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f o r  tbe 

By Robert C. Rob3-afon 

The Xorthrop YB-@ alrpLane i a  a jet-propelled modrtfication 
of t h e  -35 d r p l a n e  and ie pawered by eight TG-W engines. 
Extensive low-speed wind-tunnel tes ts  of modela of the m-35 
airplane have been reported i n  references 1 and 2, but, since 
the jet-powered yB"49 wfll at-taln apprecfably higher speede, it 
was considered  desirable to test a model at  high Mach numbers 
in order t o  find the effects of cmpress ib i l f tg  on its lor&- 
tudinal stability  and control.  Accordingly, a t  the request of' the 
A i r  Bkteriel Cnmmsnd, U. S. A m y  Air Forces, a 1/7-ecale semispan 
model of t h e  YB-49 airplane was t es ted  in the Arms I6-foot hi&- 
sped wZcd tunnel. 

The haEdpen model waa mounted with its plane of symmetry at 
t k e  w i n d - t m n e l  wall and w f t h  no supporting menibere inside the t e s t  
section. L i f t ,  drag, pitching+aomnt, and elevan hhge-maments 
were me8ElWed at several angles of attack and Mach nunibem. Thie 
regort  describes the effects of c c m p s s i b i l i t y  011 the above 
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characteristics  and 011 the  effectiveness of the longitudinal-control 
surfaces. 

The model, furnished by Northrop Aircraft, k c . ,  was a modifi- 
cation of the XB-35 m o d e l  wed f o r t h e  tester reprted in reference 
2. The etructure of the model consieted of a steel box spr and 
plywood rib8  covered with a plywood skin. All supporting members 
were outside the tunnel. Two control  surPace8 were provided, an 
elevon which  extended from 38.2 to 75.9 percent of t h e  semispan 
from the plane of symmstry, and a longitu&inal trim f lap which 
extended frcsll 75.9 percent of the  senispan to t h e  wing tip. The 
elevon, which W&B equfpped with an electrical  straln gauge and a 
remoto-control poeitioner, had &IS intermally sealed balance,the 
chord of which waa ap?rorimately k0 percent of t h e  elevon chord aft 
of t h e  hinge line. Tho airplane duct system wa8 repesentsd with 
the entrance built  to scale and tho t o t a l  exit area to ecale but 
made up of three jet tubes instead of four tubes a6 on the airplane. 
During t h e m  tests the ratio of duct  entrance velocity to free- 
stream velocity was approximately 0.31. There were two  vertical 
P h s  on the model, one just outboa;rd of' the  Jet  tubes and the other 
on t h e  inboard aide of the Jet tubes. Dorsal fine extended forward 
on t h e  uppGr M a c e  to the  f&percent+hor& line. The firm can be 
aeon in figure 1, which e h m  the mdel mounted in t h o  164oot wind 
tunnel, and in figure 2 which is a drawing of t h o  model. "he more 
important dlmemions of t h e  half-epan model &re as follows : 

W i n g  area of model, square feet . . . . . . . . . . . . . .  40.82 
Span of model,  feet . . . . . . . . . . . . . . . . . . . .  12.30 

W i n g  chord at root, feet  . . . . . . . . . . . . . . . . . .  5.36 

W i n g  chord at tip, feet . . . . . . . . . . . . . . . . . .  1-33 

Mean aorod;gnamic chord, feet . . . . . . . . . . . . . . .  3.35 

Sweepback of 25-prcent-chord line, degrees . . . . . . . .  23.12 
Dihedral of 25-percent-chord line, degroee . . . . . . . . .  1.00 
Twist about 2>prcent-chord. line, degree0 washout . . . . .  4.00 
Airfo i l  ecction at r o o t  . . . . . . . . . . . .  NACA 65(318)--019 
Airfoil section  at t i p  . . . . . . . . . . . . . .  NACA 65,3418 

Elevon chord, percent w i n g  chord (approx. ) . . . . . . . . . . .  18 

. 



Elevon span, feet . . . . . . . . . . . . . . . . . . . . . . .  4-73 

Elevon W a n c e ,  percsr,t, of elevon chord aft of hinge 
line (a,proz.) . . . . . . . . . . . . . . . . . . . . . . .  40 

Mean of squared elevon chords, equare feet . . . . . . . . .  0.309 

v freo+stream velocity, feet per second 

Mo uncorrectob Mach n-er 

S wing area, square feet  

M.A.C. man aerodynamic chord, feet 
- 
Ce2 nean of t h e  s:uared elevon chords, square feet 

% lift coefficient lift 
(rs 

CD drag coefficient - a43 
QS 

pitching moment about \ 

h .  

a angle of a t tack  of rmt &or& corrected f o r  jet-bow- 
affects , degrees 

3 
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azl uncorrected angle of attack of roct chord, degrees 

Aa an.;le of attac-: increment, b g r e e s  

ACD drag coefficient increment 

Et longitudinal t r i m  f lap  deflection, degrees (Poeitivo xhon 
trailing edge i e  down. ) 

c.g.’ longitudinal cente-fsravity location f o r  neutral 
stability, etick Ptxed, percent of M.A.C. 

CALIBRATION AIXD COHRECTIONS TO DATA 

The dpamic pressUr0 c a l i b m t f a  w e d  in those hstS W 8 8  

obtained from a static preesure survoy of the test section w i t h  
the tunnel empty except for the survey appsratus, and t h e  c a l l -  
bratian was corrected for t he  blockage due to the moctel. As thia  
correction wae applied to tho Mach number and to t h e  .dynam5c 
Fressure bsf ore  the mode l  testa, 3t WELB not noceasary t o  comcct 
th8,coefficionts f o r  a change in Qnamic proseure &e WBB done in 
reforence 3, which discussee tho method of calibration and  tho 
blockage corrections. The blockage corroction was 

where 

Moments wore comptod about a cento-fmvity a t  25 gorcont 
of t h e  mean a a r o ~ c  chord and on tho root chord linc. Correc- 
tions to theangle of attack and drag coofficlont  duo to t h o  jot 
boundary were calculated from tho charts of roferonco 4 and appliod 
t o  tho data. Tho corroctians wore:’ 

AU =I 1.125 k, C O ~ ~ O O E I  

ACD = 0.0197 Q2 
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Lift and Longitudinal Stabi l i ty  

. 

The offocts of cmprossibility on the aerodynamic c h a r a e t o ~  
i s t i c s  of tho -9 model, 88 shown bg We t o e t s  in tho l-oot 
high+poad nfnd tunnel, bogan t o  appear at a Mach numbor of about 
0.70 and war0 marked at  a Mach n-sr of 0.775. Fi-ro 3 shows 

hingMnamont cocfficiont againet l i f t  coefficient at  four elevon 
angles f o r  Mach nunibers from 0.40 t o  0.725. Vibration of tho  
olovon prevented the msasuremnt of hlnga mornsnte at higher Mach 
numbers, but by rigidly restraining the elevon at  both on& It wae 
possible t o  take force data up t o  a Mach numbor of 0.775. Uft 
and pitching+aomnt data with t he  elevon restrainod are peaented 
i n  figure 4. The variation of pftching+nmont  coefficient with 
lift coeff icient in f iguro 4(a) shows longitudinal €netability 
beginning a t  a lift coefficient of about 0.35 and a Mach nuIlibor 
of 0.70. A t  highor Mach IxIIpbors tho lnskabflity pro~ressos t o  
lower l i f t  coefficionts, b o w  strong at a Mach numbor crf 0.n5 
and zero lift. The lift-curvO elope wa8 8180 much reduced at a 
Mach  numbor of 0.775. Tuft atudlos showect that the instabi l i ty  
rssulted f r o m  st&lling of' the outBoard .portion of -the wing, while 
lift was mainkind  over 8 large area noar "310 root. Ffgure8 5 
and 6 prosont tuft pictures fo r  uncorrected angle13 of attack of 
2O and 40. It is a p p e n t  that at 20 the t i p  stall occurred 
between Mach nunibem of 0.75 and 0.775, while at 40 it occurred 
betwoen 0.725 and @. 75. 

CW'VOB Of -0 O f  attack, pitChf.~~CXYEllt  COoffiCiat, and C3lOTOll  

The variation w i t h  Mach number of lift coefficfcnt, p l t & ~ -  
maslont coefficlont,  lift"curve elope, and longitudinal stabfl i ty  
is sham more clearly fn figure 7. Curves of lift coofficiont 
against Mach number are presented fo-r constant angles of attack 
from Go to 60 and pitchin@;-mcanont coefficient against Mach 
number is pmsented fo r  constant IWt coofficionte f m  -0.10 to 
0.40. Ir? the range of model attitudos covorod, tho hch nwibers 
of l i f t  and pitchin.g+mcent divorgenco variod from about 0.72 t o  
0.675. The C W ~ B  of pitch.ing+nornent cosfficicnt against Mach 
number in figuro 7 ahow a cliniblng m o m e n t  at all poeitivo l i f t  
coefficients for Mach nmibera abovo 0.735 dm t o  tho lose of 
l i f t  on tho outboard part of t h o  wing at the hi&or Mach numbom. 
Lif't-curvo slop0 and contcr-of--gravit;y position for neutral 
s t ab i l i t y  shown for lovol-flight l i f t  cmfficfonta (160,000 
Ib gross woight) and zero pitching m m m n t  a t  altftudos of sea 
levol, 25,000 feet, and 35,000 feet. At sea love1 tho lift-curve 
slope reached a maximum of 0.094 per dogme a t  a Mach nunibor of 
0.725 and thon  decraaesd  rapidly with increasing Mach numbor aa 
tho outer portion of tho w i n g  stelled. !Flm stick-fixod neutral 
point roached its m o s t  roarward position (34 porcont of tho 
M.A.C.. ) at a Mach  numbor of' O. ' j25  and then moved rapidlr forward 
with i n c r w i n g  Mach number. A t  25,000 f o o t  altltudc the  variation 
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of  lift-curvo elope and noutral  point with Mach numbor waa  little 
differont from that  at s a  lsvd, but.at 35,000 foot tho break6 in 
tho  curvos  occurred at a samskihat lowor Mach number. 

Tho variation  of  olovon mglo and devon hingo-momont  coof- 
ficiont f o r  balance  with indicated siragosd  is shown in figUro 8 
for throe  altitudes and throe m&ol conditions choson to show the 
offocts  of triwflap dofloction and boundary-lapr  tranai-tion on 
tho stability of the modol. Tho curv~fs ahm tho prosonco of 8tfck- 
fixod stability ovor most of tho sgeod rmgc f o r  all t h o  condition6 
sham oxcopt at tho highor spooda whom thorn is a emall rogion of 
i n s t ab f l i t y  follmed By oxtmmo stability. Tho extromo  stick-ffxod 
stability at tho highor Mach nunibera is ovidmtly duct t o  t h o  loa6  of 
elovon  effectivenoes which is shown i n  a lator figum. Tha effoctrs 
of trim"flap dofloction on the v-ariation of alcvon a g L o  for bal- 
ance with airspod variod with altitudo. At, 808 lovsl t h o  main 
offoct was a mduction in stick4ixod stabflity, whilo at tho higher 
altitudes tho stabil:ty W&B ihcroasod at t h o  lowor spcocb, followed 
by a region of mducod stabfllty.  At  highoat.spcod8 t h o  offocte 

on tho uppor surface at 15 porcont of t h o  chord had an effoct 
similar to that of tho mall deflection of t b e  trim f lap.  Tho 
variation of elcvon hingo+mmmt with aimpod indicated  stick-frco 
stability  over tho epood rango covered In t h o  toet, and tho stability 
incroasod  with  fncreasing  altitude.  Deflection of t h e  trim flap 
affoctod tho hing-nt coefficimt Fn much the 8- marnor aa it 
did tho  elevon angl.0 for balance.  Fixing t h o  bomdmy-layor transl- 
tion  at 1-5 p r c o n t  of tho chord on the uppor surfaco docroasod tho 
atick-froo  etability  elightly over most of t h o  apood ranf30. 

Of t ho  trim f b p  sma.U. Fixing tho boundary-laycr trcill8itiOIl 

Longitudinal  Control 

Figuro 9 prosonts t h o  variation of pitching-momnt coofficiont 
and  olovon  hinge-ncmmnt  coefficiont w i t h  olovm -10 at constant 
. l i f t  coefficients f o r  Mach  nmibors  from 0.40 to 0.725. Hingo 
moments  wora not moasurod  at Mach nmbors high enough to show any 
pronounced  effect6  duo t o  comproasibility, hwevor, for nogativo 
olovon anglos tho curvo8 show an increasod  ncgativc valuo of &&6, at a Mach numbor of 0.725, indicating tho boglnning of 
a decroasc in bahnco affoctivoneas. Tho vcriatim of  pitching- 
momont  coefffciont with olovon mglo  f o r  Mach nmbom of 0.70 to 
0.7T3, with tho  afovan r igfdly restrained,  ie'prosontcd in 
figuro 10; and In figure 11 tho offacts  of  lcm@;itudind-trim-flap 
dofloction on pitchingamont coefficient a m  shown. Elovon and 
tri-flap effectivcnom ware moasurcd from figures 9, 10, and 11 
and are riottad  against  Mach  numbor in figuro 12. Tho data %mil- 
cate that at ZCFO lift  coofficiont & rathor rapid docroaso in 
olovon  offectfvences bogan at a Mach numbor 0.725, whilo at a 1lft 
cooff iciont of 0.4 an increase in effoctivomss began botwoon Mach 
T1UmboF6 of 0.65 and 0.70. Howover, t h e m  valuoe are f o r  zoro 
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The varlatia of dmg coefficfent w i t h  l i f t  coef'f icimt for  
several Mach nunibem is presented in figure 13. The dra@; cmf'f5- 
cient at zero lift and 0.40 Mach number (Reynolds number about 
8.5 X lo6) wa8 0.011 c a p i r e d  w i t h  0.012 reprted in reference 2 
for a Mach nutziber of about 0.12 a3ad a Repolds n-er of about 
7.5 x lo6. 

1. Static longitudinal inetabi l i ty  began to appeaz at 0.70 
&ch number and a lift coefficient of 0.35. At level-flight lift 
coefficients the stabflity decreased rapidlg 8a the Mach nlmiber 
-creased above 0.725. 

Ames Aeronautical Laboratory, 
National Advisory CcmrLttee for Aeronautice, 

Mof fett Field, Calif. , 

Approved: Robert C. Robfnson, 
Aeronautical $ngineer. 
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FIGURE ZEG3ND8 

Figure 3.- I h e  effecte of elevon deflection on lift coefficient, 
pitchingaomnt coefficient, and elevon h i n g m n t  coefficient. 
l/7"scale yB-49 model. (a) M = 0.40. 

Figure 3.- Continued. (b) pi = 0.55. 

Figure 3 .- Continued, (c) M = 0.65. 

Figure 3.- Continued. (a) M = 0.70. 

Figure 3.- Concluded. (e) M = 0,725, 

Figure 4.- Ihe effects of elevon deflection on lift coefficient Ebnd 
pitching-mcnnent coefffcient wfth the elevon r i g i a y  restrained. 
1/7-scale -9 d e l .  (a) M = 0.70. 

Figure 4.- Continued. (b) M = 0.725. 

Figure 4.- Continued. (c) M = 0,75. . 

Figure 6.- Wts on the -9 semispan model. a = bo. 

Figure 7.- Ihe effects of cmpessibility on Uft coefficient, 
pitching-mament coefficient, fift-curve elope, and longitudinal 
stability. l/?-scale YB-kg model. 

FiguSe 8.- The variation of elevon deflection and elevon hi" 
mment coefficient w i t h  indicated airspeed f o r  balance. 
1/7-scale %g mociel. 

Figure 9.- The variation of pitching-ent coefficient and. elevon 
hinge-moment coefficient w i t h  elevon deflection. l/T-scale 

model. (a) M = 0.4. 
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Figure 9.- Continuod. (c) M = 0.65. 

Figure 9.- Continued. (a) M = 0.70. 

F i g ~ ~ r o  10.- The variation of pitcbing+nment coofficiont  with 
olavon deflection with the elevon rigidly roetrainod. 
1/7-scdo YB-49 modol. 

Fi-o 11.- Tho variation of gitching4nmont coofficiont w i t h  
trim-flap  defloction. 1/7-scalo -9 modoL. (a> M = 0.40. 

F i w e  11.- ContinWd, (b) M P 0.65. 

Figure 11.- Continued. (c) M = 0.725. . .  

Flgure U.- Concluded. (a) M = 0.75, 



(a) Rear view. 

(b ) Front vfew. 

Figure 1.- The 1/7+cale semispan model of t he  airplane mounted 
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(a) M = 0.727. 

(b) M = 0.75. 

(c) M = 0.775. 

Figure  5.- Tufts on the B-49 s e m i s p n  model. a = 2'. 
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(a) M = 0.70. 

(b) M = 0.723. 

( c )  M = 0.75. 

Figure 6.- T u f t a  cn the -9 semisp  d e l .  CL = bo. 
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