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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCE MEMORARDUM

ALTITUDE~-WIND-TUNNEL EVTESTIGATIOH OF PERFORMANCE
CHARACTERISTICS OF A J47D PROTOTYPE (RX1-1) TURBOJET ENGINE
WITH FIXED-AREA EXHAUST NOZZLE

By M. J. Saari and J. T. Wintler

SUMMARY

An investigation has been conducted in the NACA Lewls sltitude wind
tunnel to determine the over-all performance of a prototype model of the
Ja7D (RX1-1) turbojet engine operating with a fixed-area exhaust nozzle.
Data were obtained for & range of engline speeds at gltitudes from 5000 to
55,000 feet and flight Mach numbers from 0.18 to 0.71. The performance
date were generalized by several methods to determine the range of flight
conditions for which performance could be predicted from datae obtained at
a glven £light conditlion.

Generselized engine performance data indicated that data obtained
at a given altitude and flight Mach number could be used to predilct
net thrust Tor altitudes up to 55,000 feet at all corrected englne
speeds, air flow for altltudes up to 45,000 feet with reasonable asccuracy
over most of the corrscted engine speed range, and performance variables
dependent on fuel flow for altitudes up to 35,000 feet with minimum
error at high corrected engine speeds. Generalization of engine per-
formance in terms of pumping characteristice indicated that data
obtained at one flight condition could be used to predict Jet thrust
and specific fuel consumption abt another flight condition within a
relatively wide range of altitude, £light Mach number, and engine
total-temperature ratios.

& minimum specific fuel consumption of 1.05 was obtained at an
engine speed of 6600 rpm For altitudes from 6000 to 35,000 feet at a
flight Mach number of 0.18. An incresase in flight Mach number from
0.18 to 0.71 at an altitude of 25,000 feet ralsed the minimym specific
fuel consumption from 1.05 to 1.27 and these valuss occurred at engine
gpeeds of 6600 and 7300 rpm, respectively. The increase in exhaust-gas
temperabture and the resulting reduction in tempersture-limited engine
gpeed, which occurred with an increase in altitude, Indlcated the need
for a variable-arsa exhaust nozzle for operation at rated engine speed
at high altitudes and low flight Mach numbers.
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INTRODUCTION

An Investigetlon was conducted in the NACA Lewis altitude wind
tunnel to evaluate the performsnce of a J47D prototype (RX1-1) turbojet
engline end 1ts integrated electromic control with and without exhaust
reheat under steady-state and translent operating conditions. As part
of the over-all program, data om engine performance, component perform-
ance, and operational characteristlcs  were obtalned with fixed- and
veriable-area exhaust nozzles. The performance of a J47D (RX1-1)
engine operating with a fixed-area exhaust nozzle 1s presented .herein.

The varilation of englne performance varisbles with engine speed
1s shown graphically for slmulated altitudes from 8000 to 55,000 feet
at & flight Mach number of 0.18 and for flight Mach numbers from 0.18
to 0.71 at an altitude of 25,000 feet. DPerformance data are gener-
allzed to determine the sultabllity of correctlon factors for predict-
ing englne performance over & range of fllight conditions from data
obtalned at a glven flight condition. Generalizatlon in terms of
englne pumping characteristics 18 also presented. All performance data
obtained in this investigation are presented in tabular form.

APPARATUS

Engline

The J47D (RX1l-1) engine used in the altitude-wind-tunnel investi-
gation hag no offlicial manufacturer's rating; however 1t has a minimum .
sea-level static~thrust rating (with the afterburner not operating) of

5700 powrds at an engine speed of 7950 rpm and a turbine-ocutlet exhaust-
gas ‘temperature of 1275° F; at this rabing the engine air flow is approx-

Imately 99 pounds per second The engine has a twelve-stage axial~flow
compressor with a pressure ratlo of gbout 5.1 at rated engine speed,
elght cylindrical direct-flow-type combustion chambers, and a single-
stage lmpulse turbine. For these tests a fixed-area exhaust nozzle was
used. The exhaust nozzle used In this Investigatlion has an outlet ares
of 285.5 gqueare inches, which produces & turblne-outlet temperature of
1275° ¥ &t an altitude of 5000 feet, a flight Mach number of 0.18, and
an engine speed of 7950 rpm. The over-all length of the engine without
the exhsust nozzle is 143 inches, the maxlmum dismeter is approximately
37 Inches, and the total welght 1s 2475 pounds.

Installation
The englne was mounted on a wing in the tunnel test mectlon

(fig. 1)}. Dry refrigerated air was supplied to the engine from the
tummel megke-up alr system through s duct connected to the engine

Goiz
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inlet. ZEngine thrust and drag measurements by the tunnel balance scales
wore mede posslble by a frictionless sllp Joint located in the duct
upstream of the engine. The air flow through the duct was throttled
from approximetely sea-level pressure to a total pressure at the engine
inlet corresponding to the desired flight Mach number abt a given
altitude. '

Instrumentetion for measuring pressures and temperatures was
ingtalled at various stations in the engine (fig. 2).

PROCEDURE

BEngine performance data were obtalined over a range of engine speeds
et the following altibtudes and flight Mach numbers:

Altitude Flight Mach number
(£t.)
5,000 0.18
6,000 ' .18
15,000 .18, .51
25,000 .18, .51, .71
35,000 .18
45,000 .18
£5,000 .22

Complete ram pressure recovery at the compressor inlet was assumed in
the calculation of flight Mach number. ZEngine inlet-air temperatures
wers held at approximetely NACA standaxd values for each flight con-
dition except for altitudes above 25,000 feet where the lowest engine
inlet-air temperature obtained was about 436° R. Fuel conforming to
specification MIL-F-5624 (AN-F-58a), with a lower heabting value of
18,900 Btu per pound, was used throughout the investigation,

Thrust values were calculated from both the tunnel balance-scsale
measuremente and from values of gas flow and Jet velocity obtained from
meagurements by the exhaust-nozzle-outlet survey rakse, The exhaust-
nozzle Jet coefflcient, defined as the ratio of scale Jet thrust to
rake Jobt thrust, is pressnted as a functlon of exhaust-nozzle pregsurs
ratio Iin figure 3. The engine performance presented hereln ls based
on thrust values obtalned from scale mesasurements Inssmuch as this
msthod includes the thrust losses resulting from the Ilnefficlency of
the exhaust nozzle. Symbols and methods of calculations are given In
appendixes A and B, respectively.
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RESULTS AND DISCUSSION

All the datae obtained in the performance investlgation of the englne
are compiled in table I. Inasmuch as engine inlet-air temperatures
below 436° R were not obtalned and because small srrors occurred in
setting the tunnel static pressure, the data preaented graphically in
nongeneralized form have been adjusted to NACA standard altitude con-
ditions by use of the factors 8, and 6,. (See appendix A.)

go1e ’

Effect of altitude. - Engine performance data at altitudes from
8000 to 55,000 feet at a flight Mach number of approximately 0.18 are

net thrust air flow, fuel flow, specific fuel consumption, fuel-air
ratio, and exhaust-gas total temperature.

As the sltitude was increased, engine net thrust, air flow, and
fusl flow decreased (figs. 4(a) to i(c)) The specific fuel congumption
was not gignificantly affected by a change in altitude from 6000 to
35,000 feet at engine speeds above 6200 rpm (fig. 4(d)). A minimum
specific fuel consumption of 1.05 pounds of fuel per pound of net thrust
was obtained at an engine speed of about 6600 rpm for altitudes from
6000 to 35,000 feet. At an altitude of 55,000 feet, the minimum spe- .
clfic fuel consumption inoreased to 1.27 and occurred abt an engine spesd
of 6800 rpm. This increese in specific fuel consumption 1is attributed
to a reduction in component efflciencles and partly to the higher flight -
Mach number at which data were obtalned et an altltude of 55,000 feet.

In general, the fuel-alr ratlio Increased with an Increase in altitude

(fig. 4(9)5.

The exhaust-gas total temperature (fig. 4(f)) was not gresatly
affected by an lncrease In albitude fram 6000 to 25,000 feet at englne
spesds above approximabtely 7200 rpm. The slope of the temperature
curve lncreased wlth a change in altitude from 6000 to 35,000 feet,
howsver, so that the temperature generally tended to increase at high
engline speeds and decrease at low engine agpeeds as altitude was
increased. A further increase In altitude from 35,000 to 55,000 feet
reaulted In an increase in exhaust-gas total tsmperature at each englne
gpesd. Imesmuch as englne-inlet temperatures were higher than for NACA
gtanderd altitude conditions at the higher altitudes, the adjusted
exhaust-gas temperatures do not extend to the limiting temperature lins,
Extrapolation of the data Indicates, however, that an Incresse in
altitude from 8000 to 25,000 feet wounld reduce the temperature-limited
engine speed from approximately 7920 to 7780, whereas a further increass
in altitude to 55,000 feet would reduce the tempersture-limited speed
to about 7100 rpm. Obviously at high altitudes and low flight Mach .
numbers & varlable-area exhauvst nozzle 18 required in order to maintain
rated engine speed wilthout exceeding present exhaust-gas temperature
limits. -
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Effect of £1ight Mach number. - Englne performance dabta for flight
Mach numbers from 0.18 to 0.7 at an altitude of 25,000 feel are pre-
sented in figure 5 to show the effect of variations in flight Mach
number on englne net thrust, alir flow, fuel flow, specific fuel con-
sumption, fuel-air ratio, and exhaust-gas total temperature.

At low engine speeds, the net thrust decreased with en incresase
in flight Mach number (fig. 5(2)). The rate of increase of net thrust
with englne speed became grester, however, as flight Mach number was
raised go that at high engine speeds the net thrust Incresassed with
flight Mach number. The engine air flow (fig. 5(b)) increased with
an Increasse in f£light Mach number at all englne speeds. , An Iincreasse
in £1ight Mach number reduced the engine fuel flow (fig. 5(c)) at
engine speeds below 6000 rpm and increased the fuwel flow at higher
engine speeds. Specific fuel consumption (fig. 5(d)) incressed with
an increasse in flight Mach number at all engine speeds. The minimum
specific fuel consumption increased from 1.05 at a flight Mach number
of 0.18 to 1.22 at a f£light Mach number of 0.51 and occurred at engine
speeds of 6600 and 7000 rpm, respectively. A Purbher Increase in flight
Mach number to 0.71 Increesed the minimum speciflc fuel consumptlion to
1.27 and occurred &t an engine speed of 7300 rpm, XExtrapolatlion of the
date Indicates that at temperature-limited engine speed, an increase in
flight Mach number from 0,18 to 0.51 would Increase the speciflc fusl
consumpbion from ebout 1.15 to 1.30, whereas a further increase in
flight Mach number to 0.71 would raise the specific fuel consumption to
about 1.32. Engine fuel-air ratio (fig. 5(e))} was reduced at all engine
spesds by an increese In fIlight Mach number. The exhaust-gas total
temperaturs (fig. 5(f)) decreased with an increase in flight Mach number
at all engine speeds but the effect was small in the high engine-speed
range. The temperature-limited englne speed incrsased from 7850 rmm
at a flight Mach number of 0.51 to 7920 rpm at a flight Mach number
of 0,71.

Gensralized performance. - Performance dabta for altitudes from 6000
to 55,000 feet and a £light Mach mumber of ‘approximately 0.18 have been
generallzed Lo standard sea-level condlitions by use of the correction
factors & and 6. (See appendix A.) The derivetlon of these factors
(reference 1) does not account for the effect of flight Mach number or
for changes in component efficiencies such as those associated with
variatlions in Reynolds numbers. Consequently, any changes in f£light
Mach number or camponent efficiencles lessen the possibility of defining
engine performance variables obtalned at various altitudes by a single
curve, : ' .

Engine performance data obtained at altltudes from 6000 to
55,000 feet and e £light Mach number of approximately 0.18 are presented
in figure 6 to show the effect of altitude on the relation between
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corrocted engine spesd and corrected values of net thrust, air flow,
fuel flow, specific fuel consumption, fuel-alr ratio, and exhaust-gas
total temperaturs.

Corrected net thrust (fig. 6(a)) reduced to a single curve for
the entire range of altitudes and corrected engine speeds investigated.
The corrected engine air flows (fig. 6(b)) formed a single curve for
altitudes up to 45,000 feet at engine speeds up to 6300 rpm and
decreased with an increase In altltude above 15,000 feet at higher
engine speeds. Corrected alr flows at an altitude of 55,000 feet were
scattered and were inconsistent wlth the other altitudes because of
small variations in flight Mach number from one englne speed to
another and because the average flight Mach number was higher than that
for the data obtalned at the other altitudes. Corrected fuel flow
(fig. 6(c)), corrected specific fuel consumption (fig. 6(d)), cor-
rected fuel-air ratio (fig. 6(e)), and corrected exhaust-gas total
temperature (fig. 6(f)) formed a single curve for altitudes of 6000
and 15,000 fest and also for altitudes of 25,000 and 35,000 feet over
most of the range of carrected engine speeds. With these exceptions,
each of the generalized varlables dependent on fuel flow increased with
an increase in altitude, which indicates a reduction in engine com-
ponent efficlencies. Thus, a generallzation of indivlidual performance
variables indicates that data obtained at a given altitude and filght
Mach number could be used to predict (1) net thrust for altitudes up
to 55,000 feet at all corrected engine speeds, (2) air flows for alti-
tudes up to 45,000 feet with reasonable accuracy over most of the
engline—speed range, and (3) fuel-flow and performance variables depend-
ent on fuel flow for altitudes up to 35,000 feet with minimum error at
high corrected engine speeds.

Generallzation in terms of pumping characteristics. - ZEngine
performance may be generalized in terms of the over-all engine total-
temperature ratlo and totale-pressure ratio, which define the over-all
change 1n availaeble energy of the air flowlng through the engine.
Changes in component efficlencies wlth altltude lessen the possibility
of reducing data to a single curve.

Within the range of flight conditlons where the relation hetwesn
engine total-pressure ratio and engine total-temperature ratio ls
defined by a single line, data obtained at one flight condition can
be used to determine the exhawst-gas tobtal pressure at another fllght
condition for a given value of exhavst-gas tobtal temperature. Conse-
quently, jet thrust can be calculated from equetion (7) or (9)
(appendix B).

The varlation of engine total-temperature ratio with engline total-
pressure ratlo is shown in figure 7(a) for altitudes from 6000 to
55,000 feet at a flight Mach number of approximately 0.18 end in

_[OT2
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figure 7(b) for flight Mach numbers from 0.18 to 0.71 at an altitude of
25,000 feet. Engine total-temperature ratios formed a single curve for
all englne pressure ratios investlgated at altibudes from 6000 to
35,000 feet. 4An lIncrease in altitude above 35,000 feet increased the
total~temperature ratlio at each valus of total-pressure ratio (fig. 7(a)h
Engine total-temperature ratios for flight Mach numbers £rom 0.18 to
0.71 formed & single curve at englne temperabure ratios above 2.30
(fig. 7(b)). Thus, data obbtained at ome flight condition can be used
to predict jet thrust at another flight conditlon within the following
ranges of overating conditions: (1) altitudes up to 25,000 feet &t
£1light Mach mumbers from 0.18 to 0.71 and engline total-temperature
ratios above 2.30, and (2) a2ltitudes up to 35,000 feet at a flight

Mach number of 0.18 and englne total-temperature ratios above 2.80.
(Data werse not obtalned at Mach numbers above 0.18 or temperature
ratios below 2.80 at an altitude of 35,000 ft.)

Another method of presenting englne pumping characterlstics is
ghown in figure 8 where the engine tobtal-pressure and total-temperature
ratios are plotted as functions of corrected fuel flow for altitudes
from 6000 to 55,000 feet at a flight Mach number of approximately 0.18
(fig. 8(a)) and for £light Mach numbers from 0.18 to 0.71 at an altitude
of 25,000 feet (fig. 8(b)). In order to account for the rise in total
pressure and btemperature at the compressor inlet with an increase in
flight Mach number and thereby eliminate the dispersion of dats obtained
at different flight Mach numbers, the fuel flow was corrscted by the
factors ST and O, which are based on total pressure and total tempsr-

ature at the compressor inlet, respectively, and are defined in
appendix A. Predictions of engine performance from one flight condi-~
tion to snother are wvalld only within the rangs of flight and engine
operating condlitions at which both the total-pressure and total-
temperature ratios form a single line,

Thus, the data presented in figures &(a) and 8(b) Indicate that the
Jet thrust and specific fuel consumption can be predicted within the
following ranges of operating conditioms: (1) altitudes up to
25,000 feet at flight Mach numbers from 0.18 to 0.71 and engine total-
temperature ratios above 2.30, (2) altitudes up to 25,000 feet at
£light Mach numbsrs from 0.51 to 0.71 and engine total-temperature
ratiog sbove 2.00, and (3) altitudes up to 35,000 feet at a flight
Mach number of 0.18 and engine total-temperature ratios above 2.80.
The limitations imposed on the third operating range result from the
lack of data to substantiate the validity of performance predictlons
at higher fiight Mach numbers and lower engine total-~temperature
ratios. The reductions in total-pressure and -temperature ratios for
constant fusl flows at altitudes above 35,000 feet can be attributed
to the reduction in component efficiencies associated primarily with
Reynolds mumber effects.
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It 1s of interest to note that for the range of altitudes investi-
gated the correlation of engins total-temperature ratio plotted as a |
functlon of corrected fuel flow (fig. 8(a)) was bstter than the corrs-
letion of elther corrected fuel flow or corrected exhaust-gas temperature
plotted as functions of corrected engine speed (figs. 6(c) and 6(f),
respectively). This phenomenon spparently resulted from simultaneous
reductions in compoment efficiencies as altitude was increased in that
the corrected exhaust-gas temperature increased wilth a reduction in
compressor efflclency whereas the corrected fuel flow increased with a
reduction ln both compressor and combustion efficlency. The combined
effects of these changes were such as to maintain good correlation in
terms of pumping characteristics.

SUMMARY OF RESULTS

The following results were obtained from the altitude wind tunnel
investigation of the J47D prototype (RX1-l) turbojet engine operating
with a fixed-area exhaust nozzle at gimuiated altitudes from 6000 to
55,000 feet for flight Mach numbers from 0.18 to 0.71:

1. Generalized engine performance data indicated that data obbtained
at a given altitude and flight Mach mumber could be used to predict net
thrust for altitudes up to 55,000 Feet at all operable corrected engine
speeds. Alr flow could be predicted with reasonable accuracy for
altitudes up to 45,000 feet over most of the corrected engine speed
renge. Performance variables dependent on fuel flow could be predlcted
for altitudes up to 35,000 feet with minimum erraor at high corrected
englne speeds.

2. TFron engine pumplng characteristics obtalned at a given altitude
and flight Mach number, the Jet thrust and speciflic fusl consumption
could be predicted within the following ranges of operation conditions:
altitudes up to 25,000 feet at £llght Mach numbers from 0.18 to 0.71
and. engtne total-temperature ratios above 2.30; altitudes up to
25,000 feet at flight Mach numbers from 0.51 to O0.71 and sngine total-
temperature ratlios above 2.00; and altitudes up to 35,000 feet at a

Flight Mach number of 0.18 and engine totdl-temperature ratios above 2.80.

3. Minimm svscific fusl consumption of 1.05 was obtained at engine
gpeed of about 6600 rpm at altitudes from 8000 to 35,000 feet at a f£light
Mach number of 0.18. An inorease in flight Mach numbers from 0.18 to
0.71 at an altitude of 25,000 feet increased the minimum specific fuel
consumptlion from 1.05 to 1.27, which were obtained at engline speeds of
8600 and 7300 rpm, respectively.

8012
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4. At high engine speeds, an Increase In altlitude increased the
exhaust-gas btemperature, indicating a reduction in temperature-limited
engline gpeed and the need for a varisble-area exhaust nozzle for

operation at rated engine speed at high altibtudes and low flight Mach
numbers.

Lewls Flight Propulsion Laboratory,
National Advisory Commlittee for Asronautics,
Cleveland, Ohio.
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APPENDIX A
SYMBOLS
The following symbols were used on the figures and calculations:
cross-sectional ares, sq Tt
thrust scele reading, 1b
exhaust-nozzle Jet coefficlent
ratlo of hot exhaust-nozzle area to cold exhaust-nozzle area
extermnal.drag of installation, 1b

exhaust-nozzle tall-rake drag, 1b

et thrust, 1b

net thrust, 1b

fuel-alr ratlo

acceleration due to gravity, 32.2 £t/sec?
total pressure, lb/sq £t shsolute

stetic pressure, 1b/sg ft absolute

flight Mach numbex
engine speed, rmm
ges constant, 53.3 £t-1b/(1b)(°R)

total temperature, °R .

indicated temperature, °R

static temperature, °R
velocity, £t/sec

air flow, 1lb/sec

2108
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We

fuel flow, 1b/hr

Wf/Fn specific fuel consumption, 1b/(hr)(1lb net thrust)

4

O

ratlo of specific heats

ratlo of tunnel statlic pressure (po) to the absolubte static
pressure of NACA standerd stmosphere abt gea level

ratio of tunnel static pressure (py) to the sbsolute static
pregssure of NACA standard altitude

ratio of total pressure at compressor inlet to absolute static
pressure of NACA standard atmosphers at sea level

ratio of absolute equlvalent ambient statlc temperature to
absolute statlic temperature of NACA standard abtmosphere at
sea levsel

ratio of absolute equivalent amblent static temperature to
gbsolute static temperature of NACA standard altitude

ratio of absolute total tempsrature abt compressor inlet to
absolute static temperature of NACA stendard atmosphere at
sea lesvel

Subscripts:

0

1

free alr stream

engline inlet

turbine outlet

l-in. upstream of exhaust-nozzle outlst

equivalent

rake

scale

inlet duct 6 in. upstream of frictionless slip-Joint flange

inlet duect 282 in. downstream of frictlonless slip-Jjoint flange
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APPENDIX B
METHODS OF CALCULATION

Flight Mach number. -~ The flight Mach number sssuming camplete
ram pressure recovery was computed as

71-1
w Az | (R T
o =\[5=x|\5; - (1)

Temperature. - Totel temperature wes determined by using a
calibrated thermocouple with impact-recovery factor of 0.85 from ‘the

indlcated tempersture by
2=l
P\ 7
T}(P_)
—— .7__1 - (2 )

1+0.8 (B 7 .
)

T =

(

Bguivalent temperature. -~ Equivelant temperature was obtained
from the adiabatic relation of pressures and temperatures,

Ty
e - 71..]_

Pl 7']_
(&
Engine alr flow. - The engine slr flow was determined from
measurements at the engine inlet (station 1), by

(3)

71-1

= &) £ = -
Wa., 1= 4P (71-1) TR (pl) i (4)

Thrust. - The thrust was obtained from two sources: (1) the balance-

scale meesurements; and (2) the temperature and the pressure measured at
the nozzle outlet (statilon 7).

2108
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Jet thrust determined from the balance-scale mesasurements was
calculated from the equation

W, .V
_ a1y -
Fy g =D +B +D, + —2 + A (p,~D,) . (5)

J,8

The drag of the engine installatlon D was determined with the
engine inoperative and with a blind flanges Installed at the engine Inlet
to prevent air flow through the engine. The rake drag D, was measured
by & pneumatic balance piston mechanism. The last two terms in
equation (5) represent the momentum and pressure forces acting on the
ingtallation at the slip Joint in the inlet-alr duct.

The net thrust was obtained by subbtracting the eguivalent momentum
of the air at the engine inlet from the Jet thrust

W, .Y
P = F - _8le
n,s Jd,8 g (6)

The ldeal or rake Jet thrust based on a survey at the exhaust-nozzle
outlet, was obteined from the equaiion
77-1

2 P\ 7
FJ,r=;7—:l"(A7CTP7) (é) T = 1] +aCp(py-D) (7)

When the Jet veloclty is supersonic, that is, the exhaust-nozzle
pressure ratio P7/po 1s greater then 1.85, the static pressure at the

outlet can be determined from the rslation

al (8)

P7 = ,),7

77

When the Jet velocity is subsonic (P7/§o) < 1.85 and p,; = Py, then
equation (7) becomes

77t

- 274 Py
Fy,» 7T (A7C3Dg) (I_Jc—)> -1 (9)
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TABLE I ~ ENGINE

Y
Run [Altitudej Ram |[Flight| Tunnel |Compressor-} Equiv- |[Engine| Jet Net Engine- Fuel Speciflic
(ft) pres~-| Mach atatlic nlet alent speed jthrust)thrust] inlet flow fuel con-
sure |number|pressure| indicated | amblent X PJ,, Fn.. air wr sumption
ratio] Mp Po temperature| temper- | {(rpm) | (i5) | (1b) | flow (1b/nr)| W%e/Pn,s
Py /Po (1b/sq Ty,1 ature Wa,1 (1v/ (hr)
ft abs.) (°R) te {1b/8e0) (1b net
. (°R) thrust)).
1 5000 | 0,995 -===m 1756 504 B80S 7985 ——— ———— 85.185 8300 | ====-
2 1.022( 0.178 1749 504 503 738€ -———— - 82.21 4145 | —-=-
3 1.022 J17€ 1767 . 594 583 6993 3879 3207 78.48 405 1.0€2
4 1.022 176 1764 508 505 6E43 310 73.4C £2800 1.001
) 1.085 187 1780 506 503 5944 2les 17e2 62.78 2110 l.198
[} 1.027 <194 1758 506 502 5114 120€ [€7 49.39 1490 1.541
7 1.027 194 1755 508 506 4081 €40 413 33,94 1125 2.724
8 1.028 1197 1756 508 504 3147 192 £24.10 855 4.455
9 6000 |1.021] 0.173 1693 628 527 7985 47€8 4284 79.92 4890 1.141
10 1.018 159 1ess 509 508 7956 wa—= ——— g1.39 5085 —————
1) 1.020 169 1690 508 507 7682 45€4 409€ 80.89 4506 1.100
12 1.023 «189 1€63 505 . S04 7586 4141 3683 79.37 3970 1.078
13 1.00 164 1893 49¢ 484 €943 3635 3209 7€.58 @& 3380 1.051
14 1.021 173 1697 492 490 6643 3174 27482 75.5€ 2930 1.089
15 1.023 .180| €93 494 402 5944 21e9 1791 €2.11 2115 1.181
16 1.02¢ 190 1690° 503 500 5114 128Q PER 48.48 1475 1.53%
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Figwe 1, - The J47D (RXl-1) twrbojet engine installsd in test sectlon of altitude wind tumnel,
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Flgure 3. - Varlation of exhaust-nozzle Jet coefficient with exhsust-nozzle pressure ratio.
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Flgure 4. - Effect of altitude on varilation of engine performance
with engine speed.
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FPigure 4. - Continued. Effect of altitude on variation of engine

performance with engine speed.
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Figure 4. - Continued. Effect of altitude on varlation of englne
performance with engine speed.
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Figure 4. - Contlinued. Effect of altitude on variation of engine
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Figure 4. - Concluded. Effect of altitude on variatlon of engine
performance with engine speed.
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Figure 5. - Continued. Effect of flight Mach number on varlation
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of engine performance with englne speed at altitude of 25,000 feet.
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Figure 5. - Continued.. Effect of flight Mach number on varlation
of engine performance with engine speed at altitude of 25,000 feet
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Figure 5. ~ Continued. Effect of flight Mach number on varlation of
engine performance with engine speed at altitude of 25,000 feet.
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Figure 5. - Concluded. Effect of flight Mach number on variation of
engine performance with englne speed at altitude of 25,000 feet.
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Figure 6. - Continued. Effect of altitude on variation of corrected
engine performance wilth corrected engine speed.
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Figure 6. - Continued. Effect of altltude on variation of corrected
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Figure 6. - Continued. Effect of altltude on variation of corrected
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