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NATIONAL AIIITISORY CoMWTTEE M)R AERONAUTICS 

-TION OF LOIGITUDINAL STABILITY OF TBE 

C O E F E T C I W T S  OF 0.3 A.KD 0.6 

By Sllwyn E. Angle and Euclid C. Hollemas 

A number of freeiflight transient respanses resulting from s m a l l  
8tabiliZer mOvements were obtained during fught t es t s  of the Bell 
X-1 airplane  (8-percent-thick wing and 6-percent-thick tail). Response6 
were analyzed t o  obtain a measure of the longitudinal  stability charac- 
te r i s t ics  of the, Etirplane Over the Mach number range fram 0.72 t o  1-12 
at lift coefficients of 0.3 and 0..6. 

The data presented indfcate three significant features:  (1) The 
demping varies  greatly w i t h  Mach number, maximum wing occurring at 
Mach numbers of 0.82 and 1.08 and a minfmm damping at about 0.93; 
(2) some uncertainty of damp- between Mach numbers of 0.91 t o  0.95 
appears although good agreement with model tests eldsts throughout the 
Mach number range covered; and (3) the s ta t ic   s tab i l i ty  of the airplane 
increases with Mach number to  a Mach number of about 0.93 and dec'reases 
with further  increasfng Mach number. Data above a Mach nuniber of 0.90 
indicate some lift-coefficient effects. Agreement of the full-scale 
flight data and model data mer the Mach number range is good. 

Dur3ng the course of $he fvght tes ts  of the Bell X-l airplane a 
number of airplane  responses to s d l  stabil izer movements were obtained 
and have  been analyzed using  the  transient-response  analysis t o  determFne 
the  longitudfnal-stability  derivatives of the airplane. It may be 
pointed ou t  that  tests specific for the application of the t w i e n t -  
response analysis were not made, but  existing data w e r e  selected f o r  
analysis  after  considering  conditions such as  fixed  controls and constant 
M a c h  number and altitude. 
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Values for  the damping derivatives and the ststic-stability deriva- 
tives have been obtahed Over a range of Mach numbers f r o m  0.72 t o  1.12 
at lift coefficients of approxhately 0.3 and 0.6. 

The data presented are for the Bell X-1 airplane with as B-percent- 
thick wing and a &percent-thick t a i l .  A .mre camplete investfgation 
will be conducted on the Bell X-1 airplane with a 10-percent-thick wing 
and an 8-percent-thick t a i l  under controlled  conditione over as wide a 
range of Mach numbers and lift coefficients as possible. 

SYMBOLS 

forward velocity,  feet  per second 

Mach nuniber 

pitching  velocity, radians per secand 

mass moment  of inertia about Y-axis, slug-feet2 

angle of attack, degrees or radians 

rate of change of angle of attack, radiase per eecand 

acceleration due t o  gravity, 32.2 feet per  secmd  per second 

dynamic pressure, pounds per square feet  

mean geometric chord, feet 

. m ~ s s  of airplane, slugs 

wing area, equare feet 

horizontal-tail area, square feet 

tail length, feet 

elevator  deflection, degrees, t ra i l ing edge UP is neet ive  

air density, slugs per cubic  foot 

nomud accelemtion, g unite 

period of oscillation, secands 

n 

I 

L 
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H pressure  altitude,  feet 

t t-, seconda Y 

%/2 time t o  damp t o  me-half  ang?litude, seconds 

c, . -  lift coefficient ( L i f t / @ )  

% rate of change of lift coefficient with angle of attack (XI,/&) 

c ms rate of change of pitching-manent coefficient with pitchfng- 
" . . 

velocity parameter, per degree @) 
c% 

it stabil izer incidence, degrees 

61 amplitude of osc i l la t im at t = tl 

62 amplitude of oscil lation  at  t = t2 

rate of change of pitching-moment coefficient with angle of 
attack, per degree 

At = t g  - t l  
CI 

W natural  fresency of free oscillation,  radians  per second (2~r/P) 

- rate of change of pitch3ng-Itmnent coefficient with rate-of-chaage- 

of-angle-of-attack parameter, per degree 

A i r p l a n e  

A three-vim  sketch of the B e l l  X-1 research airplane (&percent- 
thick wing and &percent-thick tail) is presented  as figure 1. The 
physical  characteristics as used in  the  analpis  are &s follows: 
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m ( q t y )  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 
st . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.81 
Iy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .12,3p 

t t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.3 

The  moment of inertia about the transverse axis wss determined 
experimentally for an empty weight condition by oscillating the airplane 
as a single-degree-of-fYeedm system. An i n e r t h  correction waa estFmated 
for various weights corresponding t o  loaded cmditians during parer-an 
 response^. 

A more coqlete  description of the airplane can be found fn reference 1. 

Instrumentation 

Quantities measured necessary t o  the determination of the longitudinal- 
stability  derivatives of the X-1 airplane are normal acceleration, air- 
speed, a l t i t u d e ,  pitching  velocity, angle of attack, and elevator and 
stabilizer  positions. Standard recording  in8tnunent8 were used and 
were synchronized w3th a c m  timer. 

Test Procedure 

The data  presented were analyzed from flight test data obtained 
during climbs t o  maximum altitude covering an altitude range of 32,OOO 
t o  64,000 feet and a Mach nuniber range fram 0.72 to 1.12. The traneient 
oscillatiolvs analyzed resulted from a change in  stabilizer position 
necessary f o r  airplane trim during a l t i tude  cllmbs. (The pi lot  =de no 
attempt to  maintain coMpletely a constant  elevator  position  as would be 
done in  a specific program f o r  obtaining  traneient o s c i l l a t i m ~ . )  In  
most instances the  stabilizer wa8 actuated  for a Change in  poaitian of 
approximately lo (not *om the sane I n i t i a l   p o e ~ t i m )   a t  a rate of 
1.83 degrees per second. 

In dynamic analysis  aeveral aseumptiolvs muet be realized in applykg 
the various expressions for determining the  lo~gitudfnalrstability deriv- 
atives. A two-degree-of-freedom  system ie assumed involving constant 
values fo r  the forward velocity,  altitude, and control  position during 
the  transient subsidence which consists of two o r  mare complete cycles. 
The expressions for the l a n g i t u ~ - s t a b i l i t y  derivative8  derived from 
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.c 
a two-degree-of-Freedm system slmilar t o  the  derivatives in  reference  2 
are as follows: 

> 

c c (Sc12 
The term - LC'% Is omitted f r o m  equation (I) since i t 8  

numerical value is canpared with the frequency tern (2lr/P) 2. 

The ini t ia l   s tep In the  analysis of a  given transient  oscillation 
is graphical in  that the  osclllatian is enclosed in  an eweloge formed 
by Unes connecting the peaks as shown i n  figure 2. The validity o f  the 
envelope a6 t o  i ts  logarithmic appmldmatian is established by plottfng 
the magnitude of  the envelope against time on the semilogarithmic graph 
paper. A straiet-l ine  variation is the necessary  criterion. Once t h i s  

substitutions, t o  determine the  airplane  longitudinal-stability derivatives. 
1 criterion is satisfied, fornuha  (I) and (2) may be applied,  with  necessary 

k 

ACCURACY 

The accuracy of the  data is Indicated by the  accuraciea of the 
recording  fnstruments as follows : 

Angle of attack, a, degree8 . . . . . . . . . . . . . . . . . . . . .  S.2 
Pitching  velocity, q, radians per rSecond . . . . . . . . . . . .  iO.005 
Normal acceleratim, n, . . . . . . . . . . . . . . . . . . . . .  S.01 

i 
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RESULTS AND DISCUSSION 

Transient  Responses 

NACA RM LWI06a 

Presented in figure 3 are  two  representative  transient  oscillations 
follarLng a smal l  stabilizer  disturbance  for a high-subsonic  Mach num- 
ber (M = 0.82) and a supersonic Mach number (M = 1.02) at altitude8 of 
32,000 and 52,000 feet,  respectively. 

The  subsonic  oscillation is analyzed  over  the  time  interval  between 
times 1.0 second  and 3.25 seconds.  The decay of the  pitching-velocity 
trace  over  this  time  interval  is sham to be logarithmic by figure 4. 
It  can  be  seen  that  once t he  disturbance  ends  the  elevator ie maintained 
at a reasonably  conatant  value,  thus  eliminating any appreciable  effect8 
of  the  elevator.  The  normal-acceleratian  trace  indicates that the  air- 
plane wa8 in an approximately level-flight  condition. 

The  supersonic  oscillation (fig. 3) is amdyzed Over  the  time  interval 
2. o to 4.5 seconds. Tbe  decay of the  pitching-velocity  trace aa to  its 
logarithmic  approximation  is show in  figure 4. As in  the  high-subsonic 
case,  the  elevator  motion  after  the  initial  disturbance ends is small, 
e1Fminatin.g any appreciable  elevator  effects on the  oscillation. 

Longitudinal-Stabiltty  Derivatives 

Damging in pitch cmq + c 
mDrr' - The  variation  of  the  damging-in-pitch 

derivative  expressed as Cmq + CmDc, with  Mach number is  presented in 
figure 5. Based on the  assumptions  made,  the damping is a function of 
the damping derivattve Cmq + CmDa and  the  lift-curve elope The 

lift-curve  slope as used in the  reduction of the  data  to  tQe damping 
derivative ia obtained from unpublished  full-scale  -flight  data  and  its 
variation  with  Mach  number  is  presented in figure 6.  

cLa* 

This  variation of lift-curve  slope was used in preference  to  the 
values  that  could be obtainea  by  plotting CL against a for  each 
transient  response  because of a malfunctioning of the  angle-of-attack 
indlcator  during  most of the  transient  responses  used. 

Between  the Mach nunibem 0.72 and 1.12 the wing has significant 
variations  increasing from -0.19 at a Mach rider of 0.72 to -0.36 at a 
Mach number  of 0.82, @creasing  then  to a value  of -0.14 at a Mach nun- 
ber of 0.92, and  increasing  again  to -0.402 at a Mach number  of 1.08. 
Minimum damping  is  indicated  between  the  Mach  numbers  of 0.91 and 0.95. 
Above a Mach number of 1.08 the  data  indicate  decreasing  damping with 
increasing  Mach  number. 
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Same uncertainty was encountered in the  reduction of the data over 
the Mach number range of 0.91 t o  0.95. Presented in figure 7 are tm 
histories of three  transient  oscillatians in this range. Oscillations a 
and b are   a t  a Mach number of 0.91 and differ anlg in altitude.  Oscilla- 
tfon c begins at a Mach number of 0.95 an& ends a t  a Mach nuniber of 0.92. 
An attempt  has been made t o  analyze these  osciUatione f o r  the damping, 
and the  values  obtained  are  presented in figure 8. Two points abave and 
below the Mach  auDiber range 0.91 t o  0.95 taken fkom figure 5 are shown 
t d  indicate  the order of magnitude of the  variation. 

.r 

By examination of the responses in figure 7 it can be seen that the 
oscillations are not‘entirely  free of elevator movement after the dis- 
turbance. This could, and probably b e ,  affect the aamping t o  such an 
extent as t o  make the d a q i n g  derivatives doubtful even though the ele- 
vator  effectiveness i s  low. (See reference 3. ) However, it is not  pr& 
able  that  the  elevator movement alone c d d  cause such a large change in  
damping as  indicated in figure 8, but it does provide an argument against 
the use of a simplified transient  analysis in determining the wing 
derivatives from transient responses with appreciable  elevator Mmement. 

Static-stability  derivative x.- It has been shown that the  static 
s tabi l i ty  of an airplane i s  a function of the natural frequency and the 
rate of decay of the free oacillaticm. These data obtained from the 
transient  oscillatians  are reduced t o  the  variation of ailplane  etatic 
s tabi l i ty  w i t h  Mach m e r  which is presented in  figure 9. Between Mach 
nunibera 0.90 and 0.95 there is a marked increase in C,, that is a 
matldmum a t  a Mach number of 0.92. A t  Mach lzumbers above 0.95 the data 

number of 1.12. 
- indicate gradual decreasfng s tabi l i ty  t o  a.value of -0.034 a t  a Mach 

k It should be noted that several  points  are  calculated  neglecting the 
rate of decay of the  transient  oscillation. Since C& is for the most 
part a  function of the frequency, these pointa between the Mach nunibere 
0.9 and 0.95 ami presented  calculated fram the frequency only  rather 
than being omitted becaus-e of the uncertainty of the wing. Between 
Mach nmiber 0.91 and Mach nunibex 1.02 the data indicate an effect of lift 
coefficient on the airplane s ta t ic   s tab i l i ty  - lower lift coefficients 
8haTing lover Stability. 

Comparison of Flight Data and Model Data 

Damping in pitch % + c”- 
A cmar ison  of the full-scale 

experimntal  data  estimated from wind-tunnel t e s t s  at high-subsanic 

supersonic  speeds  (reference 2) is presented in figure 10. It should be 
noted that the  rocket model i s  not of the X-1 airplane but i s  of a 

‘I speeds (reference 4) and the data obtained f r o m  rocket-model tests a t  

b 



somewhat sfmilar  configuration and is caqared  with  the X-1 scaled t o  
e  quivdent  tt/c in figure U. 

Good agreement exists between the  flight  data and -1 data over 
the  entire Mach number range from 0.72 t o  1.12. It c m  be seen that the 
estlmted  variation of aaalping between the Mach numbers 0.90 and  0.92 for 
a lift coefficient of approxtnrately 0.3 is not indicative of any large 
changes i n  damping as  characterized by the flight data a t  a lift coef- 
ficient of 0.6. It then  appears that part of the  uncertafnty of the 
experimental damping may be attributed t o  lift-coefficient  effects Over 
the Mach number interval from 0.90 t o  0.92 and near  the Ipaximtzm stabi l i ty  
of the  airplane. 

Rmther  investigation is t o  be conducted t o  determine more completely 
the damping characterlstlcs of the Bell X-1 airplane. 

Staticestability  derivative C%.- Presented in figure 12 is a conk 
parison of the  full-scale experimental data t o  the  stabil i ty estimated 
f r o m  wind-tunnel data  (reference 4) and the  free-fall  data  (reference 5) 
a t  high-subeonic speed6.  These reference data are corrected to a  center- 
of-gravity  poaition of 23.2 percent men aerodynamic chord and pertain 
t o  the  airplane w i t h  the 10-percent-thick WFng. Good agreement exists 
between the F u l l - e c a l e  data and the  tunuel  data t o  a Mach number of 
approximately 0.875 after which the airplane  stability  increasee more 
mpidly than is indicated by the tunnel data. The discrepancy between' 
the  full-scale  data and the  free-fall data may in part be due to  the 
model having a wing thickness of 10 percent  as c-ared t o  a wing thick- 
ness of 8 percent for  the  full-scale  airplane. Above a Mach number of 
0.91  the fl ight data show good agreement with the  free-fall data fo r  a 
lift coefficient of about 0.3. 

From the  analysis of the transient  oscillations of the B e l l  X 4  air- 
plane It was concluded that: 

1. The damping characteristics have significant variations over the 
Mach nuniber interval from 0.72 t o  1.12. The wer-all  variation is between 
the  values -0.19 t o  -0.402 with maxLmum w i n g  of -0.36 and -0.402 a t  
~ a c h  numbera of 0.82 and 1.08, respectively. ~ f n l m ~ m  damping 1s indicated 
between the Mach  numbers of 0.91 and  0.95. 

2. The aanrping determined from full-scale flight data is  in  good 
agreemect with model dsts. 
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3. Some uncertainty  exists a s  t o  the changes in  ming between 
Mach n-rs of 0.91 and 0.95. Damping-derivative values change from 
-1.27 t o  0.14 for a Mach number change of 0.91 t o  0.95 a t  a l i f t  coef- 
ficient of 0.6. C m a r i ~ m  of fliat data and model data Indicates a 
possible  Ilft-coefficient  effect. 

c 

4. The airplane  static  longitudinal  stability  increases to a maximum 
a t  a Mach nuniber of 0.92 followed by a  decrease with further increase in  
Mach number. 

5. The stabi l i ty  determined from flight oecillatiane is  in good 
agreement with ,model data. 

Langley Aeronautical  Laboratory 
Hational Advisory Cammittee f o r  Aeranautics 

Langley A i r  Force Base, Va. 
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Figure 1.- Three-view drawing of the B e l l  X-1 airplane. 
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Ngure 2.- Graphical approach to analysis of transient reeponees. 
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( a )  Subsonic; M x 0.829; H = 32,000. (b) SupersonZc; M 1.025; H =I 92,000. 
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Figure 4.- Verificatian of the constructed envelope of expotential order. 
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Ffgure 7.- Tbne histories of . t ran8ient  oecillations between Mach nuniber 0.91 
and 0.95 and Uft coefficient of 0.6. 
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Figure 8.- Variatim of damp- derivative mer range of uncertain dmping. 
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Figure 10.- Cornpariaon of full-scale data with model data. 
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Flgure 12.- Comparison of full-scale data vlth model data. Center of 
gravity at 23.0 percent mean aeroaynamic chord. 

# 

. . .  . . . . . . . . . 

. I 

P 

* 
. . . . . . . . . 


