e =

NACA RM E57C05

To_

RELzzop Dary  ENTR Auo ‘;'—_g..- 4
'F'.LUN 9 13;7 gff};zmcos
¢
EFFECT OF FUEL PROPERTIES ON LINER TEMPERATURES
IN A SINGLE TUBULAR TURBOQJET COMBUSTOR
By Helmut F. Butze v
Lewis Flight Propulsion Laboratory
Cleveland, Ohio
CLASSIFICATION CHANGED LIBRARY COPY
UNCLASSIFIED JUN 6 1957
- - ——- - - LANGLEY AE&g::ngALCIAMORATDRY

y LANGLEY ris w, VIRGINIA

By puthority of “0toi=l (i T...

s 52 -5 CLASGIFIED DOCUMENT

cp.&ftaviing 1he TALions mummmmm‘mm
----- Wi s or revelation of which in any

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON
June 3, 1957

UNCLASSIFIED COMEBENHAL




4447

CF-1

UNch‘%&ﬂm
oA R 857005 Ul "”HH" T

1176 01436 5747
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
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EFFECT OF FUEL PROPERTIES ON LINER TEMPERATURES IN A
SINGLE TUBULAR TURBOJET COMBUSTOR

By Helmut F. Butze

SUMMARY

The effect of fuel propertles on combustor-liner temperstures was
investigated 1In a single tubular combustor at combustor-inlet conditions
representative of those encountered in turbojet-powered high-flight-speed
alrcraft. Tests were conducted with three liquid Jet-type fuels varying
in volatility and sromatic content, and wlth hydrogen. Two liners, one
uncoated and the other coated on its inner surface with a corrosion-
resisting ceramic (NBS A418), were used in the investigation.

Variations in fuel properties produced only moderate and not alweys
consistent changes in average liner temperatures. A fuel high in aromatic
content produced higher average liner temperatures than did s similer fuel
containing no aromatics; however, differences did not exceed 160° F.

Liner temperatures obtained wlth hydrogen were not significantly different
from those -obtained with the liquld fuels. Average liner temperatures
obtalned with the corroslon-resistant ceramic-coated liner were greater,
in all casés, than those obtalned with the uncoated liner.

INTRODUCTION

The high combustlon-chember pressures and temperatures encountered
in turbojet-powered aircraft flying at supersonic speeds impose severe
cooling and, hence, durebility problems on the combustor liner (ref. 1).
In addition, the use of fuels burning with highly luminous flames may
greatly increase the radiant heat-transfer rate from flame to liner and
thus aggravate the cooling problem. A brief investigetion of the effect
of varying the fuel composition and, hence, the flame radiation charac-
teristics on liner temperature in a turbojet combustor was conducted at
the NACA Lewils laboratory and ls reported herein.

In a turbojet combustor heat is transferred from flame to liner by
convection and by radlation. Heat transfer by radistion is primarily a
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Tunctlon of the temperatures and emissivities of the flame and the liner
and., according to reference 2, may constitute more than half the total
heat transfer from flame to liner. ZFlame temperature depends primarily
on operating condlitions; flame emissivity varies directly with combustor
pressure (ref. 3). In addition, experiments conducted with a laboratory-
scale research burner (ref. 4) indicate that the emissivities of flames
from aromatic fuels are somewhat higher than those of paraffinic fuels.

The primary purpose of the present investigation was to determine
whether fuel composition, varying within the range normally encountered
in jet fuels, has a signlficant effect on liner wall temperatures in a
production-model combustor. In addition, since there is considerable
interest in the use of ceramic coatings for corrosion protection and
radiation suppression, combustor-liner temperatures were determined both
with a plain liner and with a liner whose inner surface was cosated with
a well-adhering ceramic coating (NBS-A418). Three hydrocarbon jet-type
fuels of varyling volatlility and aromatic content were employed in the
Investigation. 1In addition to these fuels, hydrogen was used because of
its low flame emissivity. Tests were conducted at combustor-inlet pres-
sures and temperatures representative of (1) a subsonic crulse condition
and (2) supersonic (Mach 2) flight of an engine with a compressor pres-
sure ratio of 5 at an altitude of 35,000 feet. In addition to liner tem-’
peratures, combustion-efficlency data were recorded.

APPARATUS
Combustor Installation

The combustor installation is shown schematically in figure 1. A
production-model J33 inner liner and dome were installed in a high-pressure
combustor housing similar in shape to that of a J33 engine, except that
circular inlet and exhaust transition sectlons were used. This conmbustor
essembly weas connected to the laboratory 450C-pound-per-square-inch alr-
supply system and to an atmospheric-exhsust muffler.

Flow rates and pressures of the combustion air were regulated by
remotely controlled valves upstream and downstream of the combustor.
The coubustion air was heated to the desired temperature by means of a
heat exchanger conslsting of a series of colled Inconel tubes, connected
in parallel,; through which the high-pressure alr flowed. The tubes were
heated externally, 1n crossflow, by combustion gases from an suxiliary
turbojet combustor.

Separate fuel systems were used for the liquid fuels and for hydrogen.
The liquid fuels were pumped from g, tenk of 1000-gallon capacity; flaw rate
was controlled by means of a needle valve located downstream of a high-
pressure pump. Hydrogen was supplied from a bank of high-pressure
cylinders connected in parallel; its flow rat— was controlled by a pressure
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regulator and by a needle valve. A pressure-atomizing nozzle having a
nominal flow capacity of 40 gallons per hour (at a pressure drop of 100
Ib/éq in.) and a 70° spray angle was used for the liquid-fuel tests.

For the hydrogen tests the swirler was removed from a 3.5-gallon-per-hour
nozzle, and six 0.136-inch-diameter holes were drilled at equal circum-
ferential distences in the nozzle tip at an angle of 45° from the axis.

Four weter-spray nozzles, located downstream of the exhaust-gas
thermocouples and supplied by a high-pressure high-capacity pump, were
used to cool the exhaust gases prior to thelr passage through the exhaust-
control valve.

TInstrumentation

Alrflow retes were measured by a square-edged orifice plate installed
according to ASME specifications. Liquid-fuel flow was measured by a cali-
brated rotameter located upstream of the high-pressure pump, while hydrogen
flow rate was determined by means of a suitebly sized sgquare-edged ASME
orifice. Inlet-air and exhaust-gas temperatures were measured by two en-
closed single-junction Chromel-Alumel thermocouples (plane B-B, fig. l),
and by eight two-junction platinum - platinum-rhodium (13 percent) thermo-
couple rakes (plane C-C, fig. 1), respectively. By means of a suitable
switching arrangement, either individual temperatures or an average of
all exhaust-gas thermocouples could be cobtained. Inlet-alr and exhaust-
gas total pressures were each measured by four three-point total-pressure
probes located at planes A-A and D-D (fig. 1), respectively, and connected
to strain-gage pressure pickups. All combustor pressures and temperatures
were lndicated on automstilc balancing potentlometers.

The wall temperatures of the combustor inner liner were determined
by means of Chromel-Alumel thermocouples welded, at selected locations,
to the outer surface of the liner; the junctions were covered with an
Insulating ceramic cement in order to minimize heat transfer by convection.
A developed view of the liner, showing thermocouple locations and deslgna-
tions, is presented in figure Z(a); e photograph of the liner and dome
showing the method of thermocouple installation is presented in figure 2(b).

Liners

Two J33 liners were used: (1) a plain liner and (2) a liner whose
inner surface was coated with NBS A418 ceramlic coating to a thickness of
1 to 1.5 mils. This ceramic, which is a high-barium enamel with a 30
percent chromium oxide additlon, was developed primsrily for corrosion
resistance.



4 ) W NACA RM E57CO5

FUELS
The following fuels were used- in the investigation:

(1) A JP-4 fuel containing approximately 10 percent aromatics (NACA
fuel 52-288) "

(2) A JP-5 fuel conteining less than 1 pércent aromatics (NACA fuel
56-16)

(3) A JP-5 fuel contalning approximately 25 percent aromatics (NACA
fuel 56-70)

(4) Hydrogen {approx. 99 mole percent pure)

Chemical and physical properties of the liquld fuels are presented in
table I. The JP-4 fuel is representative of current production Jet fuel.
The JP-5 fuels represent low-volatility jet-type fuels having extreme
variations (within current military specifications) in aromatic content.
NACA fuel 56-70 was prepared by addlng approximately 15 percent a,f-
monomethylnaphthalene to a production JP-5 fuel to bring the aromatic -
content up to 25 percent. Hydrogen was included in the test program for
its conslderebly lower visible fiame radletion cheracteristics.

PROCEDURE

Liner-temperature and combustion-efficiency data were recorded at
the nominal combustor-inlet conditions shown in the following table:

Test Inlet-air {Inlet-air|Inlet-air |Combustor

condi- |[total temper- reference |temper-
tion |pressure, |ature, velocity®, |ature
Ib/sq in. °F ft/sec rise

abs 6F

1 30 350 111 600

2 30 350 111 1200

3 85 640 150 600

4 85 640 150 1200

8Based on max. cross-sectlonal area of combustor
housing (0.267 sq ft) and inlet-alr static
pressure and temperature.

%%
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These condltions simulate approximately the operation of a turbojet engine
with a compressor pressure ratlio of 5 at an altitude of 35,000 feet at
flight Mach numbers of 0.9 (conditions 1 end 2) end 2.0 (conditions 3

and 4).

Combustion efficlency, which 1s defined as the ratio of the actual
enthalpy rise across the combustor to the total enthalpy supplied by
the fuel, was computed by the method of reference 5: Enthalpy values
for hydrogen were obtained from reference 6. Temperatures were taken as
total temperatures, and no corrections were made for conduction and
radiation errors.

RESULTS

Liner temperatures and other combustor data obtained during this
investigation are presented in teble II. ILarge differences ln temper-
ature exlsted on the varlous parts of the liner. The cbserved temper-

atures show & random variation iIn both axial and circumferential directions.

A typical distribution (run 19, table IT) is presented in figure 3, where
liner temperstures are shown on a developed view of the combustor liner.
Wall temperatures, in this example, varied from 1600° to 885° F. The
highest temperatures were observed 1n the upstream half of the liner.
Figure 3 also indicates that the cooling-ailr louvers were effective only
for a short distance axially; thus, the liner temperature immediastely
downstream of the louver had decreased from 1600° to 885° F, while only
e few inches downstream from that point a liner temperature of 1195° F
was observed.

Because of the mild operating condltions, combustion-efficiency
values (table II) were generally near 100 percent and did not reflect any
differences among the fuels tested. The fact that combustion-efficiency
values slightly above 100 percent were obtained in many cases is believed
to be due principally to errors in average exhsust-gas temperature meas-
urements caused by an insufficient number of thermocouples. However,
thermocouple errors and lack of mass welghting of temperatures also could
contribute to the error.

Thermocouples in Line with Louvers

Temperatures of the plain and ceramlc-coated liners are shown in
figures 4 and 5, respectively, as a function of axlal distance from the
fuel nozzle for thermocouple locations in line with cooling-alr louvers
(thermocouples 1, 2, 4, 5, 6, and 7, fig. 2{a)) and for the four different
fuels. The temperatures Immediately downstream of the second louver
(thermocouple 3, fig. 2(a)) are not included in this plot, because this
particular thermocouple, unlike the others, is effectively cooled by an



6 e NACA RM E57CO05

alr-entry louver. The data show no comsistent trend among the fuels.
The order of the fuels was different not only at the different operating
conditions, but alsc at the different positions along the length of the
liner. However, at all but one operating condition the temperatures cb-
tained with the high-aromatic JP-5 fuel (56-70) tended to be somewhsat
higher than those obtained wlth the other fuels.

Thermocouples between Circular Air-Entry Holes

LYYV

The effect of fuel type on liner temperatures for thermocouple lo-
cations between the circular alr-entry holes (thermocouples 8, 9, 10, and
11, fig. 2(a)) 1is shown in figures 6 and 7 for the uncoated and ceramic-
coeted liners, respectively. No consistent trends can be cobserved among
the different fuels, although again the high-~aromastic JP-5 fuel (56-70)
tended to produce somewhat higher liner temperatures than the other liquid
fuels. Liner temperatures obtained with hydrogen were even more inconsist-
ent than those obtained with the liquid fuels. For any given fuel, liner
temperatures between alr-entry holes generally showed grester variation
wlth axial distance than the temperatures ln line with louvers.

Dome Temperatures .

Dome temperatures (thermocouple 16, fig. 2(a)) obtained with the
four different fuels at the various operating conditlons are shown in
figure 8 for both the uncoated and the ceramic-coated liners. For the
liquid fuels, fuel type seemed to have no significant effect on dome
temperatures. The lowest temperatures were observed at the high-temperature-
rise conditions. The largest effect of fuel properties was noted for the
1200° F temperature rise, where dome temperatures observed with hydrogen
were apprecisbly higher than those obtained with the liquld fuels; this
effect was especlally pronounced wilth the ceramic-coated liner.

DISCUSSION
Effect of Fuel Propertiles

Because of the large veriations in trends observed, it is almost
Impossible to rate the fuels on the basis of the individual liner temper-
ature patterns presented in figures 4 to 7. In addition, indlividual
temperatures generally could not be reproduced very accurately. Although
no reproducibility tests as such were conducted, it was observed that
individual temperstures variled with time even after burning had been -
stebilized and that, on repest runs, variations as great as £100° F were
encountered. Therefore, an over-all comparison was attempted by simply
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averaging all measured temperatures for each test run. These average
liner temperatures are presented in figure 9. The degree of reproduci-
bility was such thet differences in average temperatures less than 50° F
are not consldered significant.

Noticegble differences in average temperatures existed among the
fuels (fig. 9); however, no one fuel consistently rated higher or lower
than the others. The comparisons are complicated by the faet that the
fuels differed not only in composition but also in volatility. Changes
in volatility can affect markedly the fuel-spray patterns, the penetration
of the fuel, and wall wetting (ref. 7). Probebly the most accurate com-
parigson would be between the two JP-5 fuels (56-16 and 56-70), which dif-
fered only in aromatic content. The high-aromatic fuel (56-70) consist-
ently produced higher average liner temperatures than fuel 56-16; 4if-
ferences in temperature as much ss 1680° F were observed. This trend is
in agreement with the concept that aromatic fuels burn with greater
Juminosity and, hence, should have higher fleme emissivitles with re-
sultant higher liner temperatures.

A comparison of the hydrogen and liguid-fuel deta shows no signifi-
cant differences in average liner temperatures between the two classes
of fuels. Hydrogen was used in this study because of the low emissivity
of the hydrogen flame, but 1ts radiation may not be completely negligible.
The emissivity of the hot water vapor from the hydrogen-air flame at the
highest pressure and temperature-rise conditions is estimated tc be about
0.10 as compared with an emlssivity of 0.15 for the products from a non-
luminous hydrocarbon-air flame (ref. 7). Exact calculations are impos-
sible because of the verying tempersture and composition throughout the
combustor. At the conditions used in this study, all the hydrocarbon
flames were probably luminous, and emissivities of the order of 0.5 to
1.0 might be expected. Therefore, the radisnt heat transfer from the
Jet-type fuels should be considerably greater than that from hydrogen.
The fact that there was little difference in average liner temperatures
between the two classes of fuels might be attributed to increased con-
vective heat transfer with hydrogen, since the hydrogen flame, because
of its grester reactivity, might be expected to extend closer to the
combustor walls than the liquid fuel flame.

Despite the fact that no consistent differences were found between
the over-all average liner temperatures for the liquid and the gaseous
fuels, dome temperatures obtained with hydrogen (fig. 8) at the high
temperature-rise conditions were considerably higher than those obtained
with the liquid fuels. The higher dome temperatures observed with hydrogen
may be the result of changes in flame seating or the lack of fuel-cooling
of the dome. The wider flemmsbility limits of hydrogen fuel would be
expected to result in more intense combustion in the very rich fuel-air
mixtures In the extreme upstream end of the combustor. Also, with liquid
fuels, the considersble amount of fuel spray that impinges on the walls

AR
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in the upstream end of the combustor (ref. 8) would cool these walls.
Further evidence of the effect of fuel-cooling can be found in the fact
that, for the liquid fuels, the lowest dome temperatures were obtained at
the hilgh-temperature-rise or high-fuel-flow condltions.

Effect of Ceramic Coating

The effect of the ceramic coating can best be cobserved in figure 9,
where the average liner temperatures of the plain and the ceramic-coated
liners are compared. In all cases the average temperatures of the ceramic-
coated liner were higher than those of the uncoated liner, with differences
in average temperature ranging from 10° F to approximately 300° F. The
particular cersmic coating used is primerlly a corrosion-resistant coating
and according to reference 9 has a total emissivity between 0.85 and 0.85,
vhich 1s somewhat greater than the emissivity of the uncoated Inconel
(between 0.6 and 0.85). Thus, somewhat higher liner temperatures might
be expected in a liner coated with thls perticular ceramic. However,
since the same trend was alsoc observed with hydrogen where the effect of
radlant heat transfer should be considerably smaller, 1t is possible that
changes in convective heat transfer, resulting from slight changes in
the shape or surface condition of the liners, might have contributed to
the higher temperatures observed with the ceramic-coated liner. -

Addltional evidence of the higher liner temperatures obteined wilth
the ceramic-coated liner was found in the condition of the two liners at
the end of the test program. The uncoated liner was in good condition
and showed very little distortion, whereas the ceramic-coated liner had
warped appreclably and was consldered unfit for further tests at the end
of the test program. However, the coating itself was still in good condi-
tlon and showed little evidence of spallilng.

Effect of Operating Conditlons

The data presented in figure 9 show that average liner temperatures
generally increased with increasing fuel-air ratio snd with increasing
combustor-inlet pressure, temperature, and veloclity. The trends were
similar for both the plain and the ceramic-coated liner and are essentislly
consistent with previous experience (ref. 1).

SUMMARY OF RESULTS

From an Investigation of the effect of fuel propertles on combustor-
liner temperatures in a single J33 combustor, the followlng results were
obtalned:
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1. Varlations in fuel properties produced only moderate and not always
consistent changes in average liner temperatures.

2. A fuel high in aromatic content (JP-5, 56-70) produced higher
average liner temperatures than did a similer fuel contelning no aromatics
(JP-5, 56-16); however, differences in temperature did not exceed 160° F.

3. Liner temperatures observed with hydrogen were not significantly
different from those observed with the liquid fuels.

4. Average temperatures obtelned with a liner coated with a corrosion-
resistant coating (NBS A418) were higher, under all conditions, than
those obtalned with an uncoated liner.

Lewis Flight Propulsion Laboratory
Natlionsl Advisory Commlttee for Aeronautics
Cleveland, Ohio, March 6, 1957
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TABLE I. - PHYSICAL PROPERTIES OF LIQUID FUELS

11

Fuel properties

JP-4 (NACA

Low-arometic

High-aromatic

fuel 52-288) |JP-5 (NACA |JP-5 (NACA
fuel 56-16) |[fuel 56-70)
ASTM distillation, D86-46, °F:
Initial boiling point 144 376 356
Percent evaporated
5 188 394 380
10 243 400 391
20 287 410 403
30 308 4186 413
40 322 422 423
50 334 428 431
60 347 434 440
70 381 440 448
80 379 447 453
90 411 458 467
Final boiling point 484 486 500
Residue, percent 1.0 0.5 1.0
Loss, percent 1.0 0 0.5
Aromatics, percent by volume
(silica gel) 10.8 0.9 25.6
Specific gravity 0.778 0.793 0.841
Hydrogen-carbon ratio 0.167 0.165 0.155
Net heat of combustion, Btu/l'b 18,875 18,800 18,450
Smoke volatility index 65.2 43.7 22.1
Smoke point, mm 28.8 39.5 15.0
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