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COOLING OF GAS TURBINES
IV - CALCULATED TEMPERATURE DISTRIBUTION IN
THE TRATL.ING PART OF A TURBINE BLADE
USING DIRECT LIQUID COOLING

By W. Byron Brown and William R. Monroe

SUMMARY

A theoretical analysis was made to determine the temperature
distribution in the tralling portion of a liguid-cooled turbine blade
between the coolant passage and the trailing edge and to study the
influence of various deslgn and operating variables on the hot-spot
temperature at the trailing edge. The trailing portion of a typlcal
turbine blade wes aviroximated by equivalent rectangular and wedge-
shaped sections to facilltate analysis, and representative values
for the boundary temneratures and surface heat-transfer coefficlents
were assumed or computed according to standard methods.

Three-dimensional temperature disiributlons were obtained at
effective gas temperatures of 2000°, 3000°, and 5000° F for a 4-inch
prisuwatic section, cooled over the entlre lenggh and having & thermal
conductivity of 15 Btu per hour per foot per , and at 2000° F for
simller ssctions heving thermal conductivitises of 120 and 210 Biu
per hour per foot per °F. In addition, comparison of one-dimensional
temperature distributlons through the cuter portion of the dlade was
made for two shapes, equivalent recbangular and wedge plane sections,
at an effective gas temperature of 2000° ¥. The influence of thermal
conductivity on one-dimensional temperature distribution In both
plane sections was evaluated. WIith the equivalent rectangnlar solu-
tion, an investigation was made to determine the effect on trailing-
edge hot-spot Lemmersture of varistions in the treiling-section
wldth, thickness, thermal conductivity, and coolant-passage heat-
transfer coeffilcient.

The three-dimensional and one-dlmensional solutions of the
equlvalent rectangular trailing portion give almost ldentical temper-
ature distribubtion ln the blade section away from the influence of
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rim cooling. TFor the blades of low thermal conductivity and wide
trailing sections the hot-spot temperature closely approaches the
effectlve gas temperature, and infinite increase in the surface heat-
trensfer coefficlent at the coolant passage relative to that obtalned
with water will have small effect on the ftrailing-edge temperature.
Further reduction of tralling-edge hot-spot temporature can be
obtained by the following three methods given in crder of decreasling
effect; by use of materials having high thermal conductivity, by
altering the blade shape to provide & relatively short trailing
portion, by locating additional cooling pessages a short distance
from the tralling edge. .

INTRODUCTION

Az part of the general program to increage the permiesible
operating temperature of' gaa-turbine cycles and to lmprove the life
of critical parts, further analysls of the llquid-coocled turbine

lade l& bhelng conducted by the NACA to determine the avalleble
cooling effect at the anticipated hot gpot under present condltlons
of deslign and to evaluate various poasible methods of improving
cooling of the blades.

Part I of the current series on "Cooling of Gas Turbines" (ref-
erence 1) presents calculations on the application of alr cooling
fins to the turbine rotor with the objJect of reducing.the rim temper-
ature to permlt better cooling of sgoild blades. It was found that
the root of the blade could be cooled about 800° F below the effec-
tive gea temperature, but relatively little gain was obtained at the
critical section some distance from the root. In part II (refer-
ence 2) it was shown that blade life could be extended by rim
cooling, and that the effective gas temperature could be slightly
increased.,

Part IIT (reference 3) discueses the circulation of liquids
through hollow passages in the blade and pregents a one-dimensional
enalysls of temperature distribution from the blede tip to the rotor
axis. The effecte of variaticns in blade lengti, length of cooling
passage, type of llquid coolant, and rate of coolant flow were
studled. The temmeratures calculated (one-fifth the gas temperature
for water cooling) were those appronriate to points near the cooling
nassages._ . .

The purpoge of the present detailsd study is to lnvestlgate the
temperature distributlon encountered in the relatively long, tkin
trailing gection between the coolant passage and the trailing edgs
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of the liquid-cooled blade. This sectlon, particularly the trailing
edge, moems most likely to be critlcal, The blade design and
coollng comditions used are the mame as used 1n reference 3 except
tliat only the blade section bounded by the rim, the tip, the wall

of the coolant passages, and the tralling edge 1s considered. The
analysis is carried out In several parts, with assumed shepes or
sections that approximate the tralling portion of a typical blade

as follows: & one-dimensional analysis of a rectangular section
through the outer portion away from the roct, a similar ons-
dimensional analyols of a wedge-shaped sectlon, and a three-

dimensional analysis of a right prism for the entire span of the
blade.

The following sectlons of this report present the development
of the varlous solutions for temperature disbtribution in terms of
the dimensions, physical properties, boundary temperatures, and
surface coniitions that prevall. In addition, a number of flgures
are presented that illustrate the various effects of thermal
conductivity on three-dimensional temperature distribution for
several values of the effective gas temperature and the cambined
influence of design dimensiona, thermal conductivity, and some
surface conditione on cooling of the trailing edge.

THEORETTCAT, ANATYSIS

Symbols

The following symbols, arranged in alphabetical order for the
convenience of the reader, werse used in the calcnlatlons:
7]

od -
a -parameter equal to k;-’ (£671)

b distance from tralling edge ‘o wall of coolant passage, (ft)

k  thermal conductivity of turbine metal, Btu/(hr)(£t)(°F)
1 distance from blade tip to rim, (£%)

g4; heat-transfer coefficlent from hot gas to metal,

Btu/(br) (sq £t) (°F)

d, heat-transfer coefficlent from metal %o coolant,
Btu/(hr) (sq £t)(°F)

t blade thickness, (ft)
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ok

mean blade thickmess, (ft)
$1 blade thickness at trailing edge, (ft)
tz Dblade thickness at wall of coolant passage, (£t)
T teumperature of metal, CF
Ty effective temperature of hot gas, °F
T, average temperature of liquid coolant, °F
T, ‘temperature at rim, °F
x distance from blade tip to blade element, (ft)
¥ distance from trailing edge to blade element, (ft)
z distance from median plane of section to blade element, (ft)
2 angle between sloping sides of wedge
o
6 Ty - T, °F

A linear dimeonsion accented by a prime denotes that the distance

hag been extended by tl/z (for the wedge) or t/2 (for the rectangle).
Discuseion of Simplifying Assumptions

The turbine wheel with cooling passages 1s shown in flgure 1
and a cross sectlion of the blade 1n figure 2. The approximate blade
ghapes (right priem, wedge, and rectangle) used in thle analysis, which
can be used to approximate any tapered profile, ars given In flg-
ures 3, 4, and 5. : '

The equatione for the temperature distrlibution in the blade
sectlion between the coolant passage and the trailing edge were
obtained by equating the heat entering and the heat leaving an
element. In ordsr to simplify the boundary conditions, the cross
section of the blade under conslderation was apnroximated by gec-
metric Flgures having straight sldes and areas equal to that of the
blade crosa sectlon. For the first developmwent, a rectangular shaje
(fig. 3) was used, in which the width was made equal to the distance

from the trailing edge to the coolant-passage wall and the thickness
equal to the mean thickness of the blade over thls wldth., TFor a
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closer approximation to the true shape, a wedge shape (fig. 4) was

used in which the wldih remained the same as in the rectangle and

the thickness tapered from the blade thickness at the coolant passage
to the blade thickness at the tralling edge. Fur both shapes, the
approximate coclimg surface was less than that encountered 1n the
actual blade because tlie circular coclant-passage wall was approximated
by & chord rathsr than by the true arc.

The analysis was performed in the following parts: (a) a one-
dimensional analysis of a rectangular section through the outer
portion of the blade, away from the blade root; (b) a one-dimensional
analyslis of a wedge-shaped sectlon through the outer portion of the
blade; and (¢) a three-dimensional analysis of a right prism for a
4-inch blade length.

The following simnlifying assumptions were made for these parts;

(1) In parts (a) and (b}, the heat Tlow to the rim was negligible
at a section chosen sway from the blade root because the length 1
was large compared to the width b (fig. S). The valldity of this
assumption 1s demonetrated by the results cbtained in the three-
dlmensional anelysis.

(2) The heat gained from the trailing edge can be accounted for
by assuming the width to be exbtended by & dlgtence egual to one-half
the blade thickness at the trailing edge t; (fig. 6). The edge
0Q at temperature T gained some heat. The extended surfaces 00!
erl QQ' were at nearly the same temperature T and no heat entered
the end 0'q', therefore these surfaces gained practicaslly the same
amount of heat as the actuasl exposed end. TIn part (c) especially,
the boundary condition was much simplified. Thile assumption remalned
valid as long as t/z was small compared witk b. This valldity is
demonstrated for part (a). In like manner, the blade length was
extended & distance equal to +/2. The length and the width extended
by the distance t/Z are denoted by D' eand 1° resgpectively.
Thig assumption wae used only in parts (b) and (cs.

(3) The temperature of the blade at the rim was constant at rim
temperature. If this constancy is not maintained, it is ehown that
varigtions from it have little effect on the results except very
close to the rim. This assumption was used only in part (c).

(4) The variation of k was negligible and Ty, T3, Qi1, and dg
are constant over the blade and surface passages. Because these
blades were assumed to be cooled over the entire length and those of
reference 3 cooled only to wlthin one-gixteenth inch of the tip, the
comparsable curves dlffered at the tip.
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The analysis of parts (a), (b), and (c) are gilven in the follow-
ing secticns.
One-Dimenslional Analysls of Rectangnlar Sectlon through
Outer Portion of Blade, Away from Blade Rodt

The derivatlion of the formula {or part (a) as shown by figure 3
is obtalned from:

Heat entering element from right emd = kt dg/dy
Hoat entering elemsnt from sildes ;_agi dy @

Heat leaving element from left end = kt (38/dy + a%0/dy® dy)

Therefore, S -
kt 46/dy + 2q; dy 6 = kt (d6/ay + a%e/ay® ay) (1)
or
2
28 _ &% (2)
ay”
where
Zqi
= Nt - (8)

The boundary condltions are as follows:
when y = b, .

48

kt 57 = 2ot (T - 1)

If T, - & is substituted for T,

X6 | 0 (T - Ty - 6) (a)
when y = 0O,

de

iy *F] (s)
A golution of eguation (2) is

@ =Acogha (y+¢) (8)
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where A and ¢ are Integration constants. The quantlitles €
and A are evaluated to satisfy the boundary corditlons at the
blade edge and in the coollng passage, respectively.

From equations (5) and (6), when y = O,

kA a ginh a € = q; A cosh a ¢ (7)
therefore from equations (3) and {(7)
a4 £
tanh'l'(;—;> tanh~t af =
& 2

when t 1s not boo large. This difference between ¢ and /2
varies from 0.4 to 0.5 percent for the values of a considered and
bas an inappreclable effect 0.C05 foot or more inside the trailing
edge.

When y = b, +then from equations (4) and (6)
Aasinha('b—:—c)=%[Te.-TZ—Acosha(b+e)} (s)
or
%
+ (Te - T1)

asinha (b+e) + = cosh a (b + €}

Therefore, q.
3 (Te - T3) cosh a (y + ¢)

a sinh a (b +¢) + %? cosh a (b +¢€)

Cne-Dimensional Analymsis of Wedge-Shaped Section
through Outer Portion of Blade
It has been demonstrated (reference 4, equation (53))} that a
solutlon for the temperaturs distribution along the y-axis in a
wedge-shaped segment (fig. 4) may be expressed
6 = A'Jo(1p) + BIE,(ip) (12)

where A' and B are arbitrary constants and J, and Hy; are
Bessel's functions of two kinds, zero order.
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The variable u is defined

- 1l ~ tan a
p,z = 4C2 l:y‘ + Bq <—§m>] {13)
where ) . _ _
1
o? = k sin a (14)
and o .
o - &
a = tan~t -—g—z—rg——l-> (15)
The boundary conditions are, when y' =0
de
T = 0 (18)
when y' =Dh!
dae
‘—fa}'r=<lo(Te-Tz'9) (17)
or when p = pg
ae
au °
and when y = p, _ .
2
2C% 460 ;
IE'—J;-EH=qO (Te - T; - 6)
when y' = 0 . L e L L
t1 (L -~ tan @)
by = ZC'\[ Z tan « (18)
when y' = b :
Hp = 20)\/b' + tl(}'z':%‘;"‘?) (19)
Equation (13) can be differentiated and put in the form %g, giving
46 ae
ge K 26 20
dn - pp? 4y (20)
Therefore when
a6
&y " °
then
%ﬁ’- =0 ' - (21}

By virtue of the propertles of Bessmel's functioms,

ddo (F)/ay = =31 (3)
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and
ag, (7)/dy = B (¥)
therefore
: e
%”_ = -A'13; (ip) + B B (iu) (22)
and when
de
an =0
then
14177 (ipg)
= = 23
B =g m (23)

In order that squation (17} msy be satlsfied
2 [4
x ___zfz [-A'1 3y (1pp) + BH; {1up)] = qol(Te-Ty) - A'T,(3pp) - Bl Hy(ing) ]
(2¢4)
In stendard form equations (23) and (24) can be written, respectively

[197 (fp3)] At - [H) ()] B =0

r .
LJo(iuz) - qfﬁ‘; iJl(iuz)] 'L?G—“E By (ipp) + 1H,(fup) | B = Ty — Ty

=1

The values of A' and B can sasily be found =2nd substitubted into
equation (12), giving 6 in the form

6 = 92_!3:_12{ (Te~T7) [Hy (pq)d,(n) + 133 (1pg )18, (1p)] (o5)
(107 (1 )E; (1pn)] - [T (Bpq didq(ipg)] + z_fc% X

where X is

[Ey (g )05(ing) + 19 (ipg)iH, (ipp)]

Three-Dimensional Analysis of Right Prism for
4-Inch Blade Length

The derivation of the formula for part (¢} as shown in fig-
ure 5 is obtainsd from
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Heat entering element from top = -k dydz gg

Heat entering element from right end = —k dxdz g@

oT

Heat entering element from front = <k dxdy Sz

1]

¢ 2
Eeat leaving element from botton = -~k dyds laT o°T ax
QEE 3x2
oT

\5'332)

dr 38T
Heat leavl element from back = ~% dxdy | + ——= dz
~he T \3z T 52

Heat leaving element frcm left end = -l dxdz

Whon the heat emtering ies equated to the heat leaving
T 3T 3r (3, ¢ a:)

-~k dyd 6—-—k dxdz 5—-—k dxd T -k dyd
e = 7o \Ox ¥ ox2
or . d%r / 3T  JdcT
- — —_— 2
k dxdz (55- B d%) k dxdy \a_ + 5.2 dz) (26)
or
0= 92T + 92T + 921 (27)

Jdxe  Jy=  dz&

The boundary condltions can be more simply handled if the gas
temperature 1s taken as a reference temperature rather than the
metal temperature; that is, if the substitution is made

8 =Ty =T (28)

or
T =Ty~ 6 (29)
Equation (27) then becomos

~_ 9% 32 | o%8
W= < 2 + 2 b 2
ox! oy! oz

(30)

The orlgin of the coordinates chosen ia indicated in figure 5.
The axls z = 0 18 locatsed in the median plane of the right prism;
from considerations of symmetry there can be no heat flow across the
medlan plane.



NACA RM No. E7B11d n

The boundary conditions that must be satlsfied are

vhen zx! =0
2 o (31)
when y’ =0
2—36,-" =0 (32)
when z =20
o8 ' =
SS=0 (33)
when x!' = 1!
6 = Tg — Tp (34)
when y' = b!
2= g (T -1y = 0) (5)
when z = % e -
=]
?;_ = —qy 6 (36)

A convenlent form for the solution of equation (3Q) is
o (=:]
6 = Zm Zn
11
X (b, cos Npx' cosh Myny! cos Ppz +Bmy cosh Rpnx'! cos Apy'! cos Ppz)
(37)

where A, B, M, N, R, A, and P are arbltrary constanta. The rela-
tion between tfle constants nsed as coefficlents for the variables is

Mo
Rpm?

where n =1, 2 4, ... and m=1, 2, 3, 4, .... By the selec-
J p 4 K
100 (37);

Pp? + N2 (33)

Pp? + Ap? (39)

1

tion of eq_ua.% the boundary conditions éxpressed in equa-
tions (31) to (33) are satisfied,
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In appendix A, values of Am and Byn are derlved. These
values are

Pt

= . _
_ (~1)m-l 8N e ggy (T - T1) 1
A = 3TZn-1) TR % Moy, sinh Mggb' + dg Cosh Mgnb?
Py 5 gin 2Py 5
1+ =
in T B
sin Apb! 4 (Te— Tp) S Tm g 1 1
= T ] T
P L. BB 27\131: Pm%‘ in ZPm%coshRmnl
sz E

Values of n from 1 to 14 were inserted and the temperatures cal-
culated from equation (37).

In appondix B it ie shown that sufficlently accurate results
(within 1°) can be obtained by ueing only the first value of m;
that is, m = 1 &and dropping the terms invelving cos Pp z,
cos Pz z, ete. C

ATPLICATION OF ANALYSIS

The followlng asswiptions were made in applying the previous
resulits to specific numerical calculations:

1. The gas flow was 55 pounds per second. The heat-transfer
coefficient corresponding to this gas flow q3 was found to be
222 Btu per hour yer square foot per °F.

2. The liquld coolant, water, hed an average temperature of
200° F and a flow rate of 6.42 pounds per second for the entire rotor.
The heat-tranafer coefficlent corresponding to this coolant flow
wag caloulated (reference S) as 2370 Btu per hour per square foot per °F.

3. Average thermal conductlvities k of 15, 40, 60, 80, 100,
120, and 210 Btu per hour per square foot per OF were used.

4. The turbine had 55 blades.
5. The blade was ligquid cooled over ita entire length of 4 inchee

by two cooling passages 0.25 inch in dismeter._  The blade chord was
1.188 inches long. . o
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6. Some numerical values assumed were

b = 0.0500 foot

b!' = 0.0550 foot (rectangular section)
b! = 0.0515 foot (wedge-shaped sectilon)
1 = 0.3333 foot

1' = 0.3383 foot

t = 0.010 foot {rectangular section)
t; = 0.003 foot (wedge-shaped section)
t5 = 0.021 foot (wedge-sghaped section)

T.. = 284° F (all values of thermal conductivity) when
Ty = 2000° F

T = 331° F (a2ll values of thermal conductivity)} when
Te = 3000° F

T, = 426° F (all values of thermal conductivity) when

The theoretical temperature dlstribution in the trailing segment
of the turbine blade was determinsd by & three-dimensional analysis
ueing equation (62) in which the blade cross section was epproximated
by & rectangle. The temperature distribution was found in two planes
representing the maximum end the minimum temperatures for the =z
axis; the first plane was located at the side of the rectangle and
the second wag on the median plane through the gection., The tempera-
ture was plotted agalnsgt radial distance from the wheel axis for
intervals from the tralling edge to the wall of the coolant passage
(fig. 7). At the wall, the series converges too slowly to be useful,
therefore the curve was based on a one-dimensional calculation (equa-
tion (11)) and the behavior of the other curves of the family. Sim-
ilar distributions were calculated and plotted using thermal conduc-
tivities 120 and 210 Btu per hour por foot per OF (fig. 8).

The next step in the analysis was to determine the effoct of using
8 rectangular cross section as an approximation of the true blads
shape. The complexity of a solution using the true blade cross
section eliminstes an exact comparieon. A wedgu-shaped cross section
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represents the closest approxlmation with planes as boundaries and
this ghape was used to indicate the trend. A three-dimensional
analysis of a wedge-shaued cross section was beyond the scope of

this report and quite unnecessary because on the outer thrse-quarters
of the blede, the metal temperature does not change with the radius
and the comparison was made on a ocne-dimensional hasile for tempera-
tures along the center line of a sectlon through the outer portlon

of the blade. The comparison ls presented as a plot of metal tem-
perature againgt distance from the wall of the coolant pessage for
an equivalent rectangulsr and wedge-shaped section (fig. 9).

The thermal conductivity of the metals used in blade conatruc-
tion has considerable influence on the temperature distribution; the
high-tensile~strength alloys currently used have a relatively low
thexrmel conductivity. The effect of thermal comductivity was
investigated ueing a one-dimensional analysis of a section through
the outer portion of the blade for average thermal conductivities
ranging from 15 (eteel) to 210 Btu per hour per foot per °F (copper).
Although the upver range of conductivitles is Impracticable for
actual use 1n blade construction, it does indicate the trend and the
magnitude of temperature changes with changes in thermal conductlivity.
The cowparlson is presented as plots of metal temperature against
dletance from the wall of the coolant passage for the rectangular
ghaype (fig. 10{a)) and the wedge shape (fig. 10(b)). The effect of
& change in thermal conductivity on traliling-sdge tempersture was
determined comparatively using the same values of conductivity for
equivalent rectangular and wedge shapes. One station on the section
center line at the trailing cdge was used for each thermal conduc=~
tivity (fig. 1l). : : .

RESULTS AND DISCUSSION

The theoretlical three-dimensional temperature distribution for
a turbine blade of rectangular cross section is presented for effec-
tive gas temperatures of 20000, 30009, and 5000° F in figure 7. The
temperature falls off in inoreasing 1ncrementa as the dlatance to
the cooling liquild decreases. At a constant distance from the wall
of the cocolant passage, the temperature remalns substantlally constant
for approximately three-quertera of the blade length. The tempera-
ture beyond this point falls off rapidly and reaches the rim tempsr-
ature at the base. The average temperature at the tralling edge of
the blade was reduced 7.14 percent below the gas temperature at
2000° F end 7.6 percent below the gas temperature at 5000°. The
temperature differential betwesen the side and the center of the
blade (z = t/2) was 3,6 percent of 8, negligible et the trailing
edge, and at the maximum point did not exceed 5 percent of the metal
temperature.
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The temperature distribution at a gas temperature of 2000° F
for rectangular blades having thermal conductivities of 120 and
210 Btu per hour per foot per OF is presented in figure 8. With
increasing thermal conductivity of the blade metal, the temperature
tends to decrease at the trailing edge and Increase nesr the coolant
passage., The temperature at the tralling edge 1s approximately
32 percent below the gas tempersture at a thermsl conductivity of
120 Btu per hour per foot per OF and 36 percent below the gas tem-
perature at a thermal copductlivity of 210 Btu per hour per foob
per OF, With incressed thermal conductivity, the Influence of rim
cooling is more effective and the radial dlatribution lines fall
off more rapldly. The temperature differential between the sides and
the center of the blade decreases wilith increased thermal conductivity.
For the higher conductivities, this differential is too small to be
shown in the figures, inasmuch as 1t ranges from 22 to 7° F.

An investigaticn of a rectangular cross-sectlon blade indlcates
the temperature distribution in & blade having the cross sectlon
shown in figure 2 but errors in the temperature distribution
will exist. The itrend will be indicated, however, if the rectan-
gular cross sectlion is compared with a closer approximation to
the true shape; namely, a wedge-shaped section. Figure 9 presentsa
plots of the one-dimensional temperature distribution along the
center line at the blade tip for a rectangular and s wedge section
at a gas temperature of 2000° P and a thermal comductivity of 15 Btu
per hour per foot per °F. The temperature distribution for the
wedge shape has & slightly steeper slope than that for the rectan-
gular sectlon and the temperatures at the tralling edge and the wall
of the coolant passage are lower. (Part of thie lowering is due o
the additional thicknese of the cooling surface.)

The effect of the thermal conductivity of the blade metal on
one-dimensional temperature distributlion is shown in figures 10
and 11. Figure 10(a) presents the temperature distribution along
the center line of & rectangular section through the outer portlon
of the blade for an effective gas temperature of 2000° F and various
thermsl conductivities. At low thermsl conductivities, the temper-
ature falls off sharply from the treiling edge to thes coolant
passage. With increasing thermal conductivity, the temperature
decreases et the tralling edge and increases at the wall of the
coolant passage, which in genersl tends to equalize the temperatures
across the wildth of the blads. The reduction of the temperature
at the trailing edge increases with an increase in the thermal
conductivity. Figure 10(b) showes the temperature distribubion
for a wedge mectlon for the same conditions imposed on the rectan-
gular sectlon. The general form of the curve 1s similar to that
for the rectangular sectlion; however, the temperatures at the
trailing edge and at the wall of the coolant passage are lower and
the drop in temperature for a given increase 1n conductivity is greater.
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The varlation in temperature with an increase in thermal con-
ductivity for rectangular- and wedge-shaped sections ls shown in
figure 11. The point selected for comparison was located on the
center line of the sectlion at the trailing sdge. The curves show
that the blade temperature at thls polnt may be conslderably lowered
by uaing mstals having & high thermal conductivity and that Ffor the
same conductlvity, the cooling is svbsbantially greater for the
more represontative wedge-shaped soction. This effect is partly due
to the losa of effective area at the cooling passage where the thlck-
negs of the eguivalent rectangular sectlon is considerably less than
that of the wedge section. At high values of thermal conductivity
a representative temperature distribution can be obtained from the
rectangular section by asguming the mean thickness t equal to the
value of T2 for the compafative wedge. The total cross-sectional
area then 1s no longer squivalent. The same care in sslecting
appropriate dimensions extends the useful range of the nondimensicnal
chart (fig. 12).

Te -

T
The nondimensicnal cooling oo at the trailing edge for
e =~ 41

the rectangle is shown as a function of ab' and gy /ak in fig-
ure 12. Equation (11) was used with cosh ag¢=1l. It is seen from
figure 12 that for eab' 2 3, the cooling is less than 10 percent
for the entire range of qo/ak In order to obtaln 50 percent
cooling even for quite largs valuss of qo/ak ab' must be less
than 1. Points for the extreme values of k, 15 and 210 Biu per
hour per foot per F, are shown on the figure. Theoretically ab'
could be reduced by decreasing ¢4 and b' or by increasing k
and t. Under current conditions, not much can be done about q4
and k. The curvesa then indicate short thick tralling edges instead
of long thin ones for good cooling, From the curves of flgure 12
it can be deduced that with materials of low thermal conductivity
an infinite increase in the coolant-passage hest-transfer coeffi-
cient relative to that obtained with water will have small effect
on the trailing-edge temperature.

CONCLUSIONS

The following general comclusions can be drawn from the znalysis
of the cooling characteristice of the trailing part of a liquid-
cooled turbine blade:

1. For blade materials having low thermal conductlivity, the
computed three-dimensional temperature distribution of the equiva-
lent rectangular trailing sectlon indicates that the rim-cooling
effect ie significant for only a short distance from the blade root,



RACA RM No. E7B11ld . 17

the trailing-edge temperature closely approaches the effectlve gas
temperature, and the temperature gradlent normal to the surface
exposed to the combustion gas can generally be neglected.

2. The three-dimensional and one-dimensional soclutions of the
equivalent rectangular trailing portion give almost identical tem-
perature distribution in the blade section away from the influence
of rim cooling; the one-dimensional treatment of the wedge or
rectangular section 1ls therefore sufficient for most investigations.

3. For blade materials of very low thermal conductivity, the
one-dimensional temmerature distribution computed with the equiva-
lent rectangular section 1s only sllightly different from that of
the more representative wedge sectlon.

4, The equations for the one-dimensional rectangular sclutlon
permit construction of a simple chart, which glves the value of the
tralling-edge nondimenslional cooling parameter with any possible
coumbination of the design and operating variables considered in the
analysis,

5. Por the blade shapes considered in this analysis, and with
meterials of low thermal conductivity, an infinites increase in the
coolent-passage heat-tranafer coefficient relative to that obtalned
with water will have small effect on the trailing-edge temperature.

6. For the blade shapes considered in thls analysis, tralling-
edge temperature mey be conslderably reduced with a material of high
thermal cordductivity and to a lesser extent by locating the cooling
pasgage closer to the trailing edge.

7. Large reduotion in trailing-edge temperature results when
the blade shape is altered to provide a short thick tralling sectlon.

Aircraft Engine Research Laboratory,
Netional Advisory Committee for Aeronautlcs,
Cleveland, Ohilo.



AFPENDIX A

CALCULATION (F THE INTEGRATION CONSTANDS

Tho dovolepmont of cquation (34) leads to a determination of K.

=3 [+3]

Te = Tp = 0 2.m (Agn cos Nal! cosh M@y' cos Ppz +Byn cosh Buml' cos Apy' coe Ppz)  (40)

1 1
The first term will venish if ;

; cos Npl' =0
Thua |

; B = (n._%
where ,

1

' __!n=l, 2, 3, 4;1“-

i

' : o\R- E-)

]

By = il x

For these velues of ¥ equatlon (4—d) agsumes tha Fform

(41)

(42)

(¢3)

8T
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b e o
Teg = Tp= J_ ?‘_JBM cosh Rml' cos Apy' cos Ppz (44)
n=1 m=l

EBquation (44) ie e Fourier development along y' and =z.

The development of equation (35) leads to & determination of M.

2 -] o
Sm Y k(Apy cos Nyxt My sinh M b' cos Pz ~ By (008h Byx') Ay 10 Ab! o8 Byt)
1
1 -'):_\ =3 ’
=lm zn_qo(TB - Ty ~Amp 008 Bpx* cosh Mmb' 008 Bnz ~Bmn cosh RrmX' cos Apb' cos Prnz)
1 1

‘ ’ (4’5)

In order to simplify equation (45) at the boundary condition y' = b' and o solve for
the constant A, the second summetion in the left member 15 equated to the last sumation in
the right member term by temm

Than
S e .
do (Tg = T7) =~ B Em A (Mpy sinh Mpb' +q, cosh My b') cos Ppz cos Nx' (46)
1 1
and
fe -] o

e N

-8
=]
=P )8

£

sums are equated term by term. Therefore, Ay i1s determined by any solution of

goh'
K
tan 7\.n'b' = W (48)

' n k:Bm(ooah Rmx‘))\n pin Apb' cos Pz w ‘,;-L_dm %,n 90 Byn cosh Bypx! 008 Apbt cos Ppz (47}
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The development of equation (36) leadz to a determination of P.

_0_; o 1 Y
)_,m Zn -kAmn cos Wpx' cosh Mpny! ;"Pm gin Py %’-} ~kBym cosh Rypx' coa Apy! (Pm s8in Pp %-)
11
= Em Zn «q3 &mn co8 BEnx! cosh Mpny? {cos Pn é-) -q4 Bpm cosh Bypx! cos Apy! (\cos Py E)

1 1 (49)

or aqt |
t 4 AT o .
tan By 3 - k—%,; - 2 (50)
Py 5

’B:Le poasibility of determining velues of Byn and Apy 1o satiafy equations (44) and
(46) has beem established in texthooks on Fourier and other hermonic serise (referemce 6,
pp. 118-121) y and 1t 1e only necessary that the values determined define & convergent series.

The values of Apn, are determined by integrating equation (46) betwoen the limits of
=0 to x! = ‘L' and z =0 to z= JZE and substituting the valucs proviously determined

for B, and Pr in equa.tions (43) and (50). Tho integration is accomplished in two steps
uvaing the function cos Nyxdx and cos Pyzdz &8s multipliers.

For abbreviation,

¥ = (1% sinh Mggb! + o cosh MyDd!) (51)

PTTHLH "ON WA VOVN




Then

FElm! uny
¥ Amn co3 Pnz l 0082 Tpx' dx! = qo (T — Ty) coa Npx! dx' (52)
Jx'=0 x!'=0 .
because all the torms

'Ll
[ cos Npx' cos Npz' dx!'
0

vanlish when = ,ln. Whan oguatlon (52) is integrated, and the limlts substituted

xtal? : xt=3t
008 Py sin 2Nnx!] i(Tg ~T
V A gNPm I:I“'n“:I + 5 nIJ =4y [( o = T1) eln -Nnx'] (53)
o Nn
. x!'=( xt=0
or
sin 2§n 1’ Tea =T
VY Apn cos Ppz (1' + -—-—.,-—l-q-li—\a = 244 L%F—l)— gin Nt (54)
\ “Mn n
‘When tho value Np as determined in equation (43) is substituted
4 ~1)8-1
WAmcﬂBsz=ﬁ~q0(Tc—T1)-(2-ﬁ-—i—l—-=ﬂn (55)
When equation (55) im integratod in texmn of = wusing tho multipllor cos Pyzdz,
Y Apm L 008% Ppzdz = B [ 008 Pprdz _ (56)
=0 : «2=0

PITELE "OH W VOVN
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because s11 the terms

pof et

cos Pyz cos Pyzdz
}o

vanish when u ¥m. The integration of equation (52) glives .
f=g >
P 2

. 3 . K
-Am gin ZPmZ Bn
i 2......_..Pm sz o+ = = P---m gin Pij
z2=0

0
Bubstitutling limita,

Vo |5+ j =
2t Ty i

or . . . £

Ay = 2 Pr Sinl)mé- L
/" sin Z’Pm;-;- v
l+"—"—¥—

\. Zmz

In like mamner Byy 1s determined from equation (44) end tho equation for By, 1s

sin P ¥ L

B.(ml = 2£n. 4 K £
P 5 8in 2Py 5

cosll Bynl' [ 1 + T

09 o+

P

(57)

(58)

(59)

(60)

A
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whore

gn =2 (Te - Tr)

sin Apb? 1
Agb' [, sim Zhgp’
)

23

(61)
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APFENDIX B

EVALUATION OF THE TERM3 WHERE m > 1

The temperature distribution in the turblne blade under consid-
eration is determined neglecting the amaller terms when m > 1 and
using equation (37) in the form

[o <]
g = cos Plzz.n (Ajn cos Npx! cosh Mypy' +Bip cosh Rijpx' cos ApY*®)

. (62)

This equation will be valid for 211 practical purposes when the
thickness of the blede is small compared with the width and the
length. It is necessary, in demonstrating this statement, to expand
the double series given by equation (37) and inspect the terms con-
taining the function cos Pyz. The expansion of egquation (37) with
the subscripts in the order mn assumes the form

6 =(A1; cosh My;¥' cos Pyz+451 cosh Mpyy! cos Ppz +...) cos Nyx!

+(A1z cosh Mjoy! cos Pyz + Ay cosh Mgoy' cos Pz + ...} cos Nox!

+.o. + (A1, cosh My,y' cos Piz +Ap, cosh Mp,y' cos Poz+ ...} cos Nyx!

+(B17 cosh Ryyx' cos Pyz +Bpy cosh Royx' co8 Poz +..4) co8 A1y’

+(By2 cosh Ryox' cog P1z +Bos cosh Roox' cos PozZ + ...) €08 Apy!

+us0s + (B, cosh Rypx* cos Pyz +Bp, cosh RopX' co8 PpZ+ ...) COB Apy'

(63)

If all the other terms in the seriss are arranged so they become
coefficients of the function cos Pyz,
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A21 cosh Mo1y?
437 cosh Miyy!

6 = A7 cosh Myqy! (cos Piz + cog Poz + ...) cos Npx'

+ Aj2 cosh My ‘c:ost+A22 cosh Mgy cos Paz + \cosﬂx'+
12 2y 1 Bj5 cosh Mjoy! 2 / 2 sen

! Agn cosh Mgny! \
T
+ Ay cosh Myny &cos Piz + Ay, cosh Foy" cos Poz + ...,1 cos N,x*

/ Bpi cosh Roix!
+ By cosh Riyx*' ;cos Pyz + el 2

A B11 Gofh Bi1x’ cod Poz + ...) cos My!

B22 cosh Rogx!
By, cosh Rlzx’

+ Byp cosh Rypx’ {\cos Pz + cos PpzZ +.. ) COB Ap¥'

,

Y
8 Ppz+ ... cOB Ayt

I

! Bz cosh Ropx!
+ Byp cosh Ryx? kcos Pz + By, COSH RynX’ co

(64)

From eaquation (64) it can be seen that if the coefficlent of the
function cos Poz 1n any serles 1s negligible compared wilth unity,
the terms subsequent to cos Pjz may be disregarded for practical
application of the equation. Because the series 1s convergent for
escending values of n, 1t is only necessary to inspect the coef-
ficient of cos Ppz for a value of n = 1.

When the coefficient of cos Ppz in the Amp eeries is eguated

Eot g and the velues of Ay, determined by equation (58) are substi-
uted,

ot

‘1

j /

\_ 1% /(&M sinh Myjb' +q, cosh Myib') cosh Mpyy!
// ' T (kg1 sinh Mg)b' +gg cosh Moib') cosh Mipy!
\l

N\

(e5)
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or :
sin Pp » / sin 2Py 121\
B By R A |

t +t )
2 g \ 2P1 7/ (111 tanh M11b' +qp) cosh M11b' cosh Mpyy!
f;s = b3 LR
] i -~ 1 X
sin Py % sin 2Pp g\ (kM2] tanh Ma1b -bqof’uo§h Mz1b' coeh Mij1y
Tt '1'*"_"‘??“\
Pr3 . \\ 2Py 3 //

(66)

For the blade under consideration,

bt = 0.055 £t
k = 15 Btu/(nr)(£t)(°F)

1! = 0.3383 ft

qq = 222 Btu/(hr)(og £+)(°F)
q, = 2370 Btu/(kr)(sq £t)(°F)
t = 0.0l £t

From equetion {50)

Py = 53.74

P, = 632.99
From equation (43) : _ . o

N = 4.64 £-1
From equation (38)

My = 53.94 £t7F S

Mpy = 632.99 £t~1

The following circular and hyperbolic functions apply for these
values:
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gln Py 5 = 0.2654 cosh Myqb’ 9.7425

6.5907 x 104

sin Po = ,0234 cosh MZl'b'

ot et
|

sin 2P) £ = 0.5119  ocosh M3y

1 when y' =0

ein 2P, © = 0467 cosh Mpyy' =1 when y' =0

2
tanh Mj;b' = 0.995 cosh My y' = 7.4513 when J' = .05

2.7822 X 10Y° when y' = .05

tanh Mz]_'b' =1 cosh Mély‘

If the given values in equaetion (66) are substituted, the following
coefficients are obtained:

y' =0 § = ~5.738 x 10717
y! = 0.05 $ = ~2.142 x 10™%
¥yt =1 $ = ~3.882 x 10~

The values of @ obtained for the blade under consideration show

that the coefficlent of the cos Ppz +term has a maximum value at

¥! = b' and is then equel toc 0.4 percent of the first term and as
such may be dlsregarded for practical appllcations.

The effect of the socond term of the By, series can be inves-
tigated by equating the coefficient of the coms Pgz term to x and
the prevlous process ropeated.

sin P2 ; / sin 2P; g\
___.___b_: 1 o+ —
P2 3 \ 2Py 37 / cosh Ryj1* cosh Rpx!
L= t / t:, cosh Rg11' cosh Ryix’ (67)
gin P3 7 sin 2Pp 3\ 1L
—_t

{l+ T

Py \ 22z /

The application of equation (67) to the blade under consideration
requires the following values:

From equation (48)

A1 = 25.64 £t-1
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From equation (39)

Ry = 59.5¢ £371
Rpq = 633.51 ££71

With the values of Ry, and 1' used, the cosh Bppl' and
. etmmi’
cosh RypX' may be approximated by ~—— and equation (67)

becomes

gtn Po t // gin 2P g\

% 2+ T
F2 2 2Py 2
T = 2 == < o(1'-x")(R11-Rz1) (68)
sin Py 5 /' sin 2Po é\

—‘T— ‘1. + '——-—-{_——-
Pl '2— \ ZPE' é-

When the glven values in equation (63) are substituted for a
range of values of x', the following values of [' are found:

x! Distance from rim r
(ft) %)

0.005 { . . 0.3333 -
.3283 .01 1-0.4643 x 107%
.3333 .005 - .8227 x 10™3
.3383 0 - .1451 x 10-1

The coefficient of the cos Ppz term increases as the rim is
approached and reached a value of 1.5 percent of the first term at
this point. For purposes of this report, the temperature will not
be calculated within 0.005 foot of the rim and the cooling liguid.
With this limitation, the values of the second and subsequent terms
are neglizible. .



FACA RM No. E7Blld ’ 29

REFERENCES

1. Brown, W. Byron: Cooling of Gas Turbines. I - Effect of Aidi-
tlon of Fins to Blade Tips and Rotoxr, Admisslion of Cooling Alr
through Part of Nozzles, and Change in Thermal Conductiviity of
Turbine Components. NACA EM Ro. E7Blls, 1947.

2. Wolfensteln, Lincoln, Meyer, Gene L., and McCarthy, John S.:
Cooling of Gam Turbines. IL - Effectiveness of Rim Cooling of
Blades. NACA RM No. E7B1llb, 1947. .

3. Brown, W. Byron, and ILivingood, John N. B.: Cooling of Gas
Turbines. IIT - Analysis of Rotor and Blade Temperatures for
Liquid-Cooled Gas Turbines. NACA RM No. E7Bllc, 1947.

4. Harper, D. R., 3d, and Brown, W. B.: Mathematical Equations for
Heat Conduction in the Fins of Air-~Cooled Engines. NACA Rep.
No. 158, 1922.

S. McAdems, William H.: Heat Transmission. McGraw-Eill Book Co.,
Inc., 24 ed., 1942, p. 168.

6. Byerly, William Elwood: An Elementary Treatise on Fouriers
Series and Sphorical, Cylindrical, and Ellipsoidal Harmonics.
Glnn and Co., 1893.






NACA RM No. E7BIId Fig.

578

NAT |ONAL ADVISORY
COMMITTEE FOR AERONAUTICS

T e e
———m T = e

133 + 507

Figure |. -~ Arrangement of internal-cooling passages.

-



MAT IONAL ADYV ISORY
COMMITTEE FOR AERONAUTICS
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Figure 7. - Three-dimensional temperature distribution in rear part of turbine biade
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