 8 shows that with drag, as well as with lift, there 
are no significant  differencea between the two configurations f o r  lift 
coefficients  lower than 0.6. A t  higher l i f t n f f i c i e n t s ,  however, the 
drag at a given l i f t  coefficient i s  less for  the-configuration w i t h  the 
wing in   the  normal location;  --This.lower drag i s  most clearly shown i n  
figure 9 where drag  coefeicient is plotted through the Mach  number range , 

". 

- 



L at  constant  values of l i f t  coefficient. A study of individual test 

.. about the same proportion as the ndrmal force  as  indicated by the  reduc- 

points, however, shows that, f o r  a given  combination of angle of attack 
and Mach number, the drag is  l e s s  f o r  the uing-aft configuration  in 

ti= i n  l i f t  coefficient.  Reference ll indicates  that  t h i s  normal-force 
reduction  occurs  mainly on the  outboard  sections of the wing and i s  
associated with a change in the position of the af'terbody-shock location 
relat ive  to   the wing t i p .  Since for the  wing-&t-configuration  the wing 
t i p s  extend somewhat behind  the model base i n  the longitudinal,  direction, 
it i s  possible that there is  8 sting  Interference  effect  on the  outboard 
sections of the KLng in  this case which was iot   present  f o r  the wing- 
normal configuration. It is believed, however, that such an effect  would 
be small  and probably in  the  opposite  direction t o  the observed  dtfferences. 

The transonic-drag-rise  increments were 0 . O U  a t  CL = 0, 0.014 at 
CL = 0.2, and about 0.019 at CL = 0.4; these  values  apply fo r  both con- 
figurations. The e r r a t i c  behavior of the curves of drag  coefficient a t  
constant l i f t  coefficient  (f ig.  9) f o r  ~ a c h  numbers of about 0.85 t o  0 .go 
is directly  traceable  to the characterist ics of the lift curves. The 
minimum drag which occurs in  the curves f o r  CL = 0.4 and CL = 0.6 
results from the increased  lift-curve slope; whereas the lpaximum occurring 
f o r  CL = 0.8 appears  because  the lift curves breek at  lower l i f t  values 
f o r  these Mach numbers and thereby  ihcrease the angle of a t tack (and drag) 
required t o  obtain a  given l i f t   coe f f i c i en t .  

. 
- 

A comparison  of maximum l i f t -drag ratios is made in.figure 10. The 
mgximums occur in the region' of the lift-drag  curves below 0.6 lift coef - 
f ic ient ,  so that the differences are almost  Insignificant. The data indi- 
cate a s l igh t ly  higher (L/D)- in the Mach  number range f r o m  0.7 t o  
0.90 f o r  the wing-normal configuration, and pract ical ly  no difference at 
higher speeds. Drag data used i n  the preparation of t h i s  figure have been 
adjusted t o  the  condition of free-stream  pressure at the base. 

Base pressure  coefficient.- The variations of  base pressure  coefficient 
with Mach  number, given i n  f fgure U., were similar f o r  all angles of at tack 
up t o  about 12O. The base pressure coefficient f o r  the body alone, wing- 
normal and wing-aft  configurations  generdly  increased with increased 
Mach number in each  case, peaked near Mach number 1.0, and then dropped 
Kith further Mach  number increase. The peak coefficient and the Mach n u -  
ber a t  which it occurred, however, depended on the configuration, both 
be- highest for   the body-alone configuration and lowest for the wtng-aft 
configuration. It should be pointed  out that these differences have a 
f a i r l y  s m a l l .  effect  on the drag. A base-pressure-coefficient  difference 
of 0.065, f o r  example, corresponds to a drag-coefficient  difference of 
0.001. Most of the  differences  in base pressure  coefficient between con- 
figurations  are  considerably  less  than  this. . 

t .. - 
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Pitching; rn0nten-b.- The ,pitching moments for the complete configura- * .  
t i om,  shown in figure 12, were measured about the  quarter chord of the 
wing mean aerodynamic chord f o r  both  the wing-forward and wing-aft  tests. 
Cent-er-of-pressure locations measured f r o m  th i s  moment axis are given In 
figure 13 as a function of Mach number. Three important .results are 
indicated by these figures: F i rs t ,  the unstable break i n  pit-ching moment 
which I s  characterist ic of the sweptback wing and which occurs a t  l i f t  
coefficients around 0.6 for this wing is l i t t l e  affected by the change 
i n  the longitudinal  location of the King. Second, the  variation of the 
center-of-pressure  location with Mach number is  seen t o  be almost ldent-I- 
ca l   for  the two configurations a t  a given angle of attack.  Third, the 
pitching-moment curve fo r  the wing-aft  coqflguratfon has a less stable- 
slope  than the pitching-moment .curve for  the wing-forward configuration 
under nearly a l l  coliditions. This result was expected inasmuch as the - 

contribution of the fuselage  to   the  total  moment is  fa i r ly   l a rge  and .the 
fuselage m s  moved forward wlth respect t o  the moment axis. The actual 
ex ten t   to  which the  center-ofrpressure  location was shif ted forward by 
changing the wing t o  the. et position i e  seep in figure 13 t o  be about 
five  percent of the mean 'aerodynamic chord fo r  most conditions. 

. . .  

" 

" 

I ~""" 

In order t o  determine vhether th i s  moment change is  due merely t o  
the increased  positive  mment-contribution o f t h e  body alone as It is 
moved forward with respect  to the moment axis ( in  the wing-eft configura- 
tion), the lift and moment f o r  the wing plus wing-fuselage interference 
were determined. This information i s  presented in figure 14  and was 
obtained by subtrac'Erng the body-alone. data fiGm t&'. combined'wing- 
fuselage data. The ?%milt-  moment curves have a more negative slope 
than  those  for the complete configurations,  particullrrly  for the wing- 
afthnodel. The difference In slopes is  thus reduced but  not  eliminated, 

,indicating that only  part of the dlffezknce in  slope for the txo complete 
configurations is  due t o  an increase i n  "the body-alone-contribution. The 
latter observation is emphasized In figure 15, which shows the  longitudinal 
center of pressure- f o r  the wing plus wing-fuselage interference. The for- 
ward shlrft of . the  center  of pressure for the wing-&% model i s  from 1.5 
t o  5 percent of the *an a&rodynaanic chord, with most codi t tons   indL.  
catlng 2 t o  3 percent shift. Thus, only  about half of the difference In 
pltchlng-momenfzdop .was. due to the change i n  body-alone contribution 
caused by a shif t  in. %he  body position  with  respect  to  the wlng. The . 

remainder represents a forward s h i f t  in loading on the w i n g  itself' o r  . 

i n  the w i n g  interference  loading  on-the  fuaelage. This forward s h i f t   i n  
wing loading i s  more c l e d y  shown in  data presented i n  reference 11. 

.. 

" 

. - "~ - 
" 

- 

... - 

~ - "  

. . .  
. .  

. .~ ... 
" 

A t  a Mach  number of 0.6 where data could be obtained at high angles 
of attack, there appears t o  be a discrepancy i n  the shape similarities 
between the pitching-moment coefficients  for the two complete configura- 
tions. The curve for  the wing-normal model shows a sharp stable break alz 
a l i f t  coefficient of 0.89; whereas that for  the wing-aft model continues 
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t o  rise t o  .the highest l i f t  coefficient  obtained which was  1.01. How- 
ever, when the body-alone data are subtracted from -the combined data . 
to  give lfft coefficient.   for the wing plus wing-body interference, this 
discrepancy no longer  appears, and both  configurations. show the stable 
break at a l i f t  coefficient cif about 0.83 (fig. 14). This break i s  
present  for  both  configurations,  but is  masked i n  the combined pitching-. 
moment curve f o r  the --aft model by the large positive pitching-moment 
contribution of the body alone. 

Aerodynamic Characteristics  of  the Wing Outside  the  Fuselage . 

- L i f t .  - It is  usually assumed that the percentage of the t o t a l  l i f t  
contributed by the fuselage i s  roughly the sime as the  percentage of the 
wing area  blanketed by the fuselage. If this rule of thumb is applied 
t o  the present  case, the lift of the wing outside the fuselage shown i n  
figure 16 could be expected t o  be about 83 percent of the t o t a l  l i f t  
since in the present case the area covered by the  fuselage is  s l igh t ly  
less than 17 percent. As shown i n  figure 1.7, the relationshfp  applies 
with a fair degree  of  accuracy  over a wide range of conditions  for the 
present  configurktion.  Figure l7(a), which uses the lift-curve  slope 
ra t ios  as an indication  of  load  dzstribution, is applicable for the  
l inear  portion of the lift curve  and indicates that from 81’ to  88 percent 
of the t o t a l  load is  carried by the wing. A t  0.8 l i f t  coefficient, as 
indicated by figure  17(b), the wfng lift was 82 t o  85 percent of the 
t o t a l  ‘lift. A t  higher angles. of attack than  about 16O, however, f i g -  
ure 16 shows that the wing lift drops somewhat, being 75 percent  or less 
of the t o t a l  at the highest asgles of attack at . M a c h  numbers 0.6 and 0.7. 
This is undoubtedly due t o  the fact that the outboard  loading on wings 
of t h i s  type f a l l s - o f f   o r  at least -fails to  increase  further at these ~ 

angles. . .  

D r a g .  - Figure 18 shows the drag coefficient of the wing outside  the 
fuselage as a function  of total wing-fuselage lift coefficient at the 
several Mach numbers -of the test. , Slixe it is well known that the correc- 
t i on  due t o  sting drag’tare is  an appreciable part of the total drag of 
a clean  configuration at l o w - l s t  coefficient, and sinde the s t i n g  tares 
were not  determined in the present case, it i s  not possible to  obtain 
from these data a direct  evaluation of the division of  drag between the 
King and fuselage. However, it is  possible t o  evalmte this division 
of drag by making a comparison of the d r a g  of the wing outside the fuse- 
lage with the drag of the complete configuration  as-determined by an 
interference -f ree technique. This evduat ion has been made tn figure 19 
which shows the zem-l i f t  drag coe f fk i en t  of the wing-outside the fuse- 
lage measured in  the present tests compared with the t o t a l  drag coefficient 
of a simflax “fuselage configuration  obtained by the  rocket  technique. 
The original  rocket-test data, which were obtained from reference 6, . 



included  the- drag of-.two small~stabil ' izing  f ins.  For purposes of the . -  

present comparison an estWted_. . f in  -ea@;. .coefficient".o-f 0.0Ol- has  been. 
subtracted  out at subsonic  speeds and 0.002. subtracted  out. at supersonic 
speeds. This comparison fndicakes that the zero-l i f t -drag of the wing 
in the presence of the  fuselage i s  about 40 t o  50 percent of the  total  
drag of the configuration a t  both  subsonic and supersonic  speeds. 

- 

" 

Y 
. . -.:. 

. ." . - . 
. ". . 

" 

N o  interference-f ree data -are available  for making similar com- 
parisons a t - l i f t  coefficient,  but it is believed t o  be %asonable i n  
the  present  case  to make the  assumption tha t the   ze ro - l i f t  Gting  drag 
tares are applicable .!Lhwughout the  mgle-of-attack  range. Figure 20 
repeats  the drag pol&rs of f i e  18 at-five Mach numbers fur the wing- 
in  the  presence of tbe.  body and .compqes.them with t o t a l  wing-fuselage. 
drag  polar  corrected:for sting drag ,tares ..as Indicated  previously on 
the. basis of the  .zero.-lift'  rocket data. This.  comparison .shows that the 
wing drag.  increases from 4.0 or 50. giercent of the total at zero lift to. 
75 -or . 8 0  percent of the t o t a l  at high lift coefficients..  This increase 
i n  wing drag i s  not  ,.surprising  since  .at__high lift ,coefficients  the 
induced dF&g "mnstitutes -most af:. the total -ai-ag, ..aiid the  division o? 
induced.  drag between...wing  body  woula  be- si&+ t o  the division of.. 
lift. - . . -  - , . " ." I. I -.- - - .I ".I. _I - - . - i .. - . - .I . I 

. . . .  

. .  - -- 

Pitching moment. - T h e  pitching-moment curves, of figure 21 for- the 
wing outside  the  fuselage. &re very s-$mil& in-jhape ,at dl. speeds e:- 
those  for - the  compete  configurati.on  .except . f o r  .a: co.asi.derabJy more . 

negative slope. These sfmilarities. are t o  be expected  since  the non- .. 

linear characterist ics  of. the moment curves far s%rept w i n g s  resul t  from 
flow  conditions on the  outer  pixFts.of %he-wii&si The center of pressui% 
fo r  the wing QuMde the  fuselage,  given in flgure 22 for   severd-angles  
of attack,  indicates  .shifts o-he center of pressure  with Mach  number 
for   the w i n g  outside  the body which are nearly  identical  to  those of the 
complete+ng-fuselage configuration  except  for' an over-all  rearward 
displacement, The center of pressure  for  -the wing outside  the  fuselage 
at=k0 angle of. attack, f o r  example, shiPts 15 .percent from a low-speed 
location. at = 0.38 to a location at = = 0.53 at the  highest Mach 
number obtained. Under the same conditions  the.  center of . .pressure  for 
the complete- Configuration. shifts 15 perce-nt Prple. '~f = 0.24 t o  - 0.39 x.: - -  

= . . . - - . . . 

X X 

C c 
X 

C 

. " 

(fig. 1 3 ) .  
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CONCLUSIONS 

. 
. " . .  . 

. .  "I - 
. .  . -  
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An investigaticsrr of a 45' sveptback wing-fusefa.@;e _. configuration i n  
. . .. 

". 

the Langley r6-foot.transonic  tunnel  indicates the fdlowing conclusiorik: 
" 



I 1. Eefects of longitudinal  position on the wing i n  two positions 
on the  fuselage 

Y (a) Below a l i f t  coefficfent of about 0.6.there were no 
appreciable  differences i n  lift coefficient,  but above th i s  point 
the wing-aft results  generally indicated somewhat lower l i f t -  
coeff  Lcient  values at the same angle of attack. 

(b)  Drag coefficients  obtained at l i f t  coefficients below 0.6 
were a l s o  negl igibly  dfected by the change of longltudinal w i n g  
location, the variation of drag  r ise with Mach m b e r   k i n g  very 
nearly identical for the two  wing positions. Drags a t  higher lift 
coefficients  than 0.6 were adversely  affected by moving the w i n g  
aft because  of the reduced nom force w h i c h  resated in higher 
drags at the s a m  lift coefficient  for t h i s  configuration. 

( c )  Curves of pitching-moment plotted  against l i f t  f o r  the - 
two configurations were similar i n  shape but of different slope, 
the center of pressure being about 5 percent of the mean aerodynamic 
chord farther forward for the  wing-aft  configuration. About half 
of this  difference, however, was due t o  the increased moment arm 
of the body-alone contribution which results when the wing position 
was changed. 

2. Forces and moments on the wing  in the presqnce  of the fuselage 

(a) The percent  of  the t o t a l  wing-fuselage lift load carried 
by the wing outside the fuselage was about the same as the percent 
of t o t a l  wing area which was outside the fuselage, which was 83 per- 
cent in this case. 

(b)  The percent of the total wing-fuselage drag which was 
measured on the wing outside the fuselage increases f r o m  b t o  
50 percent at zero l i f t  t o  75 or  80 percent at lift coefficients 
of 0.8 or  higher. 

(c)  Rearwad  dhifts i n  center-of-pressure  location with 
increases in  Mach number through the transonic-speed  range f o r  
the wing outside the Fuselage were nearly  identical   to  those for 
the complete configuration. 

Lasgley Aeronautical  Laboratory, 
matiowl Advisory Committee for  Aeronautics, 

Langley Field, Va. 
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Pitching-moment axis 
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Wing data -. 

Taper ratio 0.6 
Aspect ratio 4.0 

Airfoil section NACA 65A006 
parallel to plane 
o f  symmetry 
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FiWm 1.- Model dhensXons arid arrangement, wing-normal and wing-af- 
configurations. A l l  dimensions a r e i n  inches. 
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Figure 2.- Wing-normal mdel installed in the Langley &foot transonic 
tunnel t e s t  section. 
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F'igure 3 .- Cross-sectlon s b w i n g  detaiis  o f  wing--fi-selage juncture used 
when obtaining force data on the w i n g  outside the f'uselage. 
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~ g u r e  4.-  Model support  system in the Langley 16-foot transonic tunnel 
t e s t  section'. 
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figure 7.- Average lift-curve slope for ving-nom1 and wing-& 
configurations f r o m  CL = O to cL = 0.6. 
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Wing in  normel poaftion 
Wing In eft posit ion """" 

.6 - 7  .g .9 1.0 1.1 
Haoh numbep, X 

Figure 9.- Drag comparison for Wng-normal and. wing-aft mde 
lift-coefficient values. - ,Is at several 
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Rgure 10.- IbxLmum l i f t - d r a g  ratlo comparison for  wag-normal and 
wtng-aft; models.  Drag data adjusted t o  the condition o f  fie- 
stream preasure at the base. 
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- Fuselage, alone 
- ". Wing in normal position 

"" - - Wing in aft  position 

Mach number, M 
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Figure 11. - Base-pressure  coefficients obtained -on the wing-normal and 
wing-aft conffgwations and-on the body alone. 
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Figure 12.- Wing-fuselwe pitching-moment comperisgn for wing-normal 
and wing-aft models. 
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Figure D.-  h c a t i o n  of longitudinal center of press- f o r  wing-normal and 
wing-aft mdels a t  several  angles of attack. (Complete configuration) 
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Figure 14.- Wing plus wing-fuselage  interference pitching-moment 
comparison  for wing-normal and wfng-'aft models. - 
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Figure 15. - Location of Longitudinal  center- of pressure for wing-normal 
and wing-aft models at ..several angles o f  attack. (Wing plus wing- 
fuselage interferences) . .  . 
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Plain svmbols- Wina-fuselaae data 
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(a)  Mach numbers 0.60 , t o  0.85. 

FTgure 16.- Comparison of  l i f t  of the complete wing-fuselage conflgurathm 
with lift of the wing outside of the fueelage. 
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(b )  Wing-fuselage-Uft  coefficient, 0.8. 

Figure 17.- F'ractlon  of t o t a l  lift load carried'by  the wing panel  outside 
the  fuselage . 
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(a) Mach numbers 0.60 t o  0.85. 

Figure 18.- Drag coeff ic ient  o f  the wing outside  the fuselage a8 a 
.Aznction of wing-Fuselage lift coefficient.  
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Figure 19.- Zem-Uft drag coefficient. 
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Wing outside the fuselage 
Wing-fuselage , corrected for sting interference ””- ”””_ 
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Figure 20.- Comparison at  several Mach numbers of  t h e  drag coeff ic ient  
’ of the  wing outside  the fuselage with   the   to ta l   d rag   coef f ic ien t  

( including  estimated  st ing tare correct ion) .  
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FPgure 21.- Continued. 
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Figure 21. - Copc luded. 
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Rgure 22. - Longitudinal center of pressure for the wing outslde the  
Fuselage a t  several angles of attack. 
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