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EFFECT OF CENTRIFUGAL FORCE ON CRITICAT, FIUTTER SPEED
OF A UNIFORM CANTILEVER BEAM

By Alexander Mendelson

SUMMARY

Theoretical calculations were made by means of semlrigid-flutter
theory to determine the effect of centrifugel force on the critical
flutter speed of a uniform cantilever beam. Centrifugal force can
under certain conditlons be detrlimental, decreasing the critlcal
flutter speed. The higher the ratio of natural torsional frequency
£0 natural bending frequency the greater the decrease in critlcal
flutter speed due to centrifugal effect. The conclusion la drawn
that compressor and turbine blades that are flutter-free et zero rpm
might become unstable at high rotative speeds. The centrifugal force
effect can therefore not be lgnored In eny flutter calculations on
compressor and turblne blades.

INTRODUCTION

The vibration problems of compressor and turbine blades have
become more important as the use of axlal-flow compressors and turbines
has increased. These problems involve resonant vibratlions due to
mechanical excitation from other perts of the machlne or from pulsating
sir flows from previous rows of blades in additlon to nonresonant
aerodynamic excitation. The aercdynamic excitation involves a type of
vibration that is self-sustained by the continual absorptlon of energy
from the alr stream. Thie vibration is called flutter.

Clasgical flutter is more speciflcelly deflined as a sgelf-sustalned
oscillation due to the coupling of inertla forces, elastic forces,
damping forces, and dynamic aerodynamic forces. Thls type of flutter
usually occurs on alrplene wings at low angles of attack when the
veloclty reaches a certain value called the critical flutter speed.
It is to be distinguished from a radlcally different type of flutter
called stalling flutter, which occurs on profiles at high angles of
attack, such as propeller blades neer the stall point (reference 1).
Stelling flutter can be caused by an aerodynamie hysteresls effect,
the negetive slope of the lift curve, or sxcitatlon by a system of
Karman vortices (references 2 to 4),
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Classical-flutter theory has been developed by many investigators
(references S to 7) and the results have been found to agree with
experiment. A direct application of this theory to analysis of com-
pressor and turbine blades would seem to indlcate little likelihood
of such blades fluttering at zero angle of attack. Thie Improbabllity
of flutter 1s due to the stiffness of compressor and turbine bledes
compared to.airplane wings. Two important factors, however, must be
considered: <the effect of centrifugel force and the effect of
cascading. These effects maey be elther benefilclal, that 1s, increase
the critical flutter speed, or detrimental, that is, deorease the
critical flutter speed.

An approximate method of solution developed at the NACA Cleveland
laboratory of the effect of centrifugel force on the critical flutter
speed of & uniform cantllever beam and the results for beams with
various fundemental frequencles are presented herein. The effect of
cascadlng 18 yet to be investigated.

SIMBOLS

The followlng symbols are used in the analysis:

a coordinate of elastlc axls measured from midchord in
units of half chord, positive towards tralling edge

&), by, ¢1, functions of reduced frequency k and fundamental bending
bs, Co frequency

ay, a8y, aerodynamic coefficlients
8g, &g
b half chord, used as reference unit length
by, by, aerodynamic coefficlents
be, bg
2
c Hrg
e pr
r function of k derived by Theodorsen (reference 5)

£, f2 functions of W4/’
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funoction of k derived by Theodorsen (reference 5)
moment of inertia about elastic axis per unit span length
N1

constant of proportionality

reduced frequency %?

osclllatory serodynemlc 1lift force per unit span
caclllatory aerodynanlic moment per unit spen

mags of profile per unlt span

mass of cylinder of alr (dlsmeter of cylinder egqual to
profile chord) per unit span

rotative speed

location of center of gravity of profile meassured from
a in units of half chord

radius of gyretion referred to & In units of half chord
static mass unbalance of profile, mrb

time

critioal flutter speed

vertical displacenment

maximumw bending amplitude

phase angle by which torslon vibrational mode lags bending
mode during flutter

angle of torsional displacement
maximum torsional amplitude

ratio of mass of alrfoll per unlt span to mass of

surrounding air cylinder per unit span, —— = ——

Ma ﬁpbz
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density of surrounding ailr

w frequency of flutter vibration
@, fundamental bending frequency of airfoil
W' fundamental bending frequency of alrfoil .corrected for

centrifugal-force effect
mt fundemental torsional frequency of alrfoll

Dots over the symbols represent derivatlives with respect to
time.

ANALYSIS

Flutter equations. - The analysis of the effect of centrifugal
force is based on the ususl semirigid theory. Reference 8 shows that
this theory, which assumes two degrees of freedom, that is, the
uncoupled fundamental bending and torsional modes, glives results In
close agreement with the exact solution, which assumes an infinlte
nunber of degrees of freedum. The assumption 1s made hereln that
these results also apply to the case 1n which centrifugal forces are
aedded. The procedure followed 1s then to correct the fundamental
bending mode for the centrifugal effect and to proceed In the usual
menner to obtaln the critlcel speeds and fregquencies. The effect of
centrifugal force on the fundamental torslonal mode ls assumed to be
emall enough to be neglected. The assumption is also made that the
osclllatory alr forces and momentas acting on the blade are the same
as those acting on an isolated two-dimensional airfoll in en uniform
alir stream. Incompressible flow la assumed and structural frictions
are ignored.

The equetions for dynamic equilibrium (reference 5) are

m3F+Sé.+m(OlD')2y-L=O
ae 3 <1)
I6 + Sy + I w2 6 -M=0

The oscillatory aercdynamlc 1ift 1 and moment M are given dby
L = - mguf [(ay + 15.5,) ¥y + (ag + iap) be]
(2)

M= - mgtfb |j(b5r + fby) vy + (bg + 1bg) be]

ST6
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where

where F and

reference 5.
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G are functlons of reduced frequency k glven in

(3)
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By combining equations (1), (2), and (S) and dividing through

by my
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_ (Q)bu)z _ =
ay + 1ay +p -735-— - ¥y +{&8g +'lag - ¢} b6 =0

0.2
by + iby - ¢ by + (bg + ibg + € -u-)—z- 'b9=0-J

Equations (6) have solutions other than y = 6 = O 1f end only
if the determinsnt of the coefficlents of y and 6 vanishes. By
setting,this determinant equal to zero, separating real and imaginery
parts, and rearrsnging

(6)

and (7)
. 4 (w 2
g1 |;/—) + Db + ¢y =0
1 (cot) 1 m;) 1
where
'\ o
by = cEy + B (ﬁa:) bg
cp = CBy + p bg + ag(by - o) +'By(ae -e) -bgay - ay bg
a; = (o - bo)(n - ay) + by ag ~ bg Ey - (ag - e)(by - e)
2 2
Wy, Wy '
by = cay + p.(az: bg - cu uﬁ: + 1

wbtz
- ()

For a given profile, a, b, and ¢ are functions only of the
reduced frequency k and the fundamental bending frequency .corrected
for centrifugal force effects Wy ', which is, in turn, a function of
the rotative speed N. For a given rotative speed N, a, b, and o
are functions only of the reduced frequency k. Equatione (7) cen
then be solved graphically for the reduced frequency k and the
ratio of flutter frequency to fundamentel torsional frequency coﬂbt.

Bending frequency. - The effect of centrifugal force on funda-
mental bending frequency ®; was obtained from reference O.

@p')2 = wbz + KN® (8)

915
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where (%, 1is the fundamental bending freguency without rotation

and K 1is a function of the ratio of blade length to root radius and
of the blade taper. By combining equations (7) and (8), the reduced

frequency k and flutter frequency & can be obtained &s & function
of the rotative speed N. The critical Flutter speed v can then be
obtained from the relation

v = Wb (9)

RESULTS AND DISCUSSION

Equations (7) were solved for the reduced frequency k and the
frequency ratio .‘“/‘-‘Jt as functions of the ratio of torsional frequency
to bending frequency corrected for centrifugal-force effect mt/(vb';
the results are shown in figure 1. A typlcel profile with the following
constants was chosen for the calculations:

8 = - 0.40

r = 0,10 .
rg = 0.50

g = 100

From figure 1 and equation (8) it is possible to obtain the
reduced frequency k and the frequency ratio m/m.b as a function of
the rotative speed N, once a value for the fundamental bending
frequency ®y;, 18 chosen. For this purpose, equation (8) can be
convenlently rewritten In the form .

(tit_,z:ﬁf_
/g

(10)

For a given profile, the frequency ratio ®WyAdy' will therefore
decrease as the rotative speed N Increases. From figure 1, for
values of frequency ratio wt/ﬂ)b' less then approximately 0.90, the
value of reduced frequency k wlll decrease &nd the value of © ,ﬁ)t
will decrease as the rotative speed N 1ncreases (or as cot,fnb'
decreases). At values of frequency ratio &)t/cub ' greater then
approximately 0.80, both reduced frequency k and frequency
ratio w/mt increase as the rotative speed N iIncreases (or as

wy /0y’ decreases). But for values of ®gfv, ' close to 0.90, the
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reduced frequency Lk 1Increases at a faster rate than Coﬁbt. The
critical flutter speed v can be expressed as
b £&)a¥
g“’t
v = 11
- (11)

The critical flutter apeed v will therefore increase with increasing
rotational speed N for values of frequency ratio (ﬂtﬂbb' leas

than 0.90 and wlll decrease wlth lncreasing rotative speed N for
values of iAo' greater than 0.90. The existence of a minimum

value for the critical flutter speed v 1is therefore indicated.

The foregoing relations can perhaps be more clearly seen if
equation (10) is used with figure 1 to plot directly the reduced
frequency k and the frequency ratio coﬁnt as a function of the
rotative speed N. This varlation is shown in figures 2 and 3 for a
fundamental bending frequency ®3, of 100 radians per gecond and
frequency-ratio (ntﬁob' values ranging from 1 to 5. The constant K

2
was assumed to be (ZE) . This value corresponds to a non-

stapered blade with & ratio of root radius to blade length of zero.
As shown In figures 2 and 3, the frequenoy ratio <n/nt increases
as the rotative gspeed N 1increases but the reduced frequency k
at first Increases and then decreases. If the rate of 1lncrease of
reduced frequency k in any part of the reglon where 1t is
increasing is greater then the rate of lncrease of the frequency
ratio ®/vg, then from equation (11) & minimum oritical flutter
speed v can be expected.

In order to verify this conclusion, the critlcal flutter
gpeed v was calculated assuming a blade chord of 2 inches. The
results are shown in figure 4 for values of fundamental bending
frequency &} of 100, 500, 1000, and 2000 radlans per second,
respectively. The critlical flutter spesed v decreases to & minimum
value as the rotative speed N 1is increased. This minimum value
depends on the bending frequency W, on the ratlo of torsiomal to
bending frequencies ® i/, and on the rotative speed N. The
rotative speed N at which the critical flutter speed v 1is a
minimum increases as the ratio of torsional to bending frequency
wt/bb inoreases and as the natural bending frequency @, increases;
also, the higher this ratlo, the greater the decrease in critical
fintter speed v. This decrease in critical flutter speed v es
the rotative speed N 1s Increassed is due to the centrifugal force
causing only the bending frequency W, to increase. Although
increasing both the bending frequency ), and torsional
frequency (¢ will increase the critical flutter speed v, increasing
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the bending frequency ®y alone may decrease the critical flutter
speed (reference 10). This relation can be seen 1f the curveg of
flgure 1 are expressed as

© _ o (Yt
wt‘flwb')

Then by equation (11}

- L

If the torslonal frequency Wi &nd bending frequency w-b are both
increased so that the ratic of torsional to bending frequency mt,{ob

Wt
(5

.
72()
oritical flutter speed v, however, lncreases because of the lincrease

in torsional frequency wg. A change in the value of bending
frequency ' alone, however, may either ralse or lower the value

W
£
z(wb )
gpeed v.

remains constant, will remain constant. The value of

and produce a corresponding change in criticel fiutter

At high frequency ratios W¢/fdy and at high values of the
natural bendlng frequency Wy, the critical flutter speeds v
obtained are above the lower compressibility limit for which the cal-
culations are valid and the results are therefore meaningless. This
1imit hes been arbiltrarily chosen as 800 feet per second and all
curves above that speed are shown as dashed lines.

For natural bending frequencies 3 higher than 1000 radians per
second, classical flutter cannot occur in the subsonic range except at
low fraquency ratlos wt/wb and posslbly at high rotative speeds N
as shown by figure 4(c) and 4(d). Because current compressor and
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turbine blades usually have bending frequencles greater than

1000 radians per second, little danger of such blades fluttering
classlcally would exist if the torslonal frequency Wy were several
times the bending frequency . However, at high rotative speeds N,
the critical flutter speed v can be greatly reduced and blades that
would be safe at zero rpm can become unstable. As an example, fig-
ure 4(c) shows that at a frequency ratio wt/ﬁ)b af 2 the fintter speed v
is reduced from a value that is out of the subsonle range to about

615 feet per second as the rotative speed 1s increased from O to
10,000 rpm. ' ' '

CONCLUSIONS

From the calculations made to determine the effect of centrifugal
force on the flutter of a uniform cantilever beam, the conclusion ia
drawn that under certaln conditions centrifugal force can be detri-
mental, decreasing the critical flutter speed. A compreasor or tur-
bine blade that would be stable at zero rpm might become unstable at
high rotative speeds. The flutter characteristlics of blades muat
therefore be investigated at the operating engine speeda. The
valldity of the semlrigid flutter theory with the centrifugal force
effect included must still be verified, The effect of cascadlng must
also be investigated.

Flight Propulsion Research Laboratory,
Rational Advlisory Cammittee for Aeronautics,
Cleveland, Ohlo.
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rotative speed for various ratios of torsional to bending
frequencles,
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