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By Frank S. Maslvestuto, Jr., and Richard E. XKuhn
INTRODUCTION

In the present paper attention is directed to the aserodynemic
raremeters, the so-called stability derivatives, that affect the lateral
behavior of airplanes and missiles. The discussion is centered on three
Important quantities CZB’ the effectlve-dihedral derivative, CnB’ the

directional-stability derivative, and CZP, the .damping-in-roll derive-

tive. These quantities are considered for a lerge angle-of-attack range
at subsonic speeds. A few remarks will also be made on the sildeslip
derivatives at zero 1lift in the supersonic speed range.

DISCUSSION

For the subsonic speed range, the lateral-stebility derivatives
have been the subject of intensive research by the Langley high-speed
T- by 10-foot tumnel. Particular attention has been paid to the varia-
tion with Mach number in the high angle-of-attack range that is repre-
sentative of flyable attitudes of many high-speed alrplanes. The
effective-dihedral and the directional-stebility derivatives of the
three complete models sketched in figure 1 are presented in figures 2
and 3. Model I is equipped with a 30° sweptback wing of aspect ratioc 3;
model IT has a 450 swept wing of aspect ratio hg and model III (repre-
senting the X-5 airplane) is equipped with a 60° swept wing of aspect
ratio 2. To the right of each sketch in figure 1 is & plot of the model
1lift coefficient against angle of attack for two avaellsble Mach numbers
Indicative of the low and high subsonic speed range.

The effective-dihedral derivative CIB’ expressed here in radilans,

for the three models is presented in figure 2 for the range of angle of
attack and the Mach mumbers indlecated in figure 1. I% is important to
note the highly nonlinear varistion of this derivatlve with angle of
attack and the pronounced effect of Mach number on these veriations.
This nonlinear behavior 1s strongly dependent upon the separation of
flow from the wings, particularly in the vieinity of the tips, and
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commences at angles of attack at which these swept wings are by no means
completely stalled. Note that model I retains its positive effective
dihedral (that 1s, -CZB) through the angle-of-attack range and increasing

Mach number tended to increage this quantity at the higher angles.
Models IT and III have the more typical veriation of CZB with angle of

attaeck and show the decrease to zero and to negative effective dlhedral
at the higher angles. Configurations having thils latter type of varia-
tion of CZB and the derivative CnB’ to be discussed later, could

eaglly be flying at angles at which one or the other of these deriva-
tives becomes zero. These zero values of theé derivatives could seriously
affect the lateral behavior of alrplanes at these higher angles of attack.
The point to be observed from the data presented here is that increasing
Mech number may change the angle of attack et which these derivatives
become zero. As an illustration, the results of model IT show that
increasing Mach number increases the angle at which C3 and an become

zero; whereas, for model III, the Mach number effect is'reversed; that is,
inereasing Mach number decreases the angle of attack at which zero values
occur.

The effects of angle of attack and Mach number on the companion
derivative CnB are shown in figure 3. At the higher angles the varila-

tion of thils derivative depends not only upon the tall effectliveness,
that 1s, the difference between the tall-on and tall-off results, but
also mgy be greatly influenced by the varlation of the wing-body charac-
teristics. As an exemple, for models I and II the incresse in the sta-
bllity of the wing-body combinatlon at the higher Mach number tends to
compensate for the reductlon in taell effectiveness shown by the decrease
in the increment between the tall-on and talil-off results. For model IIT,
however, although the tall effectiveness remsins sppreclebly constant up
to large angles of attack, the decrease in the stability of the wing-body
combination causes & reductlion in CnB for the complete model and 1ls the

primary cause of thils reduction. It 1s also of interest to polnt out for
this model that the angle of sttack at which CZB and GnB tend to zero

1s approximately the same and decreases with lncreasing Mach number. This
gimilarity of the action of Mach number on CIB and CnB 1g not surprising

since for thls model the wing-body characteristics, which in the main usu-
ally control Cz s are also the controlling influence for C, as wes
B

indiceted previously. These results emphaslze the need for having,
through the Mach range, not only proper taeil effectiveness, but equally
importent, proper wing-body deslgn, incorporsting setisfactory directlonal
characteristics.
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The effects of horizontal-tail height on the directional-stability
derivative CnB and also on the effective-dihedral derivative CIB for

model I are shown in figures L and 5. The curves on the left of each
figure represent horizontal~tail-off datas the next set of curves are for
the horizontel tall in the low position. This arrangement is the one con-
gidered in the previous figures. The data to the right are for the hori-
zontal tall in high position. The expected lncrease in the directional-
stablility derivative with the tell in the high position 1s clearly evident
from these results. For the effective-dihedral derivative CZB, the relo-

cation of the tail from the low to the high position produced agaln, as
expected, an increase In the negative value of the derivative.

There 1s one additionsal point related tc the sideslip derivatives
that deserves consideration. In attempis to devise "optimum fixes" to
alleviate the pitch-up conditions for various alrplenes, conslderation
has also been glven to the effect of these game filxes on the lateral
derivatives. The results gavallable so far are very limited and no spec-
ific conclusion can be made. The data of figure 6, however, illustrate
for one configuretion, model III, the effect of a leading-edge chord-
extension on the CnB and CIB derivatives. At the lower Mach number

the effect of chord-extensions 1n producing a linear pltchlng-moment
variation is clearly evident, but the effect of these chord-extensions
on the corresponding CnB and CZB derivetives are relatively insignif-

icant. At the higher Mach number, although unfortunately the avallable
chord-extension-on dats are somewhat incomplete, the small effect of these
chord-extensions on the derivatives is stlll evident, the trend for the
higher Mach number beling almost identical to that shown for the lower
Mach number. It should be remembered, of course, that CZB did not show

any pronounced bresks untll angles of attack approaching stall were
reached.

So far, the discussion of the lateral derivatives for the subsonic
speed range has been directed toward the static effects. Recently, the
chargcteristics in steady roll of several wings at high angles of attack
in the subsonic speed range have been investligated experimentally. For
a 459 swept-wing—body arrangement, the variastion of the damping-in-roll
persmeter CZP with angle of attack and Mech number is shown in figure 7T,

together with the corresponding 11ft varistions. It can be seen that at
& Mach number of 0.2 the wing mainteins a reasonable smount of damping
at all angles of attack up to the stall. However, as the Mach number is
incregsed, the dsmping-in-roll sbility of the wing serliously diminishes
until at a Mach number of 0.91 instabllity in roll is indicated at an
angle of attack of 11°. Note also that this effect occurs although the
1ift 1s still increasing at this angle of attack. Similar effects occur

\E——
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for wings of other plan forme as indicated in figure 8. It will be ncted
here that all these winge indlcate & serious loss in damping effectiveness
in sbout the same angle-of-attack range. Note aslso that, with the excep-
tion of the unswept wing, this loss occurs although the over-all 1lift
coefficients of the wings are still increasing. TFor the unswept wing,

this loss in damping occurs at angles of attack corresponding to the stall,
as would be expected.

One additional important point connected with these regions of poor
demping is that the varlation of rolling moment with rolling velocity may
be very irregular as shown In figure 9. Under these cornditions it is
difficult to determine a representative value of the damping coefficient.
The datae shown in figure 9 are for a Mach number of 0.85. The variation
of the rolling-moment coefficient with rolling wveloclty shown by the dashed
curve is representative of the linear stable slope characteristic of the
low angle-of-attack range. At an angle of attack of 11°, however, the vari-
ation is nonlineer and, in the case of the 32.6° swept wing, it is unstable
over a very wide range of pb/2V. The hysteresis shown in the data for the
unswept wing and the 60° triangular wing would certainly give rise to some
undesirable dynemic-stabllity characteristics and posslibly complicate the
design of any autometic stabilizing equipment. The 1lnstability at small
values of pb/2V end the assoclated hysteresis loops also may have some
relationship to the wing-dropping problem.

Scme consideratlion has been given to the use of fixes In an attempt
to reduce the loss of damping in roll. Since a loss In damping 1s asso-
cigted with tip stalling, which is also a contributing factor in producing
pltch-up, tests were mede to determine whether devices which ere known to
allevigte pltch-up would alsc improve the damping in roll. The effect of
a fence on the damping charscteristics of the 45° swept wing 1s shown in
figure 10. The fences were full chord and were located at the 0.65 b/2
station. For the Mach number of 0.85, the fences delayed the piltch-up
by some 5° and decldedly improved the dsmping. At a Mach number of 0.91,
however, the effect of the fences on either the demping or the pltch-up
decreased conslderably. Reference 1 contalins & more complete dlscussion
of the damping-in-roll characteristics of swept wings at high angles of
attack and high subsonic speeds. Included alsc in this report 1s a simple
procedure for estimating the loed distribution in roll provided the corres-
ponding angle-of-attack load distribution is known.

The preceding discussion of the lateral-stability derivatives at high
angles of attack has of necessity been based wholly on experimental date.
This discussion has been confined to the subsonic speed range. In the
supersonlc speed range, recent theoretlcal work gpplled to three complete
configurations has demonstrated the abllity of theory to predict the
lateral-stability derivatives at low angles of attack. The variations of
the derivatlves CZB and Cnﬁ with Mach number for these three
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configurations are shown in figures 11 and 12. The theoretical results
are presented for the complete srrangement, vertical-tail slone, snd body
or wing-body slone. The experimental results, the dark circles, are for
the complete arrangement. The comparison of theory and experiment indi-
cates that the level and trend of the experimental variations are pre-
dicted by the theory. For one of these alrplanes a thorough study and
prediction of all the major longltudinal and lateral derivetives has been
made and 1s reported in reference 2.

CONCLUDING REMARKS

It has not been possible to consider all the recent Information on
lateral-stabllity derivetives. However, a bibliogrephy of papers con-
talning lateral-stability-derivative data hss been attached. Reference 3
also contains & large number of references not inciuded here. The fol-
lowing remarks are offered s an indicstlon of the present general stabus
of the stabllity-derivative field.

At low angles of attack within the subsonic speed range below the
critical Mach number, 1t 1s felt that avallable theory permits falrly
relighble predictions of the lgteral-stability derivetives.

At the higher angles of attaeck in the subsonic and trensonic renges,
the unpredictable, nonlinear characteristics of the derivetives stress
the necessity for determining experimentally for a particular conflgura-
tion the derlvatives needed in the estimation of stability.

In the supersonlc range at low angles of sttack, combined theoretilcal
and experimental studies have produced useful aerodynamic-derivstive dats.
For the complete configurations so far conslidered, derlivative estimates®
maede for these conditions hsve met with a good measure of success.

In the supersonic range at high angles of attack there are no deta
available.

Langley Aeronautical Leboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 26, 1953.
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THREE HIGH-SPEED MODELS
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