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RESEARCH MEMORANDUM

PERFORMANCE AT MACH NUMBERS 3.07, 1.89, AND O OF INLETS
DESIGNED FOR INLET-ENGINE MATCHING UP TO MACH 3

By L. W. Gertsma and M. A. Beheinm

SUMMARY

The performance of a two-dimensional external-compression inlet de-
signed for various methods of inlet-engline matching up to Mach 3 was in-
vestigated at Mach 1789 and Mach 0. Angle-of-attack data at Mach 3.07
were also obtained.

Supersonilc spillage by rotating the ramp as a unit gave higher
critical pressure recoveries and smaller distortions than any other match-
ing method investigated for the two-shock and, at the lower mass flows,
for the isentropic inlets. The throat bypass had the best performence of
the bypasses with both ramps and especially with the isentropic ramp at
meas-flow ratlios near 80 percent. All configurations were stable over a
range of mess flow of 10 percent or better at zero angle of attack.

When the top bypass was used as an auxiliasry inlet at Mach O with
the flow divider rotated into the free-stream, pressure recovery increased
and distortion decreased. With the Fflow divider out and only the top
door open, the lncrease in recovery was not as large and distortion was
inecreased. \

N\
\ INTRODUCTION

must have larger alr inlets order to supply the necessary air Lo the
englnes. These inlets should be varlable-geometry types in order to give
good performance at lower Mach numbers. Since, in general, a varlable-
geoumetry inlet designed for high Mach numbers ususlly will capture wmore
air than the engine cen use at lower Mach numbers, the excess must either
be spilled ahead of the inlet or bypassed around the engine. These
operations must be accomplished efficiently to keep the drag et a winlmum.

As design Mach number'iggreases, alrcraft having alr-breathing engines

An investigation has been conducted at the NACA Lewils laborétory to
determine the performsnce of an inlet, designed for Mach 3, when operated
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at Mach 1.89 with different bypass and spillage arrangements., No attempt
was made to match this inlet to any particular engline; therefore, nc match
lines are shown on the figures. The model design made 1t possible to
operate the inlet at critical conditions over a very wide range of mase-
flow ratios. This inlet was also investigated at Mach O to determine the
performence at takeoff both with and without one of the bypasses arranged
as an auxilisry inlet. The zero-angle-of-atfack performence of this inlet
at Mach 3.07 1s reported 1n reference 1.

SYMBOLS

Cp,e,p cowl drag coefficlent from measured pressures

m mess flow

P total pressure

Subscripts:

0 conditions in free stream in capture asrea of 1nlet
1 inlet throat

3 compressor face

Superscript:

*# choked flow under ideal conditlouns

APPARATUS AND PROCEDURE

MODEL

The Ilnvestigation was conducted on a two-dimensional model deslgped
for irnlet-engine matching up to Mack 3. Photographs and sketches of the
model appear in figure 1, where the nomenclature used in referring to the
various parts of the diffuser is indicated. The model was mounted in the
tunnel with the compression surface on the lower side of the inlet.
Elther a two-oblique-shock or isentropic ramp could be used. The two-
shock surface was hinged between the ramps and could be pivoted about the
leading edge so that any angle could be set on elther ramp. The center
section of the isentroplc raup was made of spring steel; and, by adjusting
the rear rigid sectlion and pilvoting the ramp about the 1eading edge, &
variety of contours could be obtained. '

Matching methods illustrated in figure 1 are (1) supersonic spillage
by rotating the ramps; (2) top bypass with flow divider ard control

il
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door, (3) top bypass without flow divider, (4) throat bypass with bottom
control door, and (5) bottom bypass and control door with short diffuser
plate. Any of these matching methods could be used with either compres-
sion surface. The ram scoop used for the throat bypass could also be
used for boundary-layer bleed with the other metching wmethods.

Internal aree verlations of the diffuser are shown in figure 2 for
typical positions of both ramps at Msch 1.89. The basic diffuser (bypass
not used) had a fairly continuous area variation at these off-design
conditions; but, when the flow divider was removed for a top bypass con-
figuration or when the short diffuser plate was used for the bottom by-
pags arrangement, an overexpension and an abrupt contraction occcurred.

The various contours of the lsentropic ramp that were used are shown
in figure 3. The Mach 3.07 contour was the deslign contour et Mach 3.07
and was rotated as a unit to several angular positions in the present
test. In the absence of the external cowl shock, the Mach 1.89 contours,
which were obtained by flexing the ramp from an initisl angle of either
0° or 60, would have focused the compression waves at the cowl 1lip at a
free-stream Mach number of 1.89.

The cowl was designed with an initial externel angle of 31°, but
during construction the leading edge wes bent to 39° (fig. 3). This dif-
ference did not change the location of the leading edge. Bilnce both the
actual and the theoretical external cowl angles exceeded the shock-
detachment value of 21° for Mach 1.89, this difference was not considered
important to the diffuser internal performance.

DATA REDUCTION

Mass-flow ratlos were calculated using the method of a choked exit
plug and the average total pressure at the plug (which was obtained from
a 40-tube rake in front of the plug) and e Plow coefficient of 0.865.
This value of flow coefficlent was obtalned in an earlier test at Mach
3.07 where the capture mass-flow ratio was known to be 1L.0. Total-pressure
recovery and distortion were obtained from an 18-tube rake arranged for
area-welghted averages sbout a simalated compressor hub. A static-pressure
pickup was attached at the compressor station. The tobtal-pressure profilles
at the throat were measured Just behind the cowl-lip plane. The refer-
ence mass flow for Mach 0O was computed assuming an ideal inlet and dif-
fuser and choked flow at the compressor station.

Traces from the static-pressure pickup are shown in figure 4 for 4dif-
ferent types of inlet operation. Flutter 1s used to define a local oscil-
latlon of the normal shock during suberitlical operatlon, and buzz refers
to a violent oscillation of the normal shock out to the front of the ramp.
Actual pressure values taken from the traces are not considered accurate
because of inertia in the recorder.
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TUNNEL

The Mach 1.89 investigation was conducted in the Lewls 18- by 18-inch
tunnel. The total temperature was 150° F, and a dewpoint less than o°F
was maintained. Tunnel calibrations show that the total pressure at the
test section is C.972 of that upstream of the nozzle. This value was
used in the calculations, but some inlet throat total-pressure recoveries
obtained late in the test were as much as 2 percent greater than unity.
Therefore, the correct value of free-stream total pressure is somewhat
in doubt, and there 1s a possibility that recoveries reported here may be
as much as 2 percent too high. An error of this slze would cause less
than a l-percent increase in mass-flow ratioc.

The Mach 3.07 investigation was conducted in the same faeillty as
used in reference 1.

The Mach O investigation was conducted in the Lewils duct tumnel. The

model was installed with the 1nlet open to the atmosphere and the exit
connected to exhausters through a surge tank.

RESULTS AND DISCUSSION

INLET PERFORMANCE AT MACH 1.89

Shock Geoumetry

The non-internal-contraction design selected for the inlet employed a
high external cowl-1lip angle that exceeded the shock-detechment angle of
21° at the test Mach number of 1.89. Schlieren photographs in figure 5
show the location of the shocks for the two-shock and the isentropic raumps
during critical operation st Mach 1.89. In these photographs the terminal
angle of the two-shock ramp was near debachment end the termlnal angle of
the lsentropic was near the theoretical angle required to turn the flow
to Mach 1.

Two-Shock Ramps

Effect of ramp angles. - The inlet performance with varlous two-shock
ramp pogitions 1s shown in figure 6. By rotating the Mach 3.07 deslign
setting of 15° and 30° as a unit about the first-ramp leading edge until
the second shock would theoretically fall on the 1lip, neglecting the

presence of the detached cowl shock, ramp angles of 5— and 20% are

28G7
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obtained. When the two-shock ramp wes rotated as a unit to higher angles,
criticel pressure recovery increased and distortion decreased. The de-
crease in distortion was partly a result of the decrease in compressor-
face Mach number as mass flow decreased. For these data, the throat ram
scoop was maintalned et a constant 1/8-inch height for all ramp positions.
This height was near optimum at the design Mach number of 3.07 (ref. l).

0
Effect of bypass. - All bypasses were investlgated with the 5% and

o}
20% remp angles, and the results are shown in figure 7. Figure 7(&) shows

that both the critical recovery and distortion decreased slightly as the
throat scoop height was increased. Subcritical recovery increased when
the ratio of scoop to throat height was 0.375 or larger. For the data
with the other bypasses in figure 7, the ram-scoop height was wailntained
et 1/8 inch. When the top bypass was used (fig. 7(b)), critical recovery
and distortion decreased slightly with increased amounts of bypass bleed.
Without the flow dlvider (fig. 7(c)), both the critical recovery and dis-
tortion remsined constant as bleed increased. Bleed through the bottom
bypass (fig. 7(d)) increased distortion but had little effect on recov-
ery. In this case discontinuities occurred during supercrltical opera-
tion with large smounts of bypass bleed.

Critical performance. - A summary of the critical performance from the
preceding curves, shown in figure 8, indlcates higher recovery and lower
distortion with either highér remp angles or with boundary-layer bleed,
or both. When the ramps were rotated independently to the theoretically
optimum angles for pressure recovery (fig. 8(a)), critical pressure re-
covery was higher at a glven mass-flow ratlo than when the ramps were
rotated as a unit.

A comparison of spillage methods (fig. 8(b)) shows that rotating
the ramps as a unlt for shock splllage gave the highest critical recovery
and lowest dilstortion. OFf the bypasses, generally, the throat bypass had
the highest recovery and the lowest distortion at any glven mass flow.
The bottom bypass had the poorest performence primerily because of the
high distortion.

Isentropic Ramp

Effect of ramp setting. - The inlet performance with a variety of
isentropic ramp contours and a constant ram-scoop height of 3/16 inch,
which was near optimum at Mech 3.07, is shown in figure 9. When the Mach
3.07 conbtour was rotated sbout the leading edge for supersonic spill, the
recovery increased and the distortion decreased at the higher ramp angles.
All ramp settings tended to have a wide stable range. The suberitical
recovery of the higher ramp angles was very high. The distortions were

S .
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more a function of mass flow than of ramp settings or contours. As the
rewp sugles lncreased, the strength of the detached cowl shock decreased,
which could have some effect on the operating characteristics of the
inlet.

Effect of bypass. - The performsnce of the various bypass systens
with the Mech 3.07 ramp contour (0° and 22.4°) is shown in figure 10.
Smell amounts of throat bleed (fig. 10(a)) increased the critical recovery,
but as the bleed was increased further the critical recovery decreased.
Suberitical stability remained large with about the same recovery for all
scoop helghts.

For the other bypass data in the flgure, the ram-gcoop helght weas
maintained at 3/16 inch. Critical recovery decreased as much as 5 percent
a6 bleed was increased through the top bypass with the flow divider (fig.
10(b)), but the subcritical recovery remained about the same, with a large
stable range. Critical distortion remalned high =s bleed was increased.

Bleed through the top bypass without the flow divider increased sub-
critical recovery slightly, but critical recovery stayed about the same
(fig. 10(c)). Increased bleed aggravated distortion. Rewoving the
divider did not produce any appreciable improvement in distortion,
whereas it did at Mach 3 (ref. 1). This can partly be attributed to the
fact that the percentage area discontinuity caused by removing the divider
was not as large with the Mach 1.89 ramp position as with the Mach 3.07
positions. . .

Small amounts of bleed through the bottom bypass increased critical
recovery, but recovery then decreased for large amounts of bleed (fig.
10(d)). Suberitical recovery was sbout constant, and the stable range
was & little larger than for- the other bypasses. Distortlon remalned
high even at low wass flows. - e S

The bypass performance with the Mach 1.89 contour (0° and 22.4° ramp
angles) is presented in figure 11. The effect of throat bleed (fig. 11
(2)) was about the same as for the Mach 3.07 contour. ILow bleed rates
increased critical recovery slightly, but higher bleed rates decreased
it. Suberitical recovery pesked and then decreased as mass flow was re-
duced, but the stable range remsined quilte large. Distortion agein was
nearly e function of mass flow, decreasing as the mass flow decreased.

For the remaining bypass data in this figure, a counstant ram-scoop
height of 3/16 inch was used. When the top bypass was used both with and
without the flow divider, critical pressure recovery lncreased slightly
with small amounts of bypass bleed (figs. 11(b) and (c)). With the flow
divider, there was a small stable range that peaked just before buzz. The
stable range was sbout twice as large without the divider as with it.
Distortions were nearly constant-for all bypass bleeds with the divider
but varied with the mass flow wlthout the divlder.

1888V -
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There were erratic supercritical mass-flow changes when the bottom
bypass with the short diffuser plate was used (fig. 11(d)). These varie-
tions probably were a result of the particular position of the normal
shock with respect to the bypass. All pressure recoveries decreased with
high bypass bleed; and the distortion, which was high with no bleed, became
worse as the bleed was lncreased.

The Mech 1.89 contour (6° and 21.2°) wss investigated only with the
throat bypass (fig. 12). The recovery increased and then decreessed as
the bleed rate was increased, while the distortion decreased steadily.

Critical performance. - A summary of critical operation with the
verious isentropic ramp contours (fig. 13(a)) shows that small amounts
of bleed through the ram scoop increased critical recovery and lowered
distortion for all contours. Rotating the Mach 3.07 contour remp as a
unit to higher angles increased recovery until the shock detached from
the rear of the remp, and then the recovery decreased. The dlfference
between the Mach 3.07 contour and the Mach 1.89 contour at approximastely
the same finsl remp angle is probably a result of the change in cowl shock
strength as the contour of the ramp and the attendant compression zone
are changed.

The critical recovery increased with throat bleed (fig. 13(b)) to =
meximum for each contour and then dropped off as the bleed was further
increased. For most of the contours, as throat bleed was lncreased, the
distortion decreased. This was partly due to the lower Mach number at the
compressor.

Comparison of the dlfferent matching methods at critical operation
with the Mach 3.07 contour shows that the highest recovery and the lowest
distortion were obtained at high mass-flow ratios with the throat bypass
and at low maess-flow ratios with supercritical spillage by the ramp (fig.
14(a)). The top bypass without flow divider was the least effective with
the Mach 3 contour. All methods with the Mach 1.89 contour were nearly
the same for critical recovery and distortion with the exception of the
bottom bypass, which had large distortilons at low mass flows (fig. 14(b)).

Profiles

Critical pressure-recovery contours at the compressor face are shown
in figure 15 to compare the effect of the different bypasses on the dis-~
tortion. All the contours are symmetrlcal about a vertical line through
the hub with an area of high pressure next to the hub on each side. Using
bypasses on either the top or bottom of the diffuser shifted these high-
pressure regions toward the bypass.
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Pressure-recovery profiles at the throst during critlcal operation
for- the two-shock and isentropic ramps were nearly uniform for the high
ramp angles but were poor for some of the lower ones (fig. 16). With the
low ramp angles, the effect of the detached cowl shock would become more
evident. Some of the recovery ratlos with the lsentropic ramp exceeded
unity, indicating, as noted earlier in the APPARATUS AND PROCEDURE section,
that the calibration of tunnel total pressure was low for this
investigation.

Cowl Drag

The measured cowl pressure-drag coefficients decreased with decreasing
mess flow (fig. 17). The coefficients did not vary by much more than
0.03 at any glven mass-flow ratio for the variocus two-shock ramp positions
(f1g. 17(2)), but the variation was greater with the lsentropic ramp
positions (fig. 17(b)).

INLET PERFORMANCE AT ANGLE OF ATTACK
Mach 3.07

The model was also investigated through a range of angle of attack
and yew. The two-shock ramp (15° and 30°) at Mach 3.07 with throat bleed
had a critical recovery varying from 53 to 67 percent for angles of attack
of +8° to -8° and angles of yaw up to 7° (fig. 18). The stability range
was very small for positive angles of attack but improved for the nega-
tive angles. Distortlon was nesrly the same for all angles, except for
the 7° yaw, where it was much worse.

The isentropic Mach 3.07 contour (6° and 28.4°) with throat bleed had
critical recoveries that ranged from 49 to 75 percent for angles of attack
of +8° to -8° and yaw angles up to 7° (fig. 19 The stebility range was
35 percent at -8° angle of attack but dropped to 5 percent at +8°. At
angles of yaw there was no stable range. "

Mach 1.89

o] 0
Critical pressure recovery of the two-shock raump (?% and 20% ) wilth

throat bleed at Mach 1.89 varied between 74 and 92 percent for angles of
attack from +8° to -8° and yaw up to 8° (fig. 20(a)). Stability range
was falrly uniform at all angles. The trends in distortlon were about the
same for all angles except at 8° yaw, where there was & considerasble in-
crease at subcritical operation, which might be a result of separation on
the side falring. '

‘ZRQ?
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Some typical bypass ‘settings were investigated with the two-shock
ramp at angles of attack and yaw. With throat bypass at a ratio of scoop
to throat height of 0.250, the critical recovery at each angle of attack
or yaw changed very little from that with no bypass, although the stable
range did increase (fig. 20(b)). Distortions were the same as without a
bypass, except that there was no increase at subcriticsal operation at
angles of yaw.

The top bypass with flow divider at a ratio of divider to throat
height of 0.250 and with throat bleed had a pressure recovery and stable
range about the same as without a bypass, but the spread in mass flow was
smaller for the same model attitudes (fig. 20(e)). Distortions were also
about the same as without a bypass.

The critical recovery of the isentropic ramp with Mach 3.07 contour
(0° and 22.4°) with throat bleed ranged from 78 to 94 percent for angles
of attack from +8° to -8° and yew angles up to 7° at Mach 1.89 (fig. 21).
The stabillty range was 25 percent at O°, —40, and -8° but decreased to
5 percent for +4° and all angles of yaw. All distortions were near that
for the zero attitude except at +8°, when distortion was higher.

INLET PERFORMANCE AT MACH O
Two-Shock Raups

It may be mechanically feasible to use the top bypass as an auxillary
inlet to improve the Mech O performance. The flow divider could be rotated
into the free stream, or if it were removed the top control door could be
opened. The effect on performance with the two-shock ramp is shown in
Pigure 22. Jn figure 22(a), the performance without the auxiliary inlet
is shown with several ramp angles. The pressure recovery Gecreased and
distortion increased as mass flow increased at 2ll ramp settings. When
usling the two-shock ramp, the &ir choked at the compressor before it
did at the inlet entrance. The raump position 0° and 0° had the highest
recovery and also nearly the highest distortion.

The inlet performance with the flow divider rotated into the free
stream as an auxiliary inlet 1s shown in figure 22(‘b) for several posi-
tions of the divider and with the compression ramp set at 0° and 0°.
Pressure recovery was lncreased appreciably and distortion was less than
without the auxiliery lnlet. Without the flow divider but using the top
control door (fig. 22(c)}), pressure recovery was not as high as with the
flow divider but higher than without an auxiliary inlet. However, dis-
tortion was even higher than without the auxilisry inlet. The inlet per-
formence with the flow divider rotated into the free sitream for ramp angles

o
of 0° and 7% , and 0° and 15° is shown in figures 22(d) and (e),

respectively.

—— o
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Isentropic Rawp

In figure 23, the inlet performance with the Msch 3,07 contour (0°
and 22.4°) is presented. Without an auxiliary inlet, the air could be
choked at the diffuser entrance. The inlet performance using the flow
divider as an auxiliary inlet appears in figure 23(a) and without the
flow divider in figure 23(b). The ‘top bypass with the flow divider
agaln was & better suxiliary inlet than it was without the flow divider.
Pigures 24 and 25 show the inlet performance with the Mach 3.07 contour
(-12.3° and 10.1°) and a flat wedge contour (6° and 6°), respectively,
with the flow divider rotated into the free stream.

2887

SUMMARY OF RESULTS

The performaence of a two-dimenslonal, external-compression inlet
designed for efficient engine-inlet wmatching up to Mech 3 was lnvestigated
at Mach 1.89 and Mach O. The inlet could be operated with elther a
varlable two-obligue-shock or a varieble isentroplc-~compression surface.
For matching, air could be bypassed through doors on opposlte sides of
the subsonic diffuser or through a ram scoop in the throat, or the com-
presslon surface could be rotated to glve supersonic splllage. At Mach O,
the bypass opposlie the external compression side could be opened for use
ag an auxilisry inlet. The following results were obtalned: -

L S

1. Of all metch methods with the two-shock ramp, supersonlc spillsege
by rotating the ramps as a unlt with a 15° included angle gave the highest
critical pressure recovery and the least distortion over the complete
range of mass flows.

o (o]
2. With the two-shock Qﬂ% and 202 ) ramp and bypasses, the highest

recovery at all mass flows and the lowest distortion at the lower mass
flows were obtained using a throat bypess, but stability for all config-
urations was about the same. Both the top bypass and the bottom bypass
haed about the same critlcal recovery. The bottom bypass had the highest
distortion. ' :

3. With the isentroplc ramp, the Mach 3.07 contour rotated as a unit
to match by supersonic spillage and the Mach 3.07 contour (0° and 22.4°)
with throat bypaess were the better matching methods at low and high mass
flows, respectively. Best critical recovery was about 94.5 percent.

4. The pressure recoveries with the Mach 1.89 contours and the dif-
ferent bypasses were all below 90 percent, with distortions about the
same Or slightly lower than those for the Mach 3.07 contour.
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5. Performance at angles of attack between -8° and +8° with the com-
pression surface on the lower side showed good stabllity and recovery &t

negative angles of attack, both stability and recovery decreasing at
positive angles.

6. When the top bypass was used as an auxiliary inlst at Mach O with
the flow divider rotated out into the free stream, the pressure recovery

increased appreciebly. Without the flow divider, the increase in re-
covery was not as large.

7. The distortions generally decreased when the flow divider was
used as the auxiliary inlet; but opening the top door without the flow

divider resulted in distortions higher than those without an auxillary
inlet.

Lewis Flight Propulsion Leboratory
National Advisory Committee for Aeronautics
Cleveland, Ohic, February 20, 1958
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Tommio_:% C-43063

(a) Throat bypass arrangement.

Divider height
2plitter plate

. layer hleed
Spring steel
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Bleeda . ‘ CD=-5048,

air ontrol door . . —

(e} Schematio view showing operation of throat and top bypass arrangement with isentropic ramp.

Figure 1. - QGeometry of bypass arrahgements.
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C-43064

(e) Bottom bypass arrangement with throat bleed.
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Bottom bypass
control door

Bypass opening
(f) Schematic view showing operation of bottom bypass with two-shock ramp.

Flgure 1. - Concluded., Geometry of bypess arrangements.

C-43062
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TEEL S " C-47175
(b) Isentropic ramp, 0° and 22.3°.

Figure 5. -~ Schlieren photographs of model; critical operation
at Mach 1.88.
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(b) Plow divider roteted into fres stremm, top doar full open,
ramp angles 02 and O°.

{c) Top comtrol door-without flow divider, ramp anglea 0° and 0°.

Flgure 22, - Continued. Effect on performande of top bypass &s auxilisry inlet with two-shook ramp at Mach O.
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(d) Flow divider rotated into free stream, top door Tull open,

rerp angles 0° and 72

PFlgura 22.

- Concluded,

Hauu flow ratio, ms/hs

ramp angles 0°

and 15°.

.8

Effect on parformance of top bypase ea auxiliary inlet with two-shock ramp at Mach O.
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{e) Flow divider rotated into free stream, top door full open,
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(@) Flow divider rotated into free mtresm, top door full open.

{b) Without flow divider; ueing top control door.

Flgurs 25, - Mach O perforsance of isentrople ramp with Meoh 5.07 contour (0° and 22,4°) with top bypess as auxiliary inlet,
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Flgure 24. - Mach 0 performence of isentropic ramp with Mach 3.07 contour

Mass-flow ratio, ms/m';

(-12.3° and 10.1°9) with flow divider rotated into free stream and top

door full o

pen.
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Figure 25. - Mach O performance of isentroplc ramp with 8° flat wedge contour (6¢ end
6°) with flow divider rotated into free ptream and top door full open.
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(1) Beynolds mmber im based on the dismater

of a cirols vith the ssme aree as that
af the captinre arse of the inlat,

(2} The syaubol # denotes the oscuxrence of

buse.
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