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LOCATION OF Dr,TtiCMZD SHOGK ?WV3 IN FRONT 

OF d BODY ~OVIWG AT 5WERSONfC SPEEDS 

By Edmufid V. Laitone and 3t~py OIM. Pardee 

It is shown that for velocities siightly in excess of 

sonic, the position of the detached shuck wave located in 

front of a given body at zero ai?+rfe of attack may be 

es-t-ted theoretically to a mEsonable degree of accuracy. 

The theory developed conpares favorably with the avaflable 

experimental data. 

INmOBUGTION 

The solvable fluid-flow ~roblons are In general divided 

into two distinct classes: those +n which the field of flow 

is con?letely subsonk and those in which the flow Is super- 

conic, each regfrr;e hying its special methoda of solution 

and apmoxin;ation. iit3 yet, very little has been accomplishes. 

toward the solutfon of my fluid-flow. problems in that region 

between the critical Xzch nmber and the shock detachrrent 

Mach number, the latter being defined later. This region 1% 

sometimes termed the traneonic regtie. The difficulty of 

eolution is due in 1qge measure tc the oo=bfnatlon.of nixed 



subsonic and supersonic flows together with pronounced 

vieuoeity or boundary-layer.effects, There is, however, one 

problem capable of solution which should prove very useful 

both in flight and wind-tunnel work - that of estimating for 

itich numbers slightly in excess of 1 the position of the 

detached shock-wave preceding a body. 

It is characteristic of supersonic flight that preceding 

every body or attached to its nose is a shock wave. Here a 

differentiaiion should be made be&een pointed and blunt-nosed 

bodies. In the case of blunt-nose. bodies, the bow wave 

always remains detached similar to that shown in figure 1. 

However, for any given sharply pointed body> there is a Mach 

number below which the shock wave is detached but above which 

it is attached in the characteristic fashion of a Mach wave, 

as shown in reference 1. For pointed bodies this Mach number 

is the detachment Xach number, and, as noted before, represents 

the upper limit of the traneonic region. For blunt-nose 

bodies, on the other hand, there is no upper limit aefined. 

The solution of the present problem in transonic flow 

is somewhat simplifies since there is no interaction between 

the shock and boundary layer. The viscosity effects are 

almost all relegated to the region of the wake snd for the 

present problem are relatively unimportant, Uoreover, certain 

of the results from linear perturbation theory may be used 

which at first glance might not seem spplicable. 

Linear perturbation theory has in the past found wide 
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. uses in the study of subsonic and suPersonic flow fields, It 

is based upon the assumption that the disturbance created by 

the presence of the body fs small; that Is, the perturbation 

velocities due to the body are small compared to the free-. 

stream velocity. Kith these approximations for subsonic 

flows, perturbation theory shows that, for very slender 

bodies of revolution, the pressure coefficients along the 

body are independent of Mach number; whereas for Tao- 

din:ensfonal flow they are not. The dcvclopment and discussion 

of these points are given in references 2, 3, 4, and 5. 

The following is a list of the more Important synbols 

used In this report, given in order of their introduct+on: 

II Mach number 

I40 free-stream Each number 

If 1 Mach number on downstream face of shock wave 

6 angle shook wave makes with normal to free-stream 

direction 

A9 deviation an&lo of flop at 

E excess Of free-stream Mach 

compared to 1 

As change in entropy 

P pressure 

P Censity 

shock Irave 

number overl, small 
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Y- 

v 

Vo 

Vl 
a 

X 

T 

S 

ratio of specific heat at constbnt pressure to spec.ifio 

heat at constant volume (op/cv) 

velocity 

free-stream velocity 

velocity on do-mstream face of shock wave 

speed of sound 

L 

distance from nose of body 

maximum thickness of body 

distance along stagnation line from the shock wave to the 

nose of the body 

length of body 

TEEORY 

The. flow field to be considered is show-n in figure 1, 

The body of maximum thickness T is symmetrical about the 

xX*-axis and at zero incidence to the free stream. It has 

a stagnation point at 0 and the stream 1Fnc X0 leading up 

to this point is called the stagnation line. 

This body is moving at a supersonic speed such as to 

grqduce the detached shock wave AA1 which extends to infinity 

In both directions. The shock wave intersects the stagnation 

line at the point S. At this point, the shock wave is normal 

to the stream lines, At ather points in the field, such as 

p, the shock is not norrn.7.r to the free-stream direction but 

makes an angle 6 with this normal, ,The angle 6 varies 

from zero at S to the complement of the Mach angle at 

. 
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infinity, for tLe shock wave ham an asymptote whose angle 

-rrith the horizontal is the Each angle. 

The shock wave divides the ffeld into two parts. 

Everywhere upstream of the shock wave, the flow is uniform 

and the totaLhead or stagnation pressure is constant, 

Downstrsam of the shock ?:ave, the flo7-3 varies throughout 

the field and each streamline has a d:fferent stagnation 

pressure. Thi.s varfation in stagnation pressure or total 

head is due to the v,ariation in entropy change through the 

shock :+ave. The entropy change is primarily a function of 

the free-stream Xach number and the angle 6, being greatest 

when 6 = 0; that is, on the stagnation line. 

The deviation in d%rection of the flow upon passing 

through the shock %z.ve is A6 as ,sho~n in figure 1. This 

deviation varies from zero at the stagnation line to a 

maximum angle wmx some point a finite distance out on 

the shock wave and approaches zero again as 

aggroaches its asymptote. 

the shock wave 

The Hach number on the downstream side of the shock 

wave varies also ?-rith the angle 6 88 we.11 as the free- 

stream Mach number. The lowest Xaeh nuzbcr is less than1 

and occurs %:here the shock is normal et the point S. Going 

out along the shock wave, the Mach number increases with 

increasing ang2c 6, approaching the .free-stream Hach 

number as 6 apTroaches the complement of the Hach angle. 

The vmiation then is fron subsonic fn the vicinity of S 



to supersonic far out on the shock,wPve. 

The method of solution developed in this report covera 

only free-stream velocities slightly greater than sonic, being 

at all times at a free-stream P!aoh number of 1+ c, where c 

is small compared to 1, It then will be shown that the 

maximum entropy change and maximum deviation angle @,,, 

are of higher order than E: and consequently negligible. To 

further simplify the problem, only the dLst?nce OS fa 

determined, which Is-sufficient to determine the shock wave 

in the vicinity of the body since, for free-stream Mach numbers 

of the order of 1 + c, the shock wave is nearly plane. It 

will then only be necessary to oonaider a normal shock and the 

variation of velocity along the stagnation line, since it will 

be shgqn that theae are sufficient to determine the distance 

CJS. The entropy,change through a shock wave is given by 
As = iy % Jr-l --=--+y 

RJ~O 
IO 

where the subscript o refers to the free-stream conditions, 

Expanding this in powers of Mea - 1, where W, is the free- 

stream Mach number, -by means of the re-lations of conservation 

of mass, momentum, and energy given in reference 1, the 

following expression is obtained for normal shqck wavea: 

. 
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Then since lo = 1 + E, the maximum possible Increase in 

entropy is given by 
. 

(3’ 

Therefore, the entropy is ~~proXin~t&y constant and zb 
consequently so is the totai head or stagnation pressure. 

It can be shown also "hat the maxrmum flow deflection 

is of h:ghor order than e . Von K&&n has shown 

(equation@.y)of refereme 6) that the minimum Ha& nmber 

. for a given flow deflection is given by 

-. &T = - + z “l”tl v3. 
24' c ) (A91 2' (41 

and slncc 2 is a monotonically Increasing function of A9 

the sams equation defines the maximum flou deviation for an 

arbitrary Hach number. Then 1aepPzcIng 'if by 1 + E the 

le given by 

(5) 

and .it con be seen that the maximum deviation of flov is of 

higher order thsn c . 

From the conservation lag referred to previously, the 

K&zh number 3, after (downstream) a normal shock is given 

in term of the i&h number 16 before (upstream) the shock 

by 
2 7: - --I 2+(r-l)&= 

2rxoa4r-11 (61 
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The retie of the velocity V, after a shock to the velocity 

V, treforc the shock (the free-strcan; velocity) is given by 

Setting II, = 1 + c nnd.y = 7/5 in equations (6) and (7) and 

neglecting c2 and higher powgr,thF e4qgat$ons become - 

, 
(9) 

Then Psi, 2nd Vl/Vo- diffc:- ftom free-strcan conditions by 

the order E. 

Since the,entropy and total head we constant..throughout 

the field, to the order of approxl.mn.tion used, the flow down- 

stream of the chock wave Ls derivable fron a velocity potential. 

The boundary conditions necessary to specify this velocity 

potential are the ah,-.pe o.f the body and the velocity vector 

distribution over any surface which encloses the body. It is 

now necessary to consider vsriations in the flow field with 

change in boundary conditions. 

For subsonic flat.;, the shape of the body and the flow 

at infinity are sufficient boundary conditicns; r;;hile for 

supersonic flOWi the condit.ion up~tro,~~ at infinity is ..L. . ..~. 
replzced by one on the downstre,am face of the shock wave. -----. -. _ 

Since the bound.zy cc iditions.in.either subsonic or 

I 

I 

., .I 



supersonic flow am a continuous function of Each nurn5er, the . 
Pelocitg potential is a continuous faction of Nach number 

inBide the bound-y lisits. EJov if the two potential fields 

(nubsosic and supersonic) are to qproach a common limit at 

a Xach number of 1 end conseacently be cortinuous from sub- 

aonl.c through to supersonic free-&rem velocities, it is 

only necessar3 that the boundcry conditIone approach a 

common liEit. 

as the free-strea.:. Xach nuCoer ag>roaches 1 from above, 

the shock vxvc recedes upatmm to Infinfty and the flow 

deviation vaniehes einca it is of higher order thah 6, the 

Mach number increment; . and furthermore the Mach number on the 

dowlietrem face of the shock v:,-,ve asgroaches 1. The 3.irA.t 
. 

then is a unifom, parallel free strem at inffnity the sme 

as for the raore obvious subsonic cage, 

Hence, the velocity potential, velocity, and pressure 

coefficient for any given point in the subsonic region between 

s and 0 is a continuoue functioil of the Mach number. If 

in this region the variation of pressure coefficient with 

Mach number em be determined for subsonic free stream, then, 

a good apgroxi rzstion to the prcsmre coefficients for free- 

stream I&ch nulzbere slightly greater t&.n 1, of the order of 
. l-f- E, is obttiined by z nathemtical cant inuat'Loc of the 

subti~dc, -Ja.r?,a'Gfcn of pressure cocfficie3t ~i.t;h Koch nurzoer, . 
this by vfrtue of the velocity potential boirg a ccntinuoue 

funotf_on of Each Ember. 
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The 'velocity variation along the stagnation 

given by an equation of the form 

v= f (x/T, II) 
Vo 

:;here nondimensional form is used for convenience, V being the 

velocity at any point x along the qx-axis and 14 the local 

Nach number at the point x. At the point S where the shock 

is locnted V = V,, x = S, and M = 14, the equation then becomce 

$- = f (S/T, I[&) (11) 
0 

and S/T is determined sir:ce 14, and Vi/V0 are given by 

equations (6) and (7) or approximately from equations ($) Eina , 

(9) by 

14, = 1 - E = 2 - 11, 

and 

With these approximations equetion (11) becomes 

(13) 

(14) 

yrhich defines S/T as a function of 14,. 

APPLICATIONS 
I 

In order to cv,?luate the functions defined by equation (14) 
. 

et is neceswry to resort to linear perturbation theory. With 

this purpose in mind the ?-zriation in the velocity ratio VP, 
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along the stagnc".ti.o;l line has be,en obtained for a number of 

ftander9 two- and three-dteensional shapes in incompressibLe 

flax,' the results of which ore presented fn table I. The 

case of three dimensIona bodies of revolution will be 

considered first. 

It can.be.ahmn from the methods of reference 2 that for 

slender bodies of revolution the velocity ratio. V/V, along 

the stagnation line is Independent of &ch number. piat is, 

(151 

For illustrative purposes, the method is applied to the 

three-dimensfonal source and an experImental comparison made. 

Referring to table 1, 

Then using this in equation : 
from 

(15) the point S Is determined 
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The curves presented 1n figure 2 were,Qbtained in this manner 

under the assumption that even in the case of a sphere the 

pressure coefficients on the stagnation line are independent 

of tich number. It is worthy of note Chat the curve for the 

8ource approxima.tes very closely the values for any Rankine 

Ovoid of thickness ratio less than 0.10. 

In figure 3 are sho:dn some expcrimcntal data for a 20- 

millimeter shell which were obtained from the U.S. Army firing 

range at the Aberdeen Proving Grounds., The theoretical curve 

shown for conpariaon is for E source, since the shall which 

was used had a fairly large nose radius neking it approximately 

a three-dinensionel source shape. The agreement with the theory 
, 

is rather good even though the shell was continually decrcas- 

ing its speed; for due to the deceleration of the shell, the 

shock wave is likely to be at a different location than would 

be found at a steady velocity, 

. 

In the case of bodies of revolution the result was 

simple. For two-dimen.s1onal bodies, howcvor, the pressure 

coefficient varies with Mach number, and here a slight 

difficulty appears. It is necessary to realize that in cal- 

culating the velocity ficlr;, linear perturbation theory in 

and of itself ;lakes no distinction betwe.en local and free- 

stream Hach number. In fact, they are nsaumed to differ by a 

negligible quantity.. That this assumption is not velid in 

the present case is self-evident; however, it can be shown in 

unidinensional flow, where an exact solution is possible, that 

, 



there is less error in calculating the velocities in a 

decreasing velocity field in using the local Mach number 

rather than the free-streti Mach number. Csing this crltorion 

and equation (13), the velocity ratio at the point S is 

. 
wow M, = 1 - E azd-neglecting ca and higher powers 

JF--p = m = &(&lo - 1) 

therefore 

. 

l - SE 3 (Mo - l)3'a - '(171 

where (V/V, ) lfmo can be obtained from table I. The CUPV8S 
'I- 

. shown in figure ,$ were obtained in this mamer, where it has 

been aSSuX8d that even in the case of the CirCtim cylindelz 

the Prandtl-Glauert r&e holds on the stagnation line. 

hes Aeronautical Laboratory,- 
National Advisory Comfitttee for Aeronautics, 

Moffett FIe'Ld, Calif. 

E&mnd V Laitone, 
Aeronautical Engineer. 

Approved: Electrical Engir-eer. 

Dor,ald FT. Wood, 
Aeronautical EkIgin8eP. 
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TABLS I.- T~VfLooXTYPARAHETm v/r0 ALom THE 8TAm.#lT10I LINE 
FORVARIOUB BODSM IN INCOHPREBBIBLEFYWY 

Bodm 0r r070iuti0A 

Three-dimeAaioAa1 8OU2'00, 1 - 

Sphers, 1 - 

ibnlsine Ovoid, T/L = 0.10, 1 - 0.63% 1 - 

Prolate Spheroid, T/L - 0.10, 1 - O.OOgldl 

Two-dimensional 1 eouroe, - 0.1592 
($+ 0.1592) . 

Ciroular cylinder, 1 - x1 l 

(a) 
-c 
T 

Ranklne Oval, T/L = 0.05, 1 - lij:3 (g+ - 96.77 

Flankhe Oval, T/L = 0.10, 1 - 5;- @ a - 23.35 

F&nkine Oval, T/L = 0.16, I - 1,052 

@b J-125)= - 6.714 . 

Eilliptio cylinder, T/L = 0.05, 1 - 1 4($+ 10)' - 399 + 10) 1 4 $+ 2?@+ ( lo>'- 3991 

Elliptio OyliAder, T/L = 0.10, 1 - 
99 + 

2(;+5)p(:+ 
5)9 - gg 1 : 
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