
. 

R&l No. E8B05 

RESEARCH MEMORANDUM 
EFFECT OF CENTRIFUGAL FORCE ON CRITICAL FLUTTER SPEED 

ON A UNIFORM CXNTILEVER BEAM 

By Alexmder Mendelson 

Flight Propulsion Research Laboratory 
Cleveland, Ohio 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

WASHINGTON 
June 18, 1948 



NACA RM No. E8RO5 

RATIONAL ADVISORY Cm PylR AERONAUTICS 

mcT OF CXERIEUGAL FORCE ON CRITICAL FTXETER SPEED 

OFAUNIFORMCAlKCZEVERB33M 

By Alexander Mendelson 

Theoretical calculations were made by means of semirigid-flutter 
theory to determine the effect of centrifugal force on the critical 
flutter speed of a uniform cantilever beam. Centrifugal foroe can 
under certain conditions be detrimental, decreasing the critical, 
flutter speed. The higher the ratio of natural torsional frequency 
to natural bending frequency the greater the decrease in critical 
flutter speed due to centrifugal effect. The conclusion is drawn 
that compressor and turbine blades that are flutter-free at zero rpn 
might become unstable at high rotative speeds. The centrifugal force 
effect can therefore not be ignored in 8ny flutter calculations on 
compressor and turbine blades. 

IMIRCmCTION 

The vibration problems of compressor and turbine blades have 
become more important as the use of axial-flow ccxupressors and turbines 
has increased. These problems involve resonant vibrations due to 
mechanical excitation from other parts of the machine or from pulsating 
air flows from previous rows of blades in addition to nonresonant 
aerodynamic excitation. The aerodynamic excitation involves a type of 
vibration that is self-sustained by the continual absorption of energy 
from the air stream. This vibration is called flutter. 

Classical flutter is more specifically defined as a self-sustained 
oscillation due to the coupling of inertia forces, elastic forces, 
damping forces, and dynamic aerodynamic forces. This type of flutter 
usually occurs on airplane wings at low angles of attack when the 
velocity reaches a certain value called the critical flutter speed. 
It is to be distinguished frcm a radically different type of flutter 
called stalling flutter, which ocours on profiles at high angles of 
attack, such as propeller blades near the stall point (reference 1). 
Stalling flutter can be caused by an aercdgnamic hysteresis effect, 
the negative elope of the lift curve, or excitation by a system of 
Karnan vortices (references 2 to 4). 
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Classical-rlutter theory has been developed by many investigators 
(references 5 to 7) and the results have been found to agree with 
experiment. A direct application of this theory to analysis of com- 
pressor and turbine blades would seem to indicate little likelihood 
of such blades fluttering at zero angle of attack. This improbability 
of flutter is due to the stiffness of compressor and turbine blades 
compared to.airplane wings. Two important factors, however, must be 
considered: the effect of centrifugal force and the effect of 
cascading. These effects may be either beneficial, that is, inorease 
the critical flutter speed, or detrimental, that is, dearease the 
critical flutter speed. 

An approximate method of solution developed at the NACA Cleveland 
laboratory of the effeof of centrifugal foroe on the critioal flutter 
speed of a uniform cantilever beam and the results for beams with 
various fundamental frequencies are preeented herein. The effect 0r 
cascading is yet to be investigated. 

SYMBOLS 

The foklowing symbols are used In the analysis: 

8 ooordinate of elastic axis measured from midchord in 
units of half ohord, positive towards trailing edge 

sly bly =lr functions of reduced frequency k and fundamental bending 
b2t c2 freqU==Y q) 

8y7 ayY 
WY at3 

aerodynamic coefficients 

b half chord, used as reference unit length 

aerodynemio coefficients 

C 

8 Crr 

F function of k derived by Theodoreen (reference 5) 

fit f2 functions of o&b 
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I 

i 

IL 

k 

L 

'M 

m 

ma 

N rotative speed 

r location of center of gravity of profile measured from 
a in units of half chord 

5 
S 

t 

V 

Y 

30 

B 

8 

E8Bo5 3 

funution of k derived by Theodorsen (referenoe 5) 

moment of inertia about elastic axfs per unit span length 

4/- -1 

ccmstsnt of proportionality 

reduced frequency L+ 

oscil3.atory aerodynamic lift force per unit span 

osoillatory aerodynamio moment per unit span 

mass 0r profile per unit span 

mass of cylinder of air (diemeter of cylinder equal to 
profile ohord) per unit span 

radius of gyration referred to a in units of half chord 

statio maes unbalenoe of profile, mrb 

time 

critioal flutter speed 

vertical displacement 

maximum bending amplitude 

phase angle bywhich torsion vibrational mode lags bending . 
mode during flutter 

angle of torsIona displaoement 

80 

P 

maximum torsional 

ratio 0r mess of 

surrounding air 

amplitude 

airfoil per unit span to mass of 
cylinder per unit span, .%- = m 

% Icob' 
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P density of surrounding air 
. 

0 frequency of flutter vibration 

fundamental bending frequenoy of airfoil 

fundamental bending frequency of airfoil .corrected for 
centrifugal-force effect 

% fundamental torsional frequency of airfoil 

Dots over the symbols represent derivatives with reaps& to 
time. 

ANALYS1s 

Flutter equations. - The analysis of the effeot of centrifugal 
force is based on the usual semirigid theory. Referenoe 8 shows that 
this theory, which assumes two degrees of freedam, that is, the 
uncoupled fundamental bending and torsional modes, give8 results in 
close agreement with the exact solution, which assumes an infinite 
number of degrees of freedom. The assumption is made herein that 
these results also apply to the case in which centrifugal forces are 
added. The prooedure followed is then to correct the fundamental 
bending mcxie for the centrifugal effeot and to proceed in the usual 
manner to obtain the critical speeds and frequenoies. The effect 0r 
centrifugal force ou the fundamental torsional mode is assumed to be 
small enough to be negleoted. The asswnpticm Is also made that the 
oscillatory air forces and moments acting on the blade are the sams 
as those aoting on an isolated two-dimensional airfoil in an uniform 
air stream. Inccmpressible flow ie assumed and structural rriotions 
are ignored. 

The equations for dynamic equilibrium (referenoe 5,) are 

mj: + Sii+m(Q&f)2 y - L = 0 

I 
(1) 

Iii+Sj;+I~2 B-M=0 

The oscillatory aerodynamic lift L and moment M are given by 

L=- ma$ by 
[ 

+ iiiy) y + (a@ + 16,) b6 
I 

(2) 

M=- + iby) y + (be + ibe) b8 
I 
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where 

where F and G are functions of reduced frequency k eivea in 
reference 5. 

Let 
iti 

Y= go = 
1 

then 

j:= -m2 g 

I.. 
I3 = -cd2 8 I 

(4) 

By combining equatione (I), (21, and (5) and dividing through 
by ma$ 
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(6) 

Equatione (6) have eolutione other than y = 19 = 0 if and onl-g 
if the determinant of the coefficienta of y and 6 vanishes. By 
eetting,this determinant equal to zero, eeparatin6realand im&nary 
parts, and rearranging 

02 b2 0 Wt 
=- 

c2 
and (7) 

\ 
el($~+bl(&~+cl=Oj ' 

where 

b2 8 

c2 = c$ + p %Q + &(by 

al = (0 - be)(cl - as) + 

- e) +xy(a6 - e) - be -9 - ag 56 

iJy ae - be ay - (a6 - e)(bg - e) 

For a given profile, a, b, and c are functionls only of the 
reduced frequency k and the fundwental bending frequency.corrected 
for c8ntrifugd force effect8 ob', which 10, in tm, a fI.Incthn Of 
the rotative speed N. For a given rotative speed N, a, b, and c 
are functims only of the reduced frequency k. Equations (7) can 
then be solved graphically for the reduced frequency k and the 
ratio of flutter frequency to fundamental toreicnal frequency 0&. 

Bend- frequency. - The effect of centrifugal force on funda- 
mental bending frequency @b was obtained from reference 9. 

. 
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. 
where o)b is the fundamental bending frequency without rotatim 
and K is a function of the ratio of blade length to root radius and 
of the blade taper. By combining equations (7) and (a), the reduced 
frequency k and flutter frequency CJJ can be obtained ae a function 
of the rotative epeed B. The critical flutter epeed v can then be 
obtained fKrm the relation 

(9) . 

RlZSJlTS AND DISCUSSIOB 

Equation8 (7) were eolved for the reduced frequency k and the 
frequency ratio .O/% as function8 of the ratio of torsional frequency 
to bending frequency corrected for centrifugal-force effect O&bt; 
the results are ehmn in figure 1. A typical profile with the following 
constant8 was chosen for the calculations: 

a=- 0.40 

r = 0.10 
. 

. 

rg = 0.50 

P =lOO 

From figure 1 aud equation (8) it ie poaeible to obtain the 
reduced frequency k and the frequency ratio W/wt as a function of 
the rotative speed N, once a value for the fundamental bending 
frequency Ub i8 chosen. For this purpoere, equation (8) can be 
conveniently rewritten in the form 

For a given profile, the frequency ratio Ot/Gb' will therefore 
decrease as the rotative epeed E iucreaeea. Film figure 1, for 
valU8s Of frequency ratio W&b' lese than approximately 0.90, the 
value of reduced frequency k will decreaee and the value of Ubt ' 
will decrease a8 the rotative speed H increseee (Or a8 m&b' 
decreasea). At values of frequency ratio Wt&, greater than 
approximately 0.90, both reduced frequency k aild frequency 
ratio W& increase as the rotative speed I increaeee (or a8 
%&3 ' decreaees). But for values of O&j,' cloee to 0.90, the 
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reduced frequency k increases at a faster rate than w/Q. The 
critical flutter speed v c&n be expressed a8 

v = b Pw 
k (11) 

The critical flutter speed v will therefore increase with Increasing 
rotational speed I for values of frequency ratio W&b' less 
thsn 0.90 and will decrease with increasing rotative speed N for 
values of Wt/%' greater than 0.90. The exfstence of a minimum 
value for the critical flutter speed v is therefore indicated. 

The foregoing relations can perhaps be more clearly seen if 
equation (10) is used with figure 1 to plot directly the reduced 
frequency k and the frequency ratio U&, as a funotion of the 
rotative epeed N. This variation is shown in figuree 2 and 3 for a 
fundsmental bending frequency Wb 
frequency-ratio O&b' 

of 100 radians per second and 
values ranging from lto.5. The constant K 

was assumed to be 2rc 2 
( J 60 l 

This value corresponds to a non- . 
*tapered blade with 8 ratio of root radius to blade length of zero. 

As shown in figures 2 and 3, the frequmcy ratio O&. increases 
as the rotative speed N increases but the reduced frequency k 
at first increases and then decreases. If the raLe of inc;lease of 
reduced frequency k in any part of the region where it is 
increasing is greater thsn the rate of increase of the frequency 
ratio O/tot, then from equation (11) a minimum critical flutter 
speed v can be expected. 

In order to verify this conclueion, the critical flutter 
speed v was calculated assuming a blade chord of 2 inches. The 
results are shown in figure 4 for values of fundamental bending 
frequency UbJ of 100, 500, 100-0, and 2000 radians per seoond, 
respectively. The critical flutter speed v decreases to a minimum 
value as the rotative speed N is Increased. This minimum value 
depends on the bending frequency (I.+,, on the ratio of torsional to 
bending frequencies Ot/6.$,, and on the rotative speed N. The 
rotative speed N at which the critical flutter speed v is a 
minimum increases as the ratio of torsional to bending frequency 
%bb increases and as the natural bending frequency @b increases; 
also, the higher this ratio, the greater the decrease in critical 
flutter speed v. This decrease in critical flutter speed Y as 
the rotative speed N is increased is due to the centrifugal force 
causing only the bending frequency mb to increase. Although 
increasing both the bending frequency 6+, and torsional 
frequency C+, will Increase the critical flutter speed v, increasing 
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the bending frequency Wb alone may decrease the critical flutter 
speed (reference 10). This relation can be seen if the curves of 
figure 1 are expressed as 

Then by equation (11) 

k = f2 

bfl $ ot ( ) V= 
Ot 

f2 wo' ( > 
If the tO??SiOna~ freqU8nCy Wt and bending frequency mb' are both 
increased so that the of torsional to bending frequency m&b' 

remains constant, will remain ccmstant. The value of 

critical flutter speed v, however, increases because of the increase 
in torsional frequency Q. A change in the value of bending 
frequency tib' alme, however, may either raise or lower the value 

and produce a corresponding change in critical flutter 

speed v. 

At high frequency ratios w&b and at hi& values of the 
natural bending f33qUSIICg 6.$, the critical flutter speeds v 
obtained are above the lower ccmpressibilitg limit for which the cal- 
culations are valid and the results are therefore mauir@ess. This 
limit has been arbitrarily chosen as 800 feet per second and all 
curves above that speed are shown as dashed lines. 

For natural bending frSqU8nCit38 ab higherthan1CCOradians per 
second, classical flutter cannot occur in the subsonic range except at 
low frequency ratios %/6Jb and possibly at high rotative speeds N 
as shown by figure 4(c) and 4(d). Because current compressor snd 
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turbine blades usually have bending frequencies greater than 
1000 radians per second, little danger of. such blades fluttering 
classically would exist if the torsional frequency Ot were several 
times the bending frequency Ub. However, at high rotative speeds N, 
the critical flutter speed v can be aeatly reduced and blades that 
would be safe at zero rpm can become unstable. A8 an example, fig- 
ure 4(c) shows that at a frequency ratio W.&b of 2 the flutterspeed v 
is reduoed from a value that is out of the subsonic range to about 
615 feet per second as the rotative speed is increased from 0 to 
10,000 rpm. 

CONCLUSIONS 

From the calculations made to determine the effect of centrifugal 
force on the flutter of a uniform cantilever beam, the conclusion ia 
drawn that under certain conditions centrifugal force can be detri- 
mental, decreasing the critical flutter speed. A compressor or tur- 
bine blade that would be stable at zero rlv.n might become unstable at 
high rotative speeds. The flutter characteristics of blades must 
therefore be investigated at the operating engine speeds. The 
validity of the semirigid flutter theory with the centrifugal force 
effect included must still be verified. The effect of cascading must 
also be investigated. 

Flight Propulsion Reeearch Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio. 
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Figure 4. - variation of critical flutter speed alth 
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Figure 4. -~Continued. variation of critical flutter speed with mtativs speed Par varlou 
ratios of torslonal to bending frequenclea. 
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