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SUMMARY 

The  linearized  theory  of W i n  and  Burkart  for  two-dimensional  super- 
cavitating  hydrofoils  operating  at  zero  cavitation  number  is  applied  to 
the  derivation  of  two  new  low-drag  configurations.  These  sections  were 
derived  by  assuming  additional  terms  in  the  vorticity  distribution  of  the 
equivalent  airfoil;  in  particular,  three  and  five  terms  were  considered. 
The  characteristics  of  both  the  three-  and  five-term  airfoils  are  shown 
to  be  superior to the  Tulin-Burkart  configuration. For example,  the  two- 
dimensional  lift-drag  ratios  of  these  new  sections  operating  at  their 
design  lift  coefficient  are  theoretically  about 45 percent  and 80 percent 
greater  than  the  Tulin-Burkar€  configuration. 

A simplified  calculation  of  the  location  of  the  cavity  boundary 
streamline  for  arbitrary  configurations  is  also  presented.  The  method 
assumes  that  the  contribution  of  camber  to  the  equivalent  airfoil  vor- 
ticity  distribution  is  concentrated  at  the  center  of  pressure. 

INTRODUCTION 

In reference 1 Tulin  and  Burkart  present a linearized  theory  for 
determining  the  characteristics  of  supercavitating  two-dimensional  hydro- 
foils  of  arbitrary  section  operating  at  zero  cavitation  number.  It  is 
shown  that  the  hydrofoil  problem  may  be  transformed  into  an  equivalent 
airfoil  problem  which  can  be  treated  by  well-known  thin-airfoil  theory. 
The  theory  shows  that  hydrofoils  with  high  lift-drag  ratios  are  those 
whose  equivalent  airfoils  have  their  centers  of  pressure  as  far  aft  as 
possible  while  maintaining  all  positive  vorticity  over  the  chord. In 
reference 1 such a low-drag  section  was  chosen  by  specifying  only  two 
sine  terms in the  pressure-distribution  expansion (or equivalently,  the 
vorticity  distribution)  and  then  these  two  coefficients  were  adjusted 
so that  the  necessary  conditions  for'kiigh  lift-drag  ratios  were  satisfied. 
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The  purpose  of  the  present  report  is  to  derive  hydrofoils  whose  air- 
foil  center  of  pressure  is  further  aft  than  the Win-Wkart configura- 
tion  and  thus  even  higher  lift-drag  ratios  are  obtained.  One  obvious 
means  of  accomplishing  this  is  to  specify a given  pressure  distribution 
on  the  airfoil  and  then  to  determine  the  Fourier  coefficients  which 
describe  it.  This  procedure  usually  will  not  lead  to a closed-form 
expression  for  the  airfoil or hydrofoil  shape;  however,  the  method  does 
permit  adequate  solutions  in  tabular  form  to  be  made. In the  present 
case,  it  was  reasoned  that  superior  configurations  could  be  derived 
merely  by  choosing  more  terms  in  the  vorticity  series  expansion  and 
adjusting  the  coefficients  for  maximum  lift-drag  ratio  exactly  as  was 
done  by  Tulin  and  Burkart.  In  this  manner,  the  results  would  be  in a 
closed  form.  The  number  of  terms  chosen  for  the  analysis  was  specified 
as  three  for  the  first  case  and  five  for  the  second  case.  The  results 
of  calculations  based  on  these  presumptions  are  presented. 

Since,  for  practical  reasons  the  hydrofoils  must  have  some  thick- 
ness;  the  shape  of  the  cavity  streamline  leaving  the  leading  edge  is 
required.  The  thickness  of  the  hydrofoil  that  can  be  permitted  is  then 
such  that  the  hydrofoil  upper  surface  lies  below  this  free  streamline. 
The  linearized  theory  permits,  in  principle,  this  streamline  location 
to  be  calculated;  however,  when  the  expression  for  the  airfoil  vorticity 
distribution  becomes  very  lengthy,  the  calculation  is  very  difficult. 
If the  vorticity  due  to  camber  is  assumed  to  be  concentrated  at  the  cen- 
ter of pressure  of  the  airfoil,  the  problem  is  greatly  simplified.  The 
results  of an analysis  based on this  assumption  are  also  presented. 

A, 

A0 ' 

coefficients  of  sine-series  expansion  of  airfoil  vorticity 
distribution;  that  is, 

+ A1 sin 8 f A2 sin 28 . . . sin  ne e 

rc 
value  of A, when a = 0; that  is, A, ' = - 1 rc J0 3 de a2 

a distance  from  airfoil  leading  edge  to  center  of  pressure  in 
chords 
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C 

CD 

CL 

CL, d 

Cm 

cm, 3 

cP 

D 

k 

L 

M 

M3 

P 

pcn 

2 

v 
U 

V 

chord 

drag  coefficient,  D/qc 

lift  coefficient,  L/qc 

design  lift  coefficient 

pitching-moment  coeffic 

at a = O  

ient  about  leading  edge, M/qc2 

third-moment  coefficient  about  leading  edge,  M3/qc4 

pressure  coefficient, P - P, 
9 

drag  force 

number  of  terms  in  summation 
n=l 

lift  force 

pitching  moment  about  leading  edge 

third  moment  about  leading  edge, 

local  pressure 

ambient or free-stream  pressure 

dynamic.  pressure, $IT2 ' 

distance  from  section  reference  line  to  upper  cavity  streamline 

speed  of  advance, f p s  

perturbation  velocity  in  x-direction 

perturbation  velocity  in  y-direction 



X' dimensionless  distance  parameter  along  X-axis,  x/c 

X distance  along X-axY-8 

Y' dimensionless  distance  parameter  along  Y-axis, Y/C 

Y distance  along  Y-axis 

U geometric  angle of attack,  radians 

r circdatipn 

n vorticity 

0 variable  related  to  distance  along  equivalent  airfoil  chord 

by  equation x = $ c'(1 - cos 0 )  
- 

Subscripts : 

U due  to A, or if Ao' = 0 is  due  to  angle  of  attack 

C due  to  camber 

Barred  symbols  refer  to  quantities  in  the  airfoil  plane  and  unbarred 
symbols  to  quantities  in  the  hydrofoil  plane. 

SUMMARY OF 'TRE 'IULIN-BURKART LINEAFiIZED TKEORY 

Since  it  will  be  necessary  in  the  derivation  of  the  new  hydrofoils 
to  refer  frequently  to  the  linear  theory  of  reference 1, a summary  of 

' the  principal  results  of  that  theory  is  useful. 

In reference 1 it i s  shown  that  the  problem  of a hydrofoil  operating 
at  zero  cavitation nFber in the  Z-plane  may  be  txansformed  into an  air- 
foil  problem  in  the  Z-plane  by  the  relationship Z = - fl. By denoting 
properties  of  the  equivalent  airfoil  with  barred  symbols  and  those  of  the 
hydrofoil  with  unbarred  symbols,  the  following  relationships  are  derived: 
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The  coefficients An are  the  thin-airfoil  coefficients  in  the  sine- 
series  expansion  of  the  velocity  perturbations c(2) where 

where 

Since c(Z)  = 2 R ( 2 ) ,  equation ( 6 )  defines  the  vorticity  distribution 
on the  equivalent  airfoil  as 

The  values  of  the A coefficients  can  be  found  for a given  configuration 
from  the  following  equations: 

* dy 
= g,k cos  ne  de 



6 

The  first  term  in  equation (8) ; that  is,  the A, term,.  is  the 
vorticity  due t o  angle of attack  and  the  second  term  is  that  due  to 
camber. In order  to  isolate  the  effects  of  camber, A, will  be  con- 
sidered  zero. Any section  profile  derived on this  basis  will  also,  for 
convenience,  be  oriented  with  respect  to  the  x-axis  in  such a manner 
that Ao’ = 0. From equation  (9a)  these  conditions  require  that a 
also  be  equal  to  zero. Thus, the  derived  orientation  is  defined  as  the 
zero-angle-of  -attack  case. 

When A, is  set  equal 
a given  lift  coefficient  is 
follows : 

CT . (A1 - 

to  zero,  the  hydrofoil  lift-drag  ratio  for 
obtained  from  equations (3) and (4) as 

A9>\ 

Obviously,  for  maximum  lift-drag  ratio, - - A2 must  be  as  large  as  possi- 

ble.  However,  if  the  assumed  condition  that a cavity  exists  only  on  the 
upper  surface  is  to  be  real,  the  vorticity  distribution  given  by  equa- 
tion (8) must  be  positive  in  the  interval 0 5 8 4 n; that  is,  the  pres- 
sure  on  the  hydrofoil  lower  surface  must  be  positive  over  the  entire 
chord,  otherwise a cavity  will  exist  on  the  lower  surface. Thus, for 

maximum  hydrofoil  lift-drag  ratio, - - must  be  as  large  as  possible 
and  still  satisfy  the  condition  that 

A1 

A2 
A1 

With  the  stipulation  that  the  vorticity  distribution is defined  by 
only  two  terms  in  equation (11) , reference 1 finds  the  optimum  relation- 
ship  between A1 and  A2  as - - - - 1 This  results  in a hydrofoil A1 2. 
configuration  given by the  equation 
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From  equation (3) the  design  lift  coefficient  (that i’s, for . a .  = 0) for 
this  section  is 

and  the  lift-drag  ratio  for  this  condition  as  obtained  from  equation (10) 
is 

Since 7(/2CL represents  the  lift-drag  ratio of a  flat  plate,  the  config- 
uration  given  by  equation (12) has  a  lift-drag  ratio 25/4 times  as  great 
as  that  of  the  flat  plate.  When  the  hydrofoil  given  in  equation (12) is 
operated  at  an  angle  of  attack,  the  lift-drag  ratio  becomes 

The  present  analysis  is  concerned  with  the  derivation  of  two  new 
configurations.  The  problem  is  exactly  the same as  that  discussed  in 
reference 1 and  summarized  above  except  that  the  vorticity  distribution 
given  by  equation (11) is  defined by : (1) three  terms  and (2) five 
terms. 

DERIVATION  OF  LOW-DRAG HYDROFOILS AND TKFIR CHARACTERISTICS 

Statement  of  Problem 

The  problem  under  consideration is (1) to  find  the  values  of  the 
coefficients  in  the  vorticity  equation 

L 
n=l 

. _  

such  that - - is a maxim for  the  specific  cases  of k = 3 and 

k = 5, and (2) to’use the  method of reference 1 to  find  the  shape of 

A2 
A1 
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the  hydrofoil  which  when  transformed  to  the  airfoil  plane  has  the  vor- 
ticity  distribution  given  in  equation (16). 

Three-Term  Solution (k = 3) 

For the  Case k = 3, the  vorticity  distribution  given  in  equa- 
tion (16) becomes 

sin 8 + A2 sin  28 + A3 sin 38) 4 0 (17) 
1 

The  solution  of  equation (17) is  obtained  in  the  following  manner.  Let 

9 "3 = A1 (19) 

The  problem  is  now  to  find  a2  and  a3 so that a2 is a maxim and 

sin e - a2  sin 2e + a3  sin 3e 4 o (0 2 e 7 .> (20) 

Substituting  trigonometric  identities for the  functions of the  multi- 
ples  of 8, equation (20) may be  written  as 

The  minimum of equation (21) occurs  when 

e = COS -1 "2 
4a3 

Substituting  this  value  of 8 into  equation (21) gives 
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or 

Theref  ore , 

9 

and  the  term'under  the  radical  has  a maxim at  a3 = z. Thus, 1 

and  the  maximum  possible  value  of  a2  is 1 which occws when b = 0 

and  a3 = -. Since  these  values  are  obtained  by  considering  the  mini- 

rmm value  of  the  vorticity or pressure on the  airfoil,  the  condition 
Q(2)  2 0 is  satisfied for all  values of 0 (0 5 0 5 n) . Thus  the 
solution  for  the  vorticity  distribution  for  the  case k = 3 is 

1 
2 

0 - sin  20 + sin 30) (26) 

The  airfoil  slope  which  has  the  vorticity  distribution  given  by 
equation (26) is  obtained  from  reference 2 and  is  given  as  follows : 

Substituting  trigonometric  identities for the  functions of the  multiples 
of 0 ,  equation (27) becomes 

cos30 - 2 cos20 - 1 2 cos 0 + 1) 
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The  slope  of  the  equivalent  hydrofoil  is  obtained  from  reference 1 and 
is  given  as  follows: 

Equation (30)  states  that  the  slope  of  the  hydrofoil  can  be  obtained 
from  equation (29) by  replacing j; with E. 

Thus,  since E = (E, 

dy dx = A l k ( l  - 2 @ 7  - 2(1 - 2@2 - $6 - 26)+ 4 (31) 

Integrating  from 0 to x and  dividing  both  sides  by c gives  the  desired 
nondimensional  hydrofoil  shape;  that  is, 

By  using  equation ( 3 ) ,  the  lift  coefficient of this  hydrofoil  becomes 

C-L=15a+- 
2 ( 3 3  

or  for a = 0 the  design  lift  coefficient  is 

(33) 

The  following  drag  coefficient  may  be  obtained  by  using  equation (4) :  



NACA RM L57Glla 4emmmEL 11 

For a = 0 ,  the 

This  value 

as  large  as 

lift-drag  ratio  is 

- = '(E) L 
D 

is  nine  times  as  large  as  that  for a flat  plate  and 1.44 times 
the  value  for  the  hydrofoil  of  reference 1 where L = - 25( - * ). 

D 4 2CL 

The following  lift-drag  ratio  may be obtained  for  finite  angles  of  attack 
(eqs* (32) and (34)) : 

u 2 
+ -) 

Five-Term  Solution (k = 5) 

For the  case k = 5 the  problem  is  to  find  the  coefficients  in  the 
following  equation : 

a(; ; )  = 2V A1 sin 8 + A2 sin 28 + A3 sin 3Q + A 4  sin 48 + A5 sin 5 8 )  (38) ( 
so  that Q ( j r )  2 0 and - - is a maximum. A2 

A1 

First  attempts  at a solution  were  made  on a Fourier  synthesizer. 
The  synthesizer  is an electronic  device  which  is  capable of generating 
80 harmonics of a Fourier  series  and  recording  the  summation  of  these 
components  over  any  desired  interval.  The  amplitude  and  phase  angle  of 
each  harmonic  generator is controllable. By using  only  the  first  five 
components  and  zero  phase  angle,  it  was  discovered  that a solution  with 

- - roughly  equal  to 1.6 was  apparently  possible.  Unfortunately  the 
sensitivity  of  the  equipment  was  not  sufficient  to  assure  positive  values 
of. the,,.suTmna,t&op,,of  components  near  the  leading  edge.  However,  the syn- 
thesizer  result'was'encouraging,  since  it  showed  that  apparently  there 
was a considerable  advantage  to  using  five  terms,  and  revealed  some  of 
the  characteristics  of  the  solution;  for example, the  algebraic sign and 

A2 
A1 
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relative  magnitude  of  each  term.  The  .most  helpful  method  for  obtaining 
the  best  results  was  that  used in obtaining  the  three-term  solution. 
This  was  to  .find  first  the  minimums  of  equation (38) in  terms  of  the 
coefficients.  The  term - - was  then  assigned a value  and  the  other 
coefficients  were  determined  analytically so that  three  of  these  control 
points  (possible  minimums)  were  zero  and  the  values  of  the  others  were 
examined. By varying  the  value  of - A2 - and  the  choice  of  control 
points, a solution  was  obtained.  The  method  is  admittedly  one  of  trial 
and error and,  since  the  process  is  somewhat  lengthy,  the  details  are 
omitted.  The  best  solution  obtained  was 

A 2  
A 1  

A 1  

sin 20 + - sin 38 - - sin 48 + - sin 4 2 1 
3 3 3 

In  the  course  of  deriving  the  solution  it  was  proven  that  the  value 

of - - A2 must  be  less  than fi. Since  in  the  solution  given  by  equa- 
A 1  

tion (39) the  term - - has a value  of 413 (very  close  to  the  estab- 

lished  maximum),  f’urther  efforts  to  find a better  solution  were  not  con- 
sidered  worthwhile. 

A 2  
A 1  

By following  the  method  used  for  the  three-term  solution,  the  shape 
of  the  hydrofoil  corresponding  to  equation (39) is  obtained  as  follows: 

By using  equation (3), the  lift  coefficient  of  this  hydrofoil  may 
be  given  as 

or for a = 0 the  design  lift  coefficient  is 



The  following  drag  coefficient  is  obtained  by  using  equation (4) : 

and  for a = 0 the  lift-drag  ratio  is 

”“ 

- loor 9 2 C L  1 (44) 

This  lift-drag  ratio  is  about 11 times  as  large  as  the  value  for a flat 
plate  and  nearly  twice 

For  finite  angles 

as  efficient  as  the  configuration  of  reference 1. 

of  attack, 

(45) u 2 
(a + $ %,d) 

Comparison  of  the  Low-Drag  Configurations 

Shape.-  The  shapes  of  the  two-,  three-,  and  five-term  configurations 
given  by  equations (12), (32), and (40), respectively,  are  compared  in 
figure 1. It  is  apparent  in  figure 1 that  the  location  of  maximum  camber 

moves  toward  the  trailing  edge  as - A2 - is  increased.  This  movement 
corresponds  to  moving  the  center of pressure  of  the  equivalent  airfoil 
toward  the  trailing  edge.  It  is  shown  in  reference 1 that  the  limiting 

value  of - - A2 is 2 and  that for this  value  all  the  lift  is  concentrated 

at  the  trailing  edge. 

A1 

A 1  

An important  point  to  note  in  figure 1 is  the  appreciable  deviation 
of  the  three-  and  five-term  hydrofoils  from  the  X-axis. A similar  devia- 
tion  from  the  z-axis  exists  in  the  airfoil  plane whereit was  originally 
assumed  that  the  vorticity  was  concentrated  along  the  X-axis.  Evidently 
the  assumption  is  not  as  good  for  the  higher  term  hydrofoils  as  it  is 
for  the  two-term  configuration,  particularly  for  large  magnitudes  of 
camber. As a result,  the  linearized  theory may be  less  accurate  in  pre- 
dicting  the  characteristics of the  new  hydrofoils. 



'Pressure  -distribution. - From eq~tions (2) and ( 6 )  and the  'linearized 
Bernoulli  equation,  it  can  be  shown  that  the pressure distribution  over 
the  hydrofoil  chord for A,' = 0 is 

or separating  the  two  components  into  contributions  of  angle Of attack 
cP ,a and  camber, CpJc gives 

and 

In equations (47) and (48) the  location  on  the  hydrofoil  corresponding 
to a given  value  of 8 can  be  found  from  the  relationship 

25 = r;(l - cos  0)2 1 
C 

since $ = (ET. The coefficient A1 defines a particular  value  of  the 

hydrofoil  lift  coefficient  at a = 0; that  is,  the  design  lift  coeffi- 
cient  CL,d  given  in  equations (13), (34) , and (42) . Therefore,  with 
the  aid  of  these  equations,  equation (48) can  also  be  written  in  terms 
of C L , ~  as 

n=l 



Thus,  the  total  pressure  distribution 
from 

c P = (%)a+ 
on  the  hydrofoils  can be obtained 

(%)CL,d 

Equations (47) and (49) are  plotted  in  figure 2 for  the  three  hydrofoils 
under  consideration.  It  is  apparent  in  figure  2(a)  that  the  location of 
the maxim pressure  moves  aft  as - A2 - is  increased.  It  may  also  be 
seen  that  the  adverse  pressure  gradient  to  the  left  of  the  pressure  maxi- 

A1 

mwn also  increases  as - A2 - increases.  Thus  the  f  ive-term  hydrofoil  is 
A1 

more  susceptible  to  boundary-layer  separation  than  the  other  two.  If 
such  separation  occurs,  the  pressure  distribution  shown  will  be  con- 
siderably  altered.  This  of  course  also  applies  to  the  two-  and  three- 
term  solutions  but  to  a  lesser  degree.  Because  the  adverse  gradient 
increases so rapidly  with  increase  in - -, it  is  believed  that  further 

increases  in - - attained  by  considering  more  terms  in  the  vorticity 
expansion,  will  not  be  practical. 

A2 
A1 

A1' 

The  small  pressure  "humps"  near  the  leading  edge  of  the  three-  and 
five-term  hydrofoils  are  peculiar  to  the  solutions  found  but  could  be 
eliminated  by  proper  adjustment  of  the  coefficients.  However,  the  exist- 
ence  of  these  humps  is  probably  not  important  in  a  practical  configuration. 

Lift-drag  ratio.-  The  lift-drag  ratio  and  lift  coefficient  given  by 
equations (l5), (37), and (45) are  plotted  for  the  three  low-drag  hydro- 
foils  in  figure 3. The relationship 5 for  a  flat  plate  is  also 

included.  The  solid  lines  show  the  lift-drag  ratios  of  the  three  low- 
drag  hydrofoils  when  operated  at a = 0 but  for  various  magnitudes  of ' 

camber;  that  is, CL,~. The  broken  curves  are  for  the  particular  magni- 
tude  of  camber  for  which  CL,d = 0.2 and 0.4, but  the  angle  of  attack 
is  varied. 

D = z  

In figure 3 it  may  be  noted  that  the  lift-drag  ratios  of  the  three- 
and  five-term  solutions  when  operating  at  their  design  lift  coefficients 
are  considerably  higher  than  the  two-term  solution  of  reference 1. It 
is  also  evident  in  figure 3 that  the  relative  magnitude  of  the.lift-drag 
ratios  of  the  three  sections  decreases  with  increase  in  angle  of  attack. 
However,  figure 3 shows  that  the  reduction  in L/D with  increasing  angle 
of  attack  is  lessened  by  using  higher  values  of CL,~. Only  the  shaded 

I 
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portion  of  figure 3 is  considered  of  practical  value  because  the  hydro- 
foil  must  operate  at  finite  angles  of  attack as will  be  pointed  out  in 
the  following  section. 

APPROXIMATE  LOCATION OF THE CAVITY BOUNDARY STREAMLINE 

The  desirability  of  operating  as  near  the  design  lift  coefficient 
as  possible  is  obvious  from  figure 3 .  Therefore,  since  the  hydrofoil 
must  have  some  thickness,  the  minimum  angle  at  which a hydrofoil  with 
finite  thickness  can  operate  with a cavity  from  the  leading  edge  is 
needed.  The  angle  can  be  determined  from  the  linearized  theory  of  ref- 
erence 1 by  determining  the  location  of  the  upper  cavity  boundary.  The 
minimum  angle  at  which  the  upper  cavity  streamline  clears  the  upper sur- 
face  of a hydrofoil  of  finite  thickness  is  the  angle  desired. An approx- 
imate  solution  for  the  location  of  the  cavity  streamline  is  derived  in 
the  following  analysis. 

It  is  shown  in  reference 1 that  the  slope  of  the  cavity  upper sur- 
face  formed  on a two-dimensional  hydrofoil  operating  at  zero  cavitation 
number  and  infinite  depth  can  be  obtained  by  transforming  the  vertical- 
velocity  perturbations  ahead  of  the  equivalent  airfoil  to  the  cavity 
upper  surface.  These  velocity  perturbations  are  obtained  by  setting  up 
the  expression  for  the  velocity  induced  at a point -x, upstream  of  the 
equivalent  airfoil.  The  procedure  usually  leads  to  very  complex  prob- 
lems  in  integration,  particularly  if  the  series  expansion  of  the  vor- 
ticity  distribution  contributed  by  the  camber  is  very  lengthy.  This 
complication  is  avoided  in  the  analysis  to  follow  by  assuming  that  the 
vorticity  contributed  by  the  camber  is  concentrated  at  only  one  location, 
the  center  of  pressure  of  the  airfoil  when = 0. The  magnitude  of 
the  concentrated  circulation  is  similarly  prescribed.  The  method  can  be 
expected  to  give  only an approximate  answer,  particularly  if  very  much 
of  the  camber  vorticity  is  located  near  the  leading  edge.  However,  for 
the  new  low-drag  cambered  sections  being  considered,  the  vorticity  due 
to  camber  is  in  fact  concentrated  away  from  the  leading  edge  (as  indi- 
cated  by  fig. 2) and  the  approximation  should  be  very  good. 

The  hydrofoil  and  its  equivalent  transformed  airfoil  are  shown  in 
figure 4. The  symbols  used  in  figure 4 are  those  used  in  reference 1 
where u and v are  the  velocity  perturbations  in  the x- and  y-directions 
in  the  hydrofoil  plane,  and 6 and 7 are  the  perturbations  in  the  air- 
foil  plane  induced  by  the  airfoil  circulation. In the  airfoil  plane  the 
vorticity  is  divided  into  two  components 
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The  first  of  these, Ra, is  taken  to  be  distributed  over  the  chord 
exactly  as  given  by  equation (51) . However,  to  simplify  the  problem, 
the  second  component  of  vorticity  is  assumed  to  be  concentrated  at  one 
point  on  the  chord - the  center  of  pressure  when A, = 0. This  point 
is  given  in  figure 4 as a distance  ac'  aft  of  the  leading  edge. The 
magnitude of the  concentrated  vorticity  is  denoted  as PC (circulation 
due  to  camber)  and  is  given  by  the  following  equation  which  is  obtained 
from  thin-airfoil  theory  (for  example,  see  ref. 2) : 

The  velocities  induced  by  the  circulation  contributed  by A, are denoted 
as  and  those  due  to  are  denoted  as vc. 

- 
" 

The  slope  of  the  cavity  upper  surface  in  the  hydrofoil  plane  is 

and  therefore 

The  first  term  of  equation (55) 
therefore,  only  the  contribution  due 

has  been  evaluated in reference 1; 
to  camber  need  be  considered  here. 

In figure 4 the  induced  velocity  at  any  point  along  the  z-axis  due 
to  the  circulation rc is 



i8 
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At a point  forward  of  the  airfoil -x, - 

since c' = 6. 

From  equations (55) and (57) 

where  'the  center  of  pressure  of  the  airfoil a is  found from the  thin- 
airfoil  theory,  for A, = 0, as 

By  combining  equation (58) with  the  linearized  flat-plate  solution  of 
reference 1, the  complete  solution  for  the  shape  of  the  cavity  upper 
streamline on arbitrary  configurations  is 

y' = .[-x. + '(1 2 + 2G) ({ZTF)  + $ log, (1 + 2 p  - 2i-q + 

where x' and y '  denote  the  dimensionless  parameters, x/c and y/c .  
In this  equation y is  the  distance  from  the  X-axis  to  the  cavity upper 
surface.  When  the  hydrofoil  reference  line  is  at  an  angle  of  attack, 
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as  can  be  determined  from  figure 4. When  equation (60) is  substituted 
into  equation (61) and A, is  replaced  by  its  equivalent a + A,' from 
equation ( 8 ) ,  the  following  equation  is  obtained: 

where  Z/c is the  dimensionless-distance  parameter  from  the  hydrofoil 
reference  line  to  the  cavity  upper  surface. 

By separating  the  angle  of  attack  and  camber  contributions,  equa- 
tion (62) may  be  written  as 

where  for  the  case of A,' = 0, which  applies  to  the  low-drag  hydrofoils 
under  consideration, 

& a = $(1+ 2c)(Ix'+;;?) + t loge(l + 2@ - 2 m )  

'and 

I .  
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For  each low-drag hydrofoil, . A 1  may be replaced by i t s  equivalent 
i n  t e r n  .of CL,d and equation (62) may be writ ten as 

where 

and K = - which i s  - for  the  Win-Burkart  design, - for   the  
2cL, d 5fl 3fl 
A1 4 2 

three-term  design, and - for  the  five-term  design. 3 
5fi 

The value of a may be determined from equation (59) and i s  3/8,  
3/4, and 5/6 for  the  Tulin-Burkart, three-term, and five-term  hydrofoils, 

respectively. I n  figure 5(a), is plotted  against  x/c  and i n  

figure ? (b) ,  2 is  plotted  against  x/c  for  each of the low-drag e )  
CL, d 

hydrofoils. It i s  important to   note   the  re la t ive magnitudes  of the 

(8 coefficients and 2 fo r  a given  value of x/c. A t  t he   t r a i l i ng  
CL,d 

(3 (4 edge, 2 i s  roughly 10 times as   great  as 2. This means that 
U cL ,d 

except  for small angles,  the  angle  of  attack i s  predominant in   pre-  
scribing  the  cavity  shape. 

The adequacy of the assunption of concentrated camber vor t ic i ty  i s  
shown in   f igure  5(b)  by comparing the  sol id  (A) curve w i t h  the dashed 
one. The so l id  curve was computed from equation (28 )  and the dashed 
curve  obtained from the  coordinates  given i n  reference 3. The tabulated 
coordinates of reference 3 were  computed for  the  Tulin-Burkart  section by 
considering the vo r t i c i ty   t o  be distributed  as  given  in  equation ( 5 2 )  and 
performing the  necessary  complicated  integration. 
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In figure 6 the  cavity  shape  derived  from  equation (64) for  the low- 
drag  hydrofoils  is  shown  for C L , ~  = 0.2. Also shown  in  figure 6 is  the 
lower  surface of each  design  for  the  value of CL,d = 0.2. An inter- 
esting  point  (first  noted  in  reference 3 )  is  revealed  in  figure 6. The 
calculated  cavity  shape  at  'the  design  angle  of  attack  falls  beneath  the 
lower  surface  of  the  configuration.  This  result  was  not  expected  for 
these  low-drag  hydrofoils  because  the  camber  was  selected  to  have  posi- 
tive  pressure  everywhere  on  the  lower  surface.  It  is  believed  that  the 
disagreement  is  due  to  the  inability  of  the  linear  theory  to  accurately 
predict  the  pressure  distribution  when  the  airfoil  vorticity,is  not  in 
reality  distributed  along  the  x-axis.  However,  the  shape  of  the  cavity 
as  determined  from  the  linear  theory  is  much  less  sensitive  to  the  devia- 
tion  of  the  true  location  of  the  vorticity  from  the  x-axis.  That  is,  the 
distance  from a point  on  the  equivalent  airfoil  to a point  forward  of  the 
leading  edge  is  approximated  very  well  by  only  the 8 component  of  the 
distance.  Thus,  it  is  seen  that  the  pressure  distribution  predicted  from 
the  linear  theory  will  be  more  nearly  correct  when  the  equivalent  airfoil 
is  at an angle  of  attack  and  more  symmetrically  located  about  the  x-axis. 
It  appears,  then,  that  low-drag  hydrofoils  such  as  those  derived  in  the 
present  paper  and  reference 1 can  never  be  operated  at  the  design  angle 
of  attack  for  the  following  two  reasons: (1) an upper  surface  cavity 
will  not  form  even  on  an  infinitely  thin  configuration  and (2) some  thick- 
ness  must be provided  for  strength.  The  possibility  that,  near  the  design 
angle  of  attack,  the  pressure  distributions  shown  in  figure 2 are  incorrect 
has  been  indicated  by  experimental  investigation  in  reference 4. Even  at 
an  angle  of  attack  of 2O, cavitation  was  found  to  occur  near  the  leading 
edge  on  the  lower  surface  of  the Win-Burkart configuration  used  in  the 
investigation. 

Because  of  the  need  for  operating  at  finite  angles  of  attack,  the 
upper  portion  of  figure 3 has been  shaded  to  indicate  that  the  lift-drag 
ratios  calculated  near  the  design  lift  coefficient  are  of  academic  interest 
only. In general,  the  minimum  angle  at  which  supercavitating  flow  from  the 
leading  edge  is  possible  will  be  equal  to o r  greater  than  about 2'. The 
exact  minimum  angle  and,  thus,  the  practical  range  of  operation  will  be 
determined  by  the  type  and  magnitude  of  camber  and  the  thickness  required 
for  strength. 

In figure 6 the  cavity  streamline  shown may be  considered  as  possible 
upper  surfaces  of  practical  hydrofoil  configurations.  For a given  angle 
of  attack  the  five-term  hydrofoil  permits a thicker  leading  edge  and a 
more  uniform  section.  These  features  are  desirable  structyrally. 



CONCLUSIONS 

" . .  : ' I  

' The'principal rebuts obtained  in  the  applfcation  of  the  linearized 
, '  theoh to  the  design  of  new  configurations may be  summarized as follows: _ .  . 

1. The  two-dimensional  lift-drag  ratios of the  two  new  sections 
operating  at  their  design  lift  coefficient  are  theoretically  about 43 
and 80 percent  greater  than  the Win-Burkart configuration. 

2. T h &  relative  magnitude  of  the  lift-drag  ratios  of  these  new  con- 
figurations  as  compared  with  those of the Win-Burkart design  decrease 
with  increase  in  angle  of  attack. 

3. The  simplified  equation  developed  for  the  cavity  boundary  stream- 
line  for  arbitrary  shapes  is  in  good  agreement  with  the  more  exact  solu- 
tion  for  the Win-Burkart Section  and  should  be  adequate  for  all  low- 
drag  sections. 

4. Low-drag  hydrofoils  developed  from  the  linear  theory  cannot 
operate  at  the  design  angle  of  attack  because  an  upper  surface  cavity 
will  not  form  even  for  sections  with  zero  thickness.  The  sections  must 
be  operated  at an angle  of  attack  slightly  greater  than  the  design  angle. 

Langley  Aeronautical  Laboratory, 
National  Advisory  Committee  for  Aeronautics, 

Langley  Field,  Va., July 2, 1957. 
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Figure 1.- Low-.drag supercavitating hydrofoils. a = 0. e P 
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CONFIGURATIONS 
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(a) Contribution due t o  camber. 
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( b )  Contribution due t o  angle of attack. (%)total = (cp/cL,d)cL,d + (cp/")"* 

Figure 2.- Pressure  distribution on low-drag supercavitating  hydrofoils. 



26 NACA RM L37Glla 

1 CI I I I I I I I 
0 .1 .2 .3 .b -5 06 0-7 e 8  

CL 

Figure 3 . -  Variat ion of L/D and CL for low-drag hydrofoils. 
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Figure 4.- The hydrofoil and equivalent   a i r foi l  planes. 
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(a) Contribution due t o  angle of at tack. 
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( b )  Contribution due t o  camber. 

Figure 5.- Shape of the  cavity upper surface. 
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Figure 6.- Location of cavity  upper  surface for low-drag supercavltatlng 
hydrofoils, C L , ~  = 0.2. 

mmhm- NACA - Langley Field, Vd. 



. .  


