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SUMMARY 

High-thrust  turbojet  engines  capable of operation a t  h igh   f l i gh t  
speeds  require a high  weight  flow of a i r  per  unit f r o n t a l  area (spec i f ic  
weight  flow).  Therefore, a transonic-compressor  inlet  stage  with a hub- 
t i p   r a d i u s   r a t i o  of 0.35 w a s  designed  for a specific  weight  flow of air  
of 37.5 lb/sec/sq f t .  

Results for t h i s   s t age ,  which w a s  t e s t e d   i n  Freon-12,  indicated  that 
a t  design  speed  the  peak  temperature  efficiency was 0.85 a t  a corrected 
weight  flow  of 54.2 lb/sec of  Freon  and a s tage   to ta l -pressure   ra t io  of 
1 .29.  The largest  corrected  weight  flow  measured was 59.7 lb/sec of  Freon 
a t  120  percent of design  speed.  This  corresponds  to a specific  weight 
flow of a i r  of 40.6 lb/sec/sq f t .  Comparison of  these  stage tests with 
rotor-alone  tes ts   indicated that the  addi t ion of the  stator  reduced  the 
eff ic iency by 3 t o  5 percent  without  materially  affecting  the  weight-flow 
range or to ta l -pressure   ra t ios .  

The rotor  blade-element data indicated  high  losses   in   the  t ip   region,  
pa r t i cu la r ly  a t  the  higher  speeds. Also noted w a s  a tendency  for  the 
minimum-loss angle of a t tack   to   increase  as the  speed w a s  increased. 

The stator  blade-element data showed reasonably low minimum losses  
a t  a l l  blade  elements. These minimum losses  occurred  near  the  design 
angle of a t tack  a t  a l l  blade  elements  except  those  near  the  ends of the 
blade. 

INTRODUCTION 

The primary  requirement  for  high-thrust   turbojet   engines  capable  of 
operation a t  high  f l ight   speeds is a high  weight flow of air per unit 
f r o n t a l  area (specific  weight  f low).  For a compressor  with a g iven   t ip  
diameter,  the  weight  flow  can be, increased  by.decreasing  the  hub-tip  ratio 
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o r  by increasing  the axial velocity,  or  both. If the axial Mach number 
of the  flow  entering  the  compressor is t o  be kept down t o  a reasonable 
value (0.7 o r   l e s s )  when the compressor i s  designed for   specif ic   weight  
flows  of 35 t o  38 lb/sec/sq f t ,  the  hub-t ip   radius   ra t io  must  be near 
0.35. These high  specific  weight  flows i n  conjunction  with  tip  speeds 
near 1,000 f t / s ec  produce Mach numbers r e l a t ive   t o   t he   ro to r   t i p   s ec t ion  
t h a t  are in   t he   t r anson ic  range (1.0 t o   1 . 2 ) .  

A s  p a r t  of a program to   i nves t iga t e  high-flow  transonic  compressors, 
a rotor   with  a 'hub-t ip   radius   ra t io  of 0.35 w a s  designed  for a spec i f ic  
weight f l o w  of 37.5 lb/sec/sq f t  and a t i p  speed of 972 f t / s ec .  This 
ro tor  was t e s t e d   i n  a 3,000-horsepower t e s t   r i g  a t  the Langley  Laboratory 
and the results of these   t es t s  are reported  in   references 1 and  2. The 
purpose of the  present  phase of the program w a s  to   inves t iga te   the  
performance  of a stage  (rotor-stator  combination).  Therefore, a s t a t o r  
was designed  and b u i l t   f o r  use  with  the r o t o r  of  references 1 and 2.  This 
s t a t o r  w a s  designed t o   t u r n   t h e  flow t o   t h e  axial direct ion.  

The stage was tested i n  Freon-12 i n   t h e  3,000-horsepower t e s t   r i g  a t  
five  speeds: 80, 90, 100, 110,  and  120  percent of design  speed. Data 
presented in   t h i s   r epor t   i nc lude   ove ra l l  performance  of the  stage,   per- 
formance  of the  rotor  and stator  blade  elements, and radial d is t r ibu t ion  
of flow  parameters  behind  the  rotor and  behind  the  stator. 
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.~ "_ 

NACA RM ~ 5 8 ~ 0 8  .k 3 

pf 

P 

r 

T 

t 

U 

v 
W 

we 

a 

P 

6 

qT 

Y 

P 

(5 

e 

0 0  

(I) 
- 

t o t a l   p re s su re  a t  s t a t ion  3 outs ide  s ta tor  wake 

s ta t ic   p ressure ,   lb / sq  f t  

radius,  f t  

total   temperature,  OR 

maximum thickness of blade, f t  

ro ta t iona l   ve loc i ty ,   f t / sec  

gas   veloci ty ,   f t /sec 

weight  flow,  lb/sec 

corrected  weight  flow, w7 6 lb/sec 

angle of attack  (angle between relative  f low  direction  and 
chord l i n e ) ,  deg 

flow  angle,  measured  from axia l   d i rec t ion ,  deg 

r a t i o  of i n l e t   t o t a l   p r e s s u r e   t o  NACA standard  sea-level 
pressure  of 2,116.22 lb/sq f t  

temperature-rise  efficiency 

r a t i o  of specif ic   heats  

mass density,  slugs/cu f t  

s o l i d i t y   ( r a t i o  of blade  chord to  circumferential   blade 
spacing) 

r a t i o  of i n l e t   t o t a l   t empera tu re   t o  NACA standard  sea-level 
temperature of 518.688O R 

flow  turning  angle, deg 

total-pressure- loss   coeff ic ient  

Subscripts:  

A air 

av average 
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design 

Freon-12 

hub 

idea l  

mean sect ion 

re la t ive   to   ro tor   b lades  

s t a t o r  

t i p  

axial 

tangent ia l  

upstream of ro to r   ( s t a t ion  1) 

downstream of ro to r   ( s t a t ion  2 )  

downstream of s t a to r   ( s t a t ion  3 )  

Figure 1 shows a typical   veloci ty  diagram. 

APPARATUS AND PROCEDURE 

Rotor  Design 

The rotor  design i s  described i n   d e t a i l   i n   r e f e r e n c e  1. The design 
weight  flow i n  air i s  37.5 lb/sec/sq ft  and the  design  total-pressure  ra t io  
var ies  from 1.25 a t  the hub t o  1.35 a t  the   t i p .  Moderate ra ther   than 
high  pressure  ratios were used in   th i s   des ign   s ince   the  main purpose w a s  
to   ob ta in  a high  specific  weight  flow. The design  velocity ,-.\ diagrams were 

obtained by satisfying  simple radial equilibrium (9 = 5) i n   t he   ro to r  dr r 
calculation. A typical   veloci ty  diagram i s  shown ' in   f igure 1. The ro tor  
blade  sections  chosen t o   f u l f i l l   t h e  design  velocity  diagrams made use of 
an A10, or  constant-loading, mean l i n e  a t  the hub sect ion and the  loaded- 
trail ing-edge mean l ines  A ~ 1 4 ~  and A218b a t  the mean and t i p  sections,  
respectively.  (See r e f .  3 f o r  e q l a n a t i o n  of designations. ) The  maximum 
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thickness w a s  a t  the  65-percent-chord  point  for a l l  sections (ref.  1). 
A photograph of the   ro tor  i s  shown i n   f i g u r e  2.  Table I presents  the 
rotor  blade-section  data.  

Because  of a bearing  failure  and  subsequent  blade damage, it was 
not   poss ib le   to   use   the   o r ig ina l   ro tor ,   the   t es t   resu l t s   for  which were 
reported  in   references 1 and  2, i n  making the  s tage tests reported 
herein.  A dupl icate   rotor  was b u i l t   e s p e c i a l l y   f o r   t h i s   t e s t  program. 
A check of the  blade-sett ing  angles  of  this  duplicate  rotor  revealed  that  
the  blades were set  a t  lo too small an angle  with  reference t o  the axial 
direct ion a t  a l l  blade  elements.  This means t h a t  a t  a given  speed  and 
weight  flow,  each  blade  element was operating a t  a lo higher  angle of 
attack  than  the  proper  blade-sett ing  angle would  have produced.  This 
error  affects  the  overall   performance of the   ro tor ,  and consequently  the 
stage,  and w i l l  be d iscussed   in   the   sec t ion  on "Overall  Performance." 

S ta tor  Design 

The s t a t o r   f o r   t h i s   s t a g e  was designed to   tu rn   the   ro tor   ou t le t   f low 
to   the  axial direct ion.  The design made use  of  measured out le t   f low con- 
di t ions  avai lable  from the   ro tor   t es t s   repor ted   in   re fe rence   2 .  The blade 
sections  used were NACA 65-series  with  constant  loading (Al0) mean l i n e s .  
References 4 and 5 were  used in   the  blade-sect ion  select ion.   Thickness-  
chord  ratios  of 0.08 were  used a t  a l l  elements. The chord  length  varied 
from  2.505  inches a t  the hub t o  3.425  inches a t  the  t ip.   Eleven  blades 
were  used,  and the   so l id i ty   var ied  from  1.500 a t  the hub t o  1.000 a t  the 
t i p .  A photograph of the   s ta tor   wi th   the   ou ter  and inner  casing is  shown 
as f igure 3. The s ta tor   blade-sect ion  data  are summarized i n   t a b l e  I. 
The s ta tor   turning  angles  and inlet-flow  angles  used  in  obtaining  the 
sect ion cambers  were based upon in le t   condi t ions  and uncorrected  for 
axial-veloci ty  change through  the  stator.  If the  choice of blade  section 
had  been based on mean-axial-velocity  diagrams, a lower camber would  have 
been  used a t  t h e   t i p   s e c t i o n  and a s l igh t ly   h igher  camber would  have been 
required a t  the hub sect ion.  

In s t a l l a t ion  

The stage tests reported  herein were made i n   t h e  3,000-horsepower 
t e s t   r i g  which is  descr ibed  in   references 1 and 6 .  A schematic  diagram 
of the  closed  system i s  presented i n  f igure  4. Freon-12 was used as a 
tes t  m e d i u m  in   o rder   to   ach ieve  a higher Mach number l e v e l   f o r  a given 
rotor  speed. The t i p  diameter of t h i s   s t a g e  was 12  inches. A layout of 
the tes t  sec t ion  is  shown i n   f i g u r e  5. 
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Stage tests were made f o r  a range of corrected  t ip   speeds from 
8 0   t o  120  percent  of  design  speed. A t  each  speed,  the  weight  flow w a s  
varied from the  maximum to  the  surge  point  by continuously  increasing 
the back  pressure.  Five  weight-flow  points o r  t h r o t t l e   s e t t i n g s  were 
used a t  each  speed. The settling-chamber  pressure was held  constant 
a t  approximately 20 inches of  mercury absolute,  and  the  settling-chamber 
temperature was f ixed  at values between 55' F and 85O F. 

Instrumentation 

Flow conditions were measured a t  three axial loca t ions :   s ta t ion  1, 
approximately 1.5 inches  upstream of the  rotor   leading edge; s t a t ion  2, 
approximately  0.25  inch downstream  of t he   ro to r   t r a i l i ng  edge;  and 
s t a t i o n  3 ,  approximately 0.5 inch downstream of the s t a t o r   t r a i l i n g  edge. 
(See f i g .  5. ) 

Total  pressures and total   temperatures of the  Freon  entering  the 
ro tor  were obtained  from  pressure  orifices and temperature  rakes i n   t h e  
s e t t l i n g  chamber. S ta t ic   p ressure  of the  Freon  entering  the  rotor w a s  
measured by four   s ta t ic -pressure   o r i f ices  on the inner  casing and four 
on the  outer,  spaced a t  goo circumferent ia l   in tervals  a t  s t a t ion  1. 

T o t a l  pressure,   s ta t ic   pressure,  and  flow -le were  measured a t  
10 equal-area  centers a t  s t a t i o n  2 by t ravers ing the passage  radially 
with a prism-type  probe (ref. 7 ) .  S ta t ic   p ressures  were a l so  measured 
by e ight   s ta t ic -pressure   o r i f ices   loca ted  on the inner and outer  casing 
i n   t h e  same manner as those a t  s t a t i o n  1. Total  temperatures were 
obtained a t  s t a t i o n  2 by means  of  two f ive-be l l  chromel-alumel  thermo- 
couple rakes spaced radially t o  cover  the  entire  passage. These rakes 
were connected t o  a s ingle   f ive-be l l  chromel-alumel  rake a t  s t a t ion  1 
to  give  the  temperature   different ia l   across   the  rotor .  The prism-type 
survey  probe and one of the chromel-alumel  thermocouple  rakes are shown 
i n   f i g u r e  6. 

Downstream of   the  s ta tor ,  a t  s t a t i o n  3 ,  the to t a l   p re s su re ,   s t a t i c  
pressure,  and  flow angle were measured by traversing  the  annulus  with a 
prism-type  probe as was done a t  s t a t ion  2. Wall s ta t ic -pressure   o r i f ices  
were also  used as a t  s t a t ions  1 and 2. Two f ive-be l l  chromel-alumel 
thermocouple  rakes a t  s t a t i o n  3 were used i n  conjunction  with  the  five- 
b e l l  rake a t  s t a t i o n  1 t o  measure the  stage  temperature  rise a t  10 radial 
locations.  The total-pressure loss i n   t h e   s t a t o r  wake was obtained  through 
the  use of a l7-tube  circumferential  total-pressure  rake.  This  rake moved 
r ad ia l ly  and  covered  approximately  one-half of the  blade  spacing a t  t h e   t i p  
and one blade  spacing a t  the hub. A photograph  of  the  rake is  included i n  
f igure  6. These w a k e  measurements  were made a t  f i v e  radial locat ions.  
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Since  the  integrated  weight  flows a t  s ta t ions  2 and 3 make use  of 
three of the measured  flow properties - absolute f low angle ,   s ta t ic   p res -  
sure,  and to ta l   p ressure  - it is  bel ieved  that  a comparison of these 
weight  flows  with  those  measured by a cal ibrated  ventur i   g ives  a reason- 
able  indication of the  accuracy  of  the measurements a t   s t a t i o n s  2 and 3. 
The weight  flows  agreed  with  the  venturi meter values  within 4 percent,  
and are considered  acceptable. As a fur ther  check on accuracy,  the 
temperature and momentum ef f ic ienc ies  were compared and  found to   agree 
within 3 percent, which i s  also  considered  quite  acceptable. 

RESULTS AND DISCUSSION 

Overall Performance 

The overal l   pressure  ra t ios  and temperature  efficiencies  presented 
for   the   s tage   a re  mass-weighted  averages. The equations  used  are  given 
i n   t h e  appendix. It should be pointed  out   that   the  use of 10 equal-area 
centers   in   the  mass weighting  of  overall  efficiencies and pressure   ra t ios  
includes some of the  boundary-layer  influence. 

Temperature eff ic iencies   ra ther   than momentum ef f ic ienc ies   a re   p re-  
sen ted   in   th i s   paper ,   s ince   the   d i f f icu l t ies   encountered   in  making t e m -  
perature measurements for   the  rotor-alone tests of reference 1 have been 
overcome. The measured momentum and  temperature  efficiencies  of  these 
s tage tests generally  agreed  within 3 percent,  the momentum ef f ic iency  
being  the  higher. 

Figure 7 is a p l o t  of overal l   pressure  ra t io  and  temperature 
eff ic iency of the  s tage as functions of corrected  weight  flow  of  Freon 
a t  the  f ive  corrected  speeds,  80, 90, 100, 110, and E20 percent  of  design 
speed. The specific  weight  flows of a i r  which  correspond t o   t h e  in le t  
axial Mach numbers obtained i n  Freon are also  indicated (see appendix). 
The peak eff ic iency of the  s tage a t  design  speed i s  0.85, and it occurs 
a t  a corrected  weight  flow of 54.2  lb/sec  of  Freon  and a total-pressure 
r a t i o  of  1.29. The corresponding  specific  weight  flow of air is  
37.1 lb/sec/sq f t ,  which is very  near  the  design  value of 37.5. The 
peak efficiency  then  decreases  to 0.81 f o r  56.1 lb/sec  of  Freon a t  
110 percent  of  design  speed  and  further  to 0.78 f o r  57.2  lb/sec  of  Freon 
a t  120  percent of design  speed. The total-pressure  ra t io   for   peak 
eff ic iency a t  120  percent  of  design  speed is  1.42. The largest   weight 
flow of the tests is  59.7 lb/sec of  Freon a t  the  120-percent  speed. 
This  corresponds t o  a specific  weight  flow of air of 40.6 lb/sec/sq f t .  
At 80 and 90 percent  of  design  speed,  the peak ef f ic ienc ies  are 0.82. 
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A t  these  speeds  the  stage  exhibited a wide range  of  efficient  weight  flow 
(20 percent   or  more)  which holds up reasonably w e l l  a t  the  higher  speeds. 
Only the  120-percent  speed  data showed as much as an  8-percent  difference 
between the  highest   and  lowest  efficiency measured. 

The cons t ruc t ion   e r ror   in   the   ro tor   b lade-se t t ing   angles  makes it 
d i f f i c u l t   t o  compare these  s tage  tes ts   with  the  rotor-alone tests of 
reference 1. However, a rough  comparison seems to   i nd ica t e  that the 
addi t ion  of   the  s ta tor   did  not   mater ia l ly   affect   the   weight-f low  range 
or  the  total-p.ressure  ratios.  A comparison  of the  stage  and  rotor-alone 
momentum e f f i c i enc ie s  showed the  stage  values  to be 3 t o  5 percent  lower. 
Most of t h i s  drop  can be a t t r ibu ted   to   the   losses   th rough  the   s ta tor .  

The f a c t   t h a t ,  a t  the  higher  speeds,  the  weight  flows  passed by the 
s tage were higher  than  those  passed by the  rotor   a lone is  no t   t he   r e su l t  
of the  addi t ion of the   s ta tor   bu t   the  result of t he   e r ro r   i n   b l ade - se t t i ng  
angle. Since  the  rotor  surge  point,  or minimum weight  flow, i s  i n   e f f e c t  
a s ta l l  a t  positive  angle  of  attack,  the  lower  blade-setting  angles of the 
s tage  rotor   cause  the  s ta l l ing  angle  of a t tack   to   occur  a t  higher  weight 
flows.  In  these tests,  the maximum weight  flow  which  can be passed a t  any 
speed i s  control led by the  operating  requirements  of  the  closed-loop 
system.  Since, a t  a given  weight  flow,  the  rotor  used in   t he   s t age  tests 
i s  operating a t  higher  angles of a t tack  than  the  rotor  of reference 1, it 
also  produces a higher   pressure  ra t io .  It follows,  then,  that  the  curves 
for   the   var ia t ion  of rotor   pressure  ra t io   with  weight   f low  intersect   the  
loop-limiting  curve a t  higher  weight  flows,  and  thus make possible a higher 
maximum weight  flow at  each  speed. It can be concluded,  therefore,  that 
the  general   shif t   of   the   weight-f low  level   in   the  s tage tests w a s  caused 
by the   e r ror   in   b lade-se t t ing   angle .  

Blade-Element  Performance 

Description of a blade  element.- The annuli a t  s t a t ions  1, 2, and 3 
were each  divided  into 10 equal  concentric areas. Each of  these 10 equal 
areas was then  divided  into two equal  concentric areas by an "equal-area 
center."  Blade  elements, as used i n   t h i s   p a p e r ,  are those  sections  of  the 
blades which l i e  on conical  surfaces  connecting  corresponding  equal area 
centers between s t a t ions  1 and 2 fo r   t he   ro to r  and  between s t a t ions  2 and 
3 fo r   t he   s t a to r .  "he blade-element  performance was computed f o r  a l l  
10 blade  elements i n  each blade row, but data fo r   on ly   f i ve  blade elements 
from  each row are presented  herein. The fol lowing  table   gives   the  radi i  
of the 10 equal-area  centers  calculated a t  each of the  three s t a t ions  and 
the  designations of the  blade  elements  for which  performance data are 
presented: 
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Equal-area 
center  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Sta t ion  1 

0.489 
.466 
.442 
.416 
389 
.360 
.328 
.292 
.252 
.204 

I ius ,  f t ,  a t  - Blade  -element 
designation S ta t ion  2 Sta t ion  3 

0.490 
.469 
.448 
.425 
.401 
* 376 
349 

* 319 
.286 
.249 

0.491 
.472 

,432 
.411 

.453 

.388 

.364 

.338 

.310 

.279 

Rotor  blade-element  performance.-  Figure 8 presents  the  rotor  blade- 
element  performance as a function  of  angle of a t tack .  

A t  elements b and c,   the minimum relat ive  total-pressure- loss   coef-  
f i c i en t   ER is  0.1 or less f o r  a l l  speeds  tested.  The s c a t t e r   i n   t h e  loss 
data a t  element a i s  greater   than that a t  elements b and c,  but  gen- 
e ra l ly   t he  minimum ER is  0.12 or  less. A t  elements d and e ,   the  
minimum-loss values   begin  to   increase,   especial ly  a t  the  higher  speeds. A t  
element d, the minimum ER a t  120 percent  of  design  speed is  about 0 .l5, 
and a t  element e, the minimum values are 0.14 a t  90 percent  speed, 0.18 
a t  100 percent  speed, 0.23 a t  110 percent  speed, and 0.35 a t  120 percent 
speed. These high  losses   near   the  t ip  a t  the  higher  speeds were a l s o   i n  
evidence in   the   ro tor -a lone  tests of  reference 2 and are  dLie t o  the com- 
bined  influence of three-dimensional-flow  effects,   compressibil i ty  effects,  
and  shock losses .  The i n l e t   r e l a t i v e  Mach numbers associated  with  these 
losses  a t  element e a re  as high as 1.2. A discussion of the  influence 
of  shock losses  a t  these Mach numbers i s  given in   re fe rence  8. The design 
angle  of  attack is  indicated by arrows a t  the  bottom  of  each p a r t  of the 
figure.   Although  the  r ig  operating  l imitations and the  construct ion  error  
in  the  rotor  blade-sett ing  angle  prevented  the  attainment  of design angles 
of a t tack,  it appears   that  a t  the  lowest  speed  tested, 80 percent of 
design,  the minimum loss would  have occurred  near  the  design  angle  of 
a t tack  a t  a l l  blade elements. However, the minimum-loss angle  of  at tack 
increases as the   speed   ( in le t   re la t ive  Mach number) increases.  A t  ele- 
ment e, the a f o r  minimum loss appears t o   i nc rease  by about 5 O  as the 
rotor  speed is  increased  from 80 t o  120 percent  of  design. Near the  hub 
a t  element a, th i s   t r end  i s  less pronounced, the change being  about 3 O .  
The increase   near   the   t ip  i s  probably  the result of  the  shock wave from 
one blade  influencing  the  flow f i e l d  immediately ahead of  the  next  blade, 
but  the  reason f o r  the  increase  near  the hub i s  not   c lear .   Similar  
results have  been  noted for   t ransonic   ro tors   wi th   c i rcu lar -a rc   b lades  
(ref. 9 ) .  Therefore, it would seem tha t   t he   t r end  of increasing minimum- 
loss a with  speed  might be expected  with  other types of  blades. 
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A small amount of extrapolation of the  turning-angle  curves  indicates 
excessive  turning a t  the  design  angle  of  attack a t   a l l  blade  elements 
except  element a, near  the hub. The excess a t  elements b and  e is 
about 4O and a t  elements  c  and d, about 6O. A t  element a, a s l i g h t  
deficiency  in  turning  (about l.5O) is noted. It i s  believed that the 
excessive  turning  in  evidence  over most  of the  blade  span is  caused p r i -  
marily by the  proximity of measuring s t a t i o n  2 to   the  rotor   blades 
(0.25 inch) .  A s  has  been  noted  previously  (ref. g ) ,  to ta l   p ressures  
measured very  near a rotating  blade row are  higher  than  those  measured 
1 t o  11 chord  lengths downstream. The f a c t  that a total-pressure  tube 

tends  to   read  high  in  a turbulent  f low  field i s  a l so   po in ted   ou t   in  
appendix B of reference 10. The higher   total   pressure  indicates  a higher 
veloci ty  downstream  of the  rotor ,  which i n   t u r n  produces  a  higher  turning 
angle. 

2 

It i s  believed that the magnLtude of the  total-pressure  error  i s  
about 3 percent. O f  course, any e r r o r   i n   t h e  measurement  of t h e   t o t a l  
pressures  behind the ro to r  produces  errors  in  other  rotor  blade-element 
parameters,  but  such  errors  should be 6 percent or l e s s   i n  most cases. 
Therefore,  the  primary  information  to be gleaned from the  rotor  blade- 
element p lo t s  is in   t he   na tu re  of trends and differences  rather  than 
absolute  values. 

The peak values of blade-element  efficiency  are 0.88 o r  more a t  a l l  
speeds a t  elements b and c. As in   the  case of the lo s s  values,  the 
s c a t t e r   a t  element  a i s  such  that  the values  of  peak  efficiency  are 
d i f f i cu l t   t o   e s t ima te .  A t  element d the peak eff ic iency is  0.88 o r  
more a t   a l l  speeds  except 120 percent of design, a t  which  speed the peak 
value  has dropped t o  0.84. The peak eff ic iency a t  element  e i s  0.86 
or  l e s s  a t  a l l   f i ve   ro to r   speeds .  

The p l o t s  of ax ia l   ve loc i ty   ra t io   ind ica te  no major flow s h i f t s  with 
angle of a t tack  a t  the  three  higher  speeds, 100, 110, and 120 percent of 
design. A t  80 and 90 percent of design  speed,  the  negative  slope of the 
curve of a x i a l   v e l o c i t y   r a t i o   a t  element  e,  coupled wi th  posit ive  slopes 
a t  the  other f o u r  elements,  indicates  increasing  separation and a n  inward 
shift of the  f low  (from  the  t ip toward the  hub) as the angle of a t tack  i s  
increased. 

The blade-loading  characterist ics  are  indicated by the  diffusion 
f ac to r  % and the   s ta t ic -pressure- r i se   coef f ic ien t  C p , ~ .  The values 
of 41 were 0.6 o r  l e s s   a t  a l l  blade  elements  except  the  tipmost  ele- 
ment e .  A t  this element,  values of 91 as  high as 0.75 and r e l a t ive  
total-pressure- loss   coeff ic ients  as high as 0.46 were  measured. The peak 
s ta t ic-pressure-r ise   coeff ic ients   general ly   increased w i t h  speed u n t i l  
they  reached a maximum a t  100 or 110 percent of design  speed and then - 
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decreased  sl ightly a t  120  percent of design  speed.  This  decrease  can 
be a t t r ibu ted   to   the   l a rger   to ta l -pressure- loss   coef f ic ien ts  a t  120  per- 
cent of design  speed. The peak Cp,R value  measured a t  elements a, b, 

and c varied from 0.52 t o  0.58. A t  element d the peak value was 0.45 
and a t  element e, 0.40. Thus, a t  element e the  high  losses due t o  
separa t ion   a f fec t   the  two loading  parameters  oppositely,  causing  generally 
greater  91 values  than a t  the  other  blade  elements, and smaller C p , ~  

values . 
Radial d is t r ibu t ion  of  parameters a t  ro tor   ou t le t . -   In   f igure  9 are 

presented  the radial var ia t ion of rotor-outlet  absolute  flow  angle p2, 
ro tor   to ta l -pressure   ra t io  P2/P1, rotor  element  efficiency vT, and ro tor -  
out le t   absolute  Mach number M2. Data are presented  for  three  operating 
points a t  each of t he   f i ve  speeds of the  investigation. The three  points  
correspond t o  (1) the maximum weight  flow,  (2)  the  weight  flow  for m a x i m u m  
overall   efficiency, and ( 3 )  the  near-surge  weight  flow. (An exception w a s  
made a t  100 percent  of  design  speed.  Since  the maximum-efficiency point  
corresponded  with  the maximum-weight-flow point,  an  intermediate  weight- 
flow  point w a s  included i n  order   to   present  a more complete p ic ture . )  

The curves  for  absolute  flow  angle a t  s t a t ion  2 plot ted  against   radius  
have subs tan t ia l ly   the  same slope  throughout  the  range  of  weight  flows  and 
speeds, i f  the  high-loss   t ip   region i s  neglected. It can be seen i n   f i g -  
ure 9 (a )  that  although  the  slopes of the p2 curves are similar, the   l eve l  
increases as the  weight  flow  decreases. This change a t  a given  speed i s  
primarily  the result of the  decreased axial velocity a t  the  lower  weight 
flows. A comparison  of f igure  9(a)  with  f igure  9(e)  shows t h a t   t h e  p2 
level  also  increases  with  speed. The general  drop in   t he   ax ia l   ve loc i ty  

increase   in  p2. The absolute Mach  number a t  s t a t ion  2 f o r  each  speed 
and  weight  flow is  fair ly   constant   radial ly   except   near   the  t ip .  The 
average  values  of M2 fo r   t he  m a x i m u m  flow  condition a t  80, 100, and 
120  percent  of  design  speed  are 0.60, 0.71, and 0.86, respectively.  

ratio vz , 2/vz, 1 as the  speed i s  increased i s  the main cause f o r   t h i s  

A t  each  of  the  speeds,  with  the  weight  flow  for maximum overa l l  
efficiency,  the  blade-element  effiency is  reasonably  constant  and  high 
over  the middle portion of the  blade,  but  drops  considerably a t  t h e   t i p  
and, t o  a lesser extent,  a t  the hub. It is  t o  be noted  that   the  low 
overall   efficiency  with  the  highest   weight  f low a t  110 and  120  percent 
of design  speed is  due t o   t h e  drop i n  element  efficiency i n   t h e   t i p  
region.  For  the  highest  weight  flow, a t  120 percent of design  speed, 
the  lower  efficiency  extends  inboard t o  the  middle of the  blades.  These 
lower efficiency  values are a lso  re f lec ted  by the  dropoff i n  total-pressure 
rat ios   over   the  outer  half of the  blade. 
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Stator  blade-element  performance.-  Figure 10 presents   the   s ta tor  
blade-element  performance as a function  of  angle of a t tack  us. Before 
discussing  the  stator  blade-element  plots,  it is  desirable   to   descr ibe 
the   s ta tor   to ta l -pressure- loss   coef f ic ien t  %. This  coefficient i s  

defined as the  difference between the   s ta tor -out le t   to ta l   p ressure   ou t -  
s ide  the wake  Pf and the  average  total   pressure a t  s t a t i o n  3 divided 
by the  difference between the   to ta l   p ressure  a t  s t a t i o n  2 and t h e   s t a t i c  
pressure a t  s ta t ion  2 .   Figure 11 presents   typical   p lots  of the  circum- 
f e ren t i a l   d i s t r ibu t ion  of to ta l   p ressure  a t  two rad ia l   loca t ions  a t  
s t a t i o n  3. The symbol Pf denotes an area  average  of  the  total   pres- 
sures  across one blade  passage  excluding  the  blade wake ( ind ica ted   in  
f igure  11 by a long-dash l i n e ) .  The average to t a l   p re s su re  a t  s t a t i o n  3 
i s  an area average of the  total   pressure  across  one blade  passage 
including  the  blade wake ( ind ica t ed   i n   f i gu re  11 by a short-dash  l ine) .  
A t  the  higher  speeds,   the  stator  total-pressure-loss  coefficients  are 
not as r e l i a b l e  as a t  the  lower  speeds  because  of  the  difficulty  in 
determining  the  magnitude of Pf .  This   diff icul ty  i s  caused by the   f ac t  
tha t   the   to ta l   p ressure   ou ts ide   the   s ta tor  wake i s  very uneven a t  the 
higher  speeds  and  consequently  the  proper  level of the  area  average i s  
difficult   to  determine.  This i s  par t icu lar ly   t rue   near   the  hub. 

The lowest   total -pressure- loss   coeff ic ient  i n  f igure  10 i s  0.07 or 
l e s s  a t  a l l  f i ve  of the  blade  elements. A t  elements  b,  c,  and  d,  the 
minimum loss  occurs  near  (within 2O of)  the  design  angle of a t tack.  The 
f a c t   t h a t   t h e  measured angles of a t tack   a re  a l l  above design, a t  the 
three  higher  speeds, i s  caused  primarily by the  lower axial ve loc i ty   ra t ios  
across   the  rotor  a t  the  three  higher  speeds. The  minimum loss near the 
blade  ends,  elements a and e, occurs  several  degrees above the  design 
angle of a t tack .  Near the  blade  tip,  element  e, this cha rac t e r i s t i c  may 
be due t o   t h e  radial inflow of the  blade  boundary  layer. A t  element a, 
however, t h i s   t r end  of  decreasing loss with  increasing  angle of a t t ack  is 
more d i f f i c u l t   t o   e x p l a i n .  It may possibly be due to   t he   d i f f i cu l ty ,  
mentioned  previously, i n  determining  Pf. 

The s ta tor   turning  angles  are nea r ly   l i nea r   i n   t he i r   va r i a t ion   w i th  
angle of attack  even  in  the  high-loss  regions a t  elements b, c,  d,  and 
e.  The design  turning  angles are indicated by the   so l id  symbols,  and the 
off-design  turning-angle  characterist ics as obtained  from  the  low-speed 
cascade data of reference 4 are indicated by the  dashed l ines .  A t  e l e -  
ments  b,  c,  d,  and  e,  the  slopes of the  turning-angle  curves  are  very 
similar to   those  from the low-speed  cascade data. A t  element  b,  design 
turning was measured a t  design  angle of a t tack .  The turning measured a t  
the  design  angle of a t tack  a t  elements  c,  d, and e, was excessive by 
1.2', 3.6O, and 6.2O, respectively.  A t  the  blade  element  nearest  the hub, 
element a, the  l inear   re la t ionship of the  turning  angle  with  angle of 
attack  breaks down, although a t  the  three  higher  speeds, 100, 110, and 
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120 percent of design,  the measured turning  angles a t  the lower  angles 
of a t tack  are near  design. As w a s  mentioned in   t he   s ec t ion   en t i t l ed  
"Stator  Design,"  the  stator  design  turning  angles  and  inlet   angles were 
not   corrected  for   axial-veloci ty   var ia t ion  before   the cambers  and blade- 
set t ing  angles  were  chosen.  Since  the  design  axial-velocity  ratios were 
greater   than 1 in   t he   t i p   r eg ion  and s l igh t ly   l e s s   t han  1 i n   t h e  hub 
reg ion ,   th i s   cor rec t ion  would have r e su l t ed   i n   t he  use of lower cambers 
near   the   t ip  and s l ight ly   higher  cambers near  the  hub.  This, i n   t u r n ,  
would have reduced or eliminated  the  excessive  turning a t  elements  cy 
d,  and e .  Also, the  use  of  lower cambers a t  lower  angles  of  attack 
would very  l ikely  reduce  the  s ta tor   losses .  It i s  bel ieved  that   the  
excessive  turning a t  t h e   s t a t o r  i s  not   the   resu l t  of an e r r o r   i n   t h e  
total-pressure measurement, as w a s  the  case i n  the  rotor  turning  angles,  
because s t a t i o n  3 is  far enough  downstream  of the  rotor  to  al low  mixing 
to   t ake   p lace .  

The values of DS were generally  found  to be 0.6 or less a t  a l l  blade 
elements, as w a s  noted  for  most  of the  rotor  elements. A t  elements  by  c, 
and  d, the  values  of DS f o r  minimum loss were i n   t h e  range from 0.3 t o  
0.4, whereas,  near  the  blade  ends a t  elements a and e,   the  values of DS 
f o r  minimum loss were somewhat higher ,   par t icular ly  a t  element a. The 
maximum stat ic-pressure-r ise   coeff ic ients   increased from  about 0.2 a t  e l e -  
ment e t o  about 0.55 a t  element a .  The values  of CP,s f o r  minimum 
loss were i n  the  range from 0.05 t o  0.20 f o r  elements  by  c, d, and  e, 
and near 0 . 5  f o r  element a. The low l eve l  of the   s ta t ic -pressure- r i se  
coef f ic ien ts  measured a t  the  outer  blade  elements  can be a t t r i b u t e d   t o  
ax ia l -ve loc i ty   ra t ios   g rea te r   than  1 and to   tu rn ing   pas t   the   ax ia l  
direct ion.  

Radial d i s t r ibu t ion  of parameters a t  the   s ta tor   ou t le t . -   F igure  1 2  
presents  the radial var ia t ion  of s ta tor   out le t   f low  angle  p 3  and s t a t o r  
ou t l e t  Mach  number M3. These p lo t s   a r e   p re sen ted   i n   t he  same manner as 
the  rotor   out le t   p lots ,   and  the same weight  flows  are  used. 

Since  the  s ta tor  w a s  designed to   tu rn   the   ro tor   ou t le t   f low  to   the  
ax ia l   d i rec t ion ,   the  optimum value  of p3 would be zero a t  a l l  radii. 
The sign convention  for  the  plots of p3 is  such that a posi t ive  angle  
indicates   def ic ient   turning and a negative  angle  excess  turning. The 
radial p lo ts   o f  p3 do not  appear  to change s ignif icant ly   with  speed,  
e i t h e r   i n  shape o r   l eve l .  For a l l  weight  flows,  the  values  of p3 were 
negative  over  the  outboard  half  of  the  blade,  the  lowest  values  being 
near -12'. For the  highest  weight  flow a t  each  speed,  the  values of p3 
were near  zero  over  the  inboard  half of the  blade. A t  the  lower two 
weight flows a t  each  speed,  the  values of j33 became pos i t ive  near the 
hub, indicat ing  def ic ient   turning due t o   t h e  breakdown i n   t h e   l i n e a r  
re la t ionship between turning angle and  angle of attack  mentioned i n  the 
prevfous  section. The excessive  turning  over  the  outer half of t h e   s t a t o r  
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blades was the  result of the  use of too  high a camber and possibly some 
boundary-layer  inflow. 

The var ia t ion  of t he   s t a to r   ou t l e t  Mach number M3 with  radius is 
fairly  l inear  except  near  the  blade  ends.  The increase  in   s lope  with 
speed i s  due to   compress ib i l i ty   e f fec ts .  For a given  speed  and  weight 
flow,  the  average Mach number of the  f low  leaving  the  stator i s  roughly 
the same as the  absolute Mach number of the  gas  entering  the  rotor. 

Figure 13 presents  the radial d is t r ibu t ion  of weight-flow r a t i o  a t  
s t a t i o n  1, s t a t i o n  2, and s t a t i o n  3 f o r  three weight  flows a t  design 
speed. The three weight  flows  presented  are (1) the  maximum weight  flow, 
54.2 lb/sec, ( 2 )  an  intermediate  weight  flow, 51.9 lb/sec, and ( 3 )  the  
near-surge  weight  flow, 49.1 lb/sec. The weight  flow i s  presented as a 
nondimensional  parameter pVz/(pV,)l,m, where the  subscript  1 , m  ind i -  

cates   the m e a n  sect ion (at  a radius of 0.360 f o o t )  a t  s t a t i o n  1. As the 
weight  flow is  increased,  the radial d is t r ibu t ion  remains subs tan t ia l ly  
unchanged, the on ly  noticeable  characterist ic  being a s l i g h t  outward 
s h i f t  a t  s t a t i o n  2. A t  design  speed,  the  average f low blockage f ac to r  
was 0.96 a t  s t a t i o n  2 and 0.95 a t  s t a t i o n  3 .  The blockage  factor is 
defined as the   ra t io   o f   the   in tegra ted  mass flow to   the   in tegra ted  mass 
flow when extrapolated t o  the walls. This  extrapolation  merely  excludes 
the   e f f ec t  of the w a l l  boundary layer .  The blockage f ac to r  behind  the 
s ta tor   a l so   inc ludes   the   e f fec t  of wake blockage. 

SUMMARY OF RESULTS 

Tests of a high-flow  transonic  inlet   stage gave the   resu l t s  summa- 
r ized   in   the   fo l lowing   sec t ions .  

Rotor  Blade-Element  Performance 

1. Reasonably good peak eff ic iency (0.85 or more) was measured a t  
a l l  elements a t  speeds up t o  design,  except a t  the  outermost  blade  ele- 
ment (about 11 percent of the  blade  span from the  outer  casing).  

2. High total-pressure  losses were  measured i n   t h e   t i p   r e g i o n ,  
pa r t i cu la r ly  a t  the  higher  speeds;  these  high  losses were a l s o  i n  evidence 
in   the  rotor-alone tests previously  reported. 

3 .  A s  the  speed was increased from 80 t o  120 percent  of  design,  the 
minimum-loss angle  of  at tack  near  the  t ip  increased by about 5 O .  Near 
the hub the  increase was s l i g h t l y  less, being  about 3 O .  
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Sta tor  Blade-Element  Performance 

1. The lowest  total-pressure-loss  coefficient i s  about 0.07 or  l e s s  
a t  a l l  the  blade  elements  for which resul ts   are   presented.  

2. The  minimum loss occurs  near  the  design  angle of a t tack  a t  a l l  
elements  except  near  the  blade  ends. 

3. Excessive  turning  occurred a t  a l l  speeds  over  the  outer  half of 
the  blade, as compared with  design  values. 

Overall  Stage Performance 

1. A t  design  speed,  the  peak  stage  efficiency was 0.85 a t  a corrected 
weight  flow of 54.2  lb/sec of Freon  and a stage  total-pressure r a t i o  of 
1.29. The corresponding  specific  weight  flow of air  is 37.1 lb/sec/sq f t ,  
which i s  very  near  the  design  value of 37.5. 

2. A t  120  percent  of  design  speed  the peak eff ic iency i s  0.78 a t  
57.2  lb/sec and a to ta l -pressure   ra t io  of 1.42. 

3 .  The largest  corrected  weight  flow measured a t  120 percent of 
design  speed is  59.7 lb/sec of Freon.  This i s  equal   to  a specific  weight 
f low f o r  a i r  of 40.6 lb/sec/sq f t .  

4.  The weight-flow  range is about 20 percent o r  more a t  the  lower 
speeds  and  holds up reasonably w e l l  even a t  100 and 120 percent  of  design 
speed. Only the  highest  speed had as much as an  8-percent  drop  between 
the  highest  and  lowest  values  of  efficiency measured. 

5. Comparison with  rotor-alone  tests  previously  reported  indicated 
that the  addi t ion of the  s ta tor   did  not   mater ia l ly   affect   the   weight-f low 
range or total -pressure  ra t ios ,   a l though it did  decrease  the  values of 
eff ic iency by 3 t o  5 percent. 

Langley  Aeronautical  Laboratory, 
National  Advisory Committee for  Aeronautics, 

Langley Field,  Va. ,  December 18, 1957. 
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APPENDIX 

EQUATIONS 

Rotor 

Blade-element temperature-rise efficiency: 

Blade-element relative total-pressure-loss coefficient: 

'2,R,i - '2,R 
'1,R - pl 

rG)i - PL,R 
'2,R 

where 

Blade-element diffusion factor: 

- 
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DR=l-- '2,R + '0,1,R - '0,2,R 
'1,R 2uvl , R 



Blade-element  static-pressure-rise  coefficient: 

Blade  -element  diffusion  factor : 

Blade-element  static-pressure-rise  coefficient: 

17 
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Mass-averaged to ta l -pressure   ra t io :  

Conversion of Freon  Weight Flow t o  Air Weight Flow 

we ,A 

* 
(1 + 7F 'M2) 
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r1P-t 

0.350 
.585 
-750 
.883 
1.000 

TABLE I. - DESIGN VALUES AND GEOMETRY 

(a) Rotor blade 

I 

-~ ~ ~ 

NACA RM ~ 5 8 ~ 0 8  

eo,R, deg t / c  0 c 2 0  

35.4 

.Ob0 ,750 .TO 11.3 

.043 .809 .77 12.9 

.050 .go0 .89 16 .o 

.060 1.063 1.14 22.3 
0.080 1.500  1.55 

(b) S t a t o r  blade 

i a, de@ 

21.0 
14.6 
11.5 
9.9 
8.9 

q p t  a, de@ t / c  0 c2, a2 = e0,s, deg '2p-t 

0.450 16.6 0.08 1.500 1.87 38.0 0.525 
A46 

13.2 .o8 1.095 1.73 29.7 .go5 .go2 
13.7 .08 1.203 1.74 31.4 -799 '787 
14.7 .08 1.331 1.78 33.9 .676 

1.000 1.000 29 .o 1.73 12.7 .08 1.000 



NACA RM ~ 5 8 ~ 0 8  

Stator 

Figure 1.- Typical  velocity diagrams. 
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Figure 3.- Photograph of stator. L-97004 
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Figure 4.- Schematic  diagram of 3,000-horsepower compressor t e s t  rig. 
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Figure 5.-  Schematic diagram of t e s t  sec t ion .  
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Figure 6. - Photographs of instruments. L-57-4500 03 ?5 
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Figure 7.- Mass-averaged  overall  performance  of  stage. 
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Figure 7.- Concluded. 
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(a;) Rotor blade element,  a; '1 = 0.204 foot. 

Figure 8.- Rotor blade-element  performance. 
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(b )  Rotor blade element b; rl = 0.292 f o o t .  

Figure 8.- Continued. 
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( c )  Rotor blade element c; rl = 0.360 foot .  

Figure 8. - Continued. 
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(d)  Rotor  blade  element d; r1 = 0.416 f o o t .  

Figure 8 . -  Continued. 
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( e )  Rotor blade element  e; r1 = 0.466 f o o t .  

Figure 8.- Concluded. 
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Figure 9.-  Radial var ia t ion  of ro tor   ou t le t   condi t ions .  - 
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Figure 9 .  - Continued. 
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Figure 9. - Continued. 
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Figure 9. - Concluded. 
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(a) Stator blade element a; ' 2  = 0.249 foot. 

Figure 10.- Stator blade-element performance. 
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( b )  S t a t o r  blade element b; r2 = 0.319 foo t .  

Figure 10.- Continued. 
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(c ) Stator  blade  element d; r2 = 0.425 foot. 

Figure 10. - Continued. 
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(d) Stator blade element c; r2 = 0.376 foot. 

Figure 10.- Continued. 
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Figure 10. - Concluded. 
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Figure 12.-  Radial va r i a t ion  of s t a t o r   o u t l e t   c o n d i t i o n s .  



46 - NACA RM ~ 5 8 ~ 0 8  

P3 

.8 

.6 

.4 
.2 .3  .4 .5 

12 

8 

4 

0 

-4 

-8 

- 12 

-I 6 

.8 

M, .6 

.4 1 I I I I I I 
.2 .3  .4 .5 

5 ,  f+ ‘3, f+ 

(e) - = 1.20. N 

N d 6  

Figure 12. - Concluded. 
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Figure 13.- Radial dis t r ibut ion of weight flow a t  design  speed. 




