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FORMULAS FOR THE ELASTIC CONSTANTS OF PLATES WITH

INTEGRAL WAFFLE-LIKE STIFFENING

By Norris F. Dow, Charles Libove, and Ralph E. Hubka
SUMMARY

Formulas are derived for the fifteen elastic constants associated
with bending, stretching, twisting, and shearing of plates with closely

i4

34 spaced integral ribbing in a variety of configurations and proportions.

ﬁ; In the derivation the plates are considered, conceptually, as more uniform
- orthotropic plates scmewhat on the order of plywood. The constants, which

include the effectiveness of the ribs for resisting deformations other
than bending and stretching in their longitudinal directions, are defined
in terms of four coefficients «, B, ', and B', and theoretical and
experimental methods for the evaluation of these coefficients are dis-
cussed. Four of the more important elastic constants are predicted by
these formulas and are compared with test results. Good correlation is
. obtained. : '

INTRODUCTION

Growing interest in integrally stiffened construction, evidenced by
such papers as references 1 and 2 and by the large forging press program
(ref. 3) which will provide facilities for production, emphasizes the
need for information on the structural characteristics of integrally
stiffened plates. ‘

A primary requisite for the prediction of structural characteristics
of plates is a knowledge of their elastic constants. In the present
paper, therefore, formulas are derived for the fifteen elastic .constants
associated with the bending, stretching, twisting, and shearing of plates
with closely spaced integral ribs running in one or more directions. The
ribbing patterns covered by the formulas are illustrated in figure 1 and
include those considered in reference 4. The rib cross section is arbi-
trary, although special auxiliary formulas are given for the rectangular-
section rib with circular fillets at its base.
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The elastic-constant formulas derived involve four coefficients «,
B, a', PB' for each rib which define the effectiveness of the rib in
resisting deformations other than simple bending or stretching in its
longitudinal direction. For most purposes a reasonably accurate evalua-
tion of these coefficients is required. Experimental and theoretical
methods of evaluating them are discussed.

As a check on the correctness of the elastic-constant formulas, the
predictions of the formulas for four of the more important elastic con-
stants are compared with experimental data.

The principal symbols used are defined in appendix A.
DEFINITION OF ELASTIC CONSTANTS

If the rib spacings are small compared to the plate width and length,
it is plausible, for purposes of studying over-all or average behavior,
to assume that the actual plate may be replaced by an equivalent uniform
orthotropic plate. Figure 2 shows an infinitesimal element of the equiv-
alent plate subjected to bending moments of intensity My and My,

twisting moments of intensity Mky: stretching forces of intensity Ny

and Ny acting in planes I and IT, respectively, and shearing forces of

intensity Nyy 1in plane ITI. The locations of planes I, II, and III are
arbitrary.

The behavior of the element can be described by a set of force-
distortion relationships in which elastic constants appear. Such rela-
tionships are obtainable from reference 5. If deflections due to depth-
wise shear are assumed to be negligible as is customary in ordinary plate
theory, the following equations (egs. (1') to (6'}.of ref. 5) are obtained:

J
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where é;z and éfz are the curvatures, P is the twist, e,
3x> By? ox oy

and € are the extensional strains in planes I and II, respectively,
and 7yxy 1s the shear strain in plane IIT.

According to these equations, fifteen constants are needed to estab-
lish the force-distortion relationships - namely, two bending stiffnesses
. Dx and Dy, a twisting stiffness Dgy, two stretching moduli Eyx and

Ey, a shearing modulus Gxy, two Poisson's ratios py and Hyr associated
with bending, two Poisson's ratios p'y and “'y associated with

stretching, four coupling terms Cyy, Cxy s ny, and ny assoclated
with bending and stretching, and one coupling term T associated with
twisting and shear. Not all these constants are independent, however,
for, as a consequence of the reciprocity theorem for elastic structures,

Hy = Dyux/Dy and H'y = Eyu'y[Ex.

- The form in which the force-distortion relationships have just been
| given is not the most convenient form for some applications, for example,
b for buckling calculations. For such purposes a more suitable form is
obtained when the first three equations are solved simultaneously for
- My, My, and Mxy' and these expressions are then used to eliminate M.,

' N My, and Myy in the last threeequations. The six new force-distortion
x equations thus obtained are .

32 %) \
? 32 82 .
; M, = "Dz(g% + iy -a-—;-’) + Co1lNy + Coplly (8)
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My, = 2D + CiIV. (9)
Xy k 3x oy k- xy
NG Ny m
€y = Cll a—z + CEl & + __J_(_ - __?_, Ny (lO)
dx? dy2 Ey Ep
2 2 M N
ey =Cp o4 0pp T - Ly 4 L (11)
ox dye By Ep '
%W Nyy

(12)

where py = DguX/Dl and  pp = Eopq fEq .

Of the fifteen elastic constants appearing in equations (7) to (12),
two, p,  and Wy, were also in the original set of force-distortion

equations. The remaining constants (Dy, Dp, Dx, Ej, Ep, Gk, u1,
Hos Cy1s, Cios Cp1, Cop, and Ck) are new. The algebraic relation-

ships between the new and the original elastic constants are given in
appendix B.

METHOD OF ANALYSIS

The analysis is made for a plate with the general pattern of ribbing
shown in figure B(a), which includes, as special cases, the patterns of
figure 1. A typical repeating element of the plate is indicated by the
short-dashed rectangle in figure 3(a) and is shown three-dimensionally
in figure 3(b).

The analysis is based on the assumption that each of the four'rib
segments shown in figure 3(b) may be replaced by three orthotropic sheets
of material parallel to the skin, each one covering the entire area bxby

and each fastened to the skin by means of many hypothetical, perfectly
rigid, infinitesimally small bars imbedded perpendicularly through the
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skin and sheets (see fig. 4). (The rib is understood to include any
fillet material but no part of the skin.) The properties of the three
substitute sheets are so chosen that one sheet (labeled C) in fig. 4)
represents only the effectiveness of the rib in resisting stretching and
bending in its longitudinal direction, another (1abeled C)) represents

~only the effectiveness of the rib in resisting stretching and bending in

its transverse direction, and the third (labeled (3)) represents only
the effectiveness of the rib in resisting shearing and twisting relative
to its longitudinal and transverse directions. (The transverse direc-
tion, as used herein, is the direction in which ty is measured, see
fig. 3.) In order for the three substitute sheets to accomplish their
purpose, they are assigned the following properties:

(a) Sheet () has a volume equal to that of the rib segment it
replaces, with its center of gravity at the same level as that of the
rib. Its stretching or compressing modulus of elasticity in the direc-
tion of the rib is E and its modulus transverse to the rib is zero.
Its stiffness per unit width for bending in the direction of the rid
is equal to the bending stiffness of the rib about its centroid divided
by the rib spacing (i.e., b, for a y-wise rib, by for an x-wise rib,
and bg for a skew rib, fig. 3(a)), while its bending stiffness in the
direction transverse to the rib is zero. The shearing and twisting -
stiffnesses and Polsson's ratios of the- sheet are assumed to be zero.

/

(b) Sheet C) has a volume equal to some fraction B of the volume -
of the rib segment, with its center of gravity at some distance oH :
above the middle surface of the skin. The modulus of elasticity for .
stretching or compressing in the direction transverse to the rib is E, VP

7 whereas that in the longitudinal direction of the rib is zero. The bending;w

shearing, and twisting stiffnesses, and Poisson's ratios for sheet
are all assumed to be zero.

(c) Sheet (3 has a volume equal to some fraction B' of the volume
of the rib segment, with its center of gravity at some distance o'H
above the middle surface of the skin. Its modulus of elasticity for
shearing relative to the longitudinal and transverse directions of the
rib is G, whereas its twisting stiffness relative to these two direc-
tions is zero, as are the stretching and bending stiffnesses and Poisson's
ratios.

It is assumed that the hypothetical sheets offer no interference to
one another.

On the basis of the foregoing assumptions, the integrally stiffened
plate has been converted to a more homogeneous plate somewhat on the
order of plywood. The assumption of rigid bars conmnecting the substitute
sheets and the skin is equivalent to the assumption that material lines
normal to the surface of the plate before deformation remain straight
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during deformation. If it is further assumed that these lines remain
perpendicular to the surface of the plate and that the stresses are in
the elastic range, any of the methods used for ordinary isotropic plate
analysis may be readily extended to the present idealized structure.

For the present purpose an energy method is adopted to determine
the six forces and moments necessary to maintain the prescribed uniform
3w W P

deformations sy —=» €x5 €y; =—<, and 7y_.. The equations
x= ¥y Y7 ox oy s

obtained for these forces and moments in terms of the distortions are
put in the form of equations (1) to (6) to yield formulas for the
original elastic constants or in the form of equations (7) to (12) to
yield formulas for the new elastic constants.

The details of the analysis and the derivation of the elastic
constants are presented in appendix C. The formulas obtained for these
constants are presented in the following section and the evaluation of
&, p, a', and B' i1s discussed in two succeeding sections.

FORMULAS FOR ELASTIC CONSTANTS

In this section the formulas are presented for the calculation of
the fifteen elastic constants appearing in equations 1 to 6 and the
thirteen new constants appearing in equations T to 12. The formulas
are presented for the most general type of plate considered, which is
illustrated in figure 3. For plates with one or more sets of ribs
omitted, the formulas alsc spply when the terms representing the areas
and moments of inertia of the omitted ribs are set equal to zero.

The formulas for the constants in the original force-distortion
equations (1) to (6) are as follows:

2 = 2\ |
e < w0, - A, Es)g-ux<ls

- - Is_ 1
_f Kgg ng (13)
' [ 2, = oV
A _ T
Dy = BTy - = gy(ky - K5) - “y(—_sé) (%)
| Ag As /|
I ‘
- E)
Dyy = EH ( - (15)
L e
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L
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s

Mx = —— — (19)

TA2 - agtA(E, - Eg)°
T2 |
Ly, = 5 (20)

T nE2 - alay(E - E)?

A (Taty - 16%) 4 Ty - ) (B Be) + Aoy - era) (R - Ba) + Ay~ ) By Krg) - g2 = ) (Ba - ) + Aoty (B ) (E, - k7)o - e ), - )
Ay (Tt = To%) # (- k)2 - AR ) [AgTy (g - k) - 2y 2oy - )+ gy (R - k) (5, - %)?]

H'x =

(21)

R As__('Iily - Fsz\: f\sﬁxfy(fx - og){Ex - Ba) + AsAyTe(Ey - krr) (y = By ) + AxhyTo(Bx - Ky )(Ey - kez) - APTo( Ky - kp)(Fs - p7) + Aghghy(Ey - Xy )( By - dorr Y - B (%, - K )
Ax(TeTy - ) + AxhyTx(¥y - Kp7)® - As‘(is - kgy) Eslz(is - ) - 2Ty (B - ) + Aghy(Kg - kr7) (k- Es)ﬂ

'
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Aphyle, - ATk Ahy(ky - E)
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The formulas for the constants in the new equations (egs. (7) to (12))
are as follows:

9 SRS e s
H
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| B 2 ]
i : A kv I 2
Dy = EH’ Ix - iix(kx - ks) (28)
| Ag ] ‘
sl AAy o e
Dp = BRIy - 2 (k, - ) (29)
A |
\ I, ,
e Dk = EH%—?)  (30)
T2
. Ep = EH(%—) (31)
<2
A
Ep = B f_> _ (32)
X
. G = EH(A.) (33)
A
| A
pp = = : (34)
Ay
AS
4 Ho = — (35)
° Tk
Co |
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ve %, - Ak
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{ Cip=H SAX( = S) (37)
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¥ Achy(E, - &
9 . 021. =H y(—yz . S) (38)
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Cpp = H{kyy - — (39)
Ag
O = B(Eyy - kIII)‘ - (40)
Yy The quantities Ay, Tg, Ay, Ay, Ag, and Ay, kx, ky, Kg
and kxy, Iy, Iy, Iy, and Iy, appearing in equations (13) to (LO)
are defined by the following equations:
- 2 2
B2 = gy - Ag (12)
%
| =2 ~2 = —\/= =
L Ig5m = I + A's“x“y(k'x - ks)(ky - ks) (42)
- tg  Auy[P Ay, /Py Auglbs , 3 )
, v Ay = 1 -5 + _____x/ Y + 5y Y/ + S/ (cosue + Bg sinl*e +
1 2 H H H. H
. - |
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E
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bxs by, by  the spacing of the x-wise, y-wise, and skew ribs, respec-
tively, in.

ot 0 the angle of skew of the ribbing, deg
- H the over-all height of skin plus ribs, in.
_ tg the thickness of the skin, in.,

Equations (43) to (54) contain the quantities Ay Awy, and AWS,
- wa, Ewy, Ew , and Iy, Iwy, and Iy, which define the areas, loca-

tions of centroids., and moments of inertias of

+ha r»iha T~ e |
TEL VA LD g Cla Uil Vo Wl LdaCl va Ul LILCT L AdUD . AL

or rectang
ribs with circular fillets, as shown in figure 4, these quantities a
given by the equations

~
Ay |o | 2 t '
v W\ o/t t Wy t
X -=<1-1-ol+5< )———S>——§———x—§, (55)
H ts / \twy/| E ts by
v
. - P S
1 . Ay fb : 2
4 ' _.___Wy/ BT T P o.@(iwz) (t—5—> tsl Wy ts (56)
§i H i ts ) \buy /)| H( Tg By
r. “"
P, : — 3
1 AW\ bS -t
, . /& Wy t
"& g ._SL=2 1-1-043 —5 8 (57)
b H ts bS
4 — 12.“ o N
:‘ . 3 lo_g !l oy /v 4

(Eq. (57) contains a factor 2 to account for the fact that there are two
ribs in the skewed direction - one at an angle +6 +to the x-direction
the other at an angle -6 to the x-direction.)
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— ta\2 31t + ty. ¢ t
ky = 2 l( - ——S-) + 0.1k iw_é) S (.ﬁ) Ms ', 1% (60)
s~ Byg/bs i ty/VE/ |tg by 2 EH

t Ty \/t 2
128 _ o018 Y (_S>
2 " tg H

| "
—-Ew>2+001rw> ts <§)3+
* tg )\t \E

tg 2 Ty, tg
(HH .A FS—E— (61)

- ' by ta\D
- &y 2 L o.on M\t \(I8)7
Y/ tS tWy H

Wy tg

tg by (62)

R o )8
| 0'“3(2—:&)2(%@@5 -3 - 0 18 )(ﬁfﬂg

EJ_S. t_S_ (,63)
tS bs
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The values of ky, kyp, and kyyy depend upon the locations of
the centroids of the forces Ny, Ny, and Nky: respectively, imposed
upon the plate element. (See fig. 2.) For the important case in which

Nx acts in such a plane that it produces no curvature é—— and Ny
\ Bx? :
acts in such a plane that it produces no curvature l;E, Cxx and Cyy
‘ ‘ 9

must equal zero (see egs. 1 and 2) and, therefore,

_ AyRy - APEs + w Ay (Ey - K
2

kt — (64)
A,
P~
Ahyky - ASTE + upachy(Ry - K
XYty s g T Hyfshx\%x s
k = (65)
IT — 0
Ag
S8imilarly, for the case in which ny scts in such a plane that it
produces no twist ng > T must equal zero and, therefore,
X Q¥
k11 = Ky (66)
If Ny and Ny do act in such planes that they produce curvatures
2 2
Aé;z and é—z, the actual locations of the forces (planes I and II) must

locations of the applied forces are to be evaluated. -

EVATUATION OF o AND B

Experimental Evaluation

The coefficients «, B, o', and B’ occurfing in the equations

for the elastic constants express the effectiveness of a rib for resisting

deformations other than bending and stretching in its longitudinal direc-

tion. For the evaluation of o and B for a given set of ribs

.
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(longitudinal, transverse, or skew) probably sufficient accuracy will
be achieved from a direct experimental measurement with a simple model
having one set of ribs whose cross section and spacing duplicate those
of the ribs for which the coefficients o and B are being sought and
with a value of tg equal to that of the actual plate.

A double specimen of the type shown on the right-hand side of fig-
ure 5 may first be used to evaluate B through a tension test and, then,
one-half of the specimen may be used to evaluate « through a bending
test, as illustrated on the left-hand side of figure 5. The use of a
double specimen for the stretching test is suggested because the symmetry

- will eliminate localized bending of the skin between ribs and facilitate

the measurement of over-all straln. Because of the prevention of local-
ized bending, the value of B should be somewhat higher than that which
would be obtained by stretching a single specimen like the one on the
left-hand side of figure 5. However, such an overestimate of B may be
desirable 1f the actual plate has ribs in more than one direction, because
then the localized curvatures associated with one set of ribs will tend
to be reduced by the presence of the other ribs.

The length-to-width ratio of the specimen should be great enough
so that any end grips or heavy end sections will offer negligible resis-
tance to transverse contraction in the stretching test and to the devel-
opment of transverse curvature in the bending test. Furthermcre the width
of the specimen should be sufficiently large compared to the rib spacing
so that the percentage of the specimen subject to shear-lag effects
arising at the rib ends is small.

The use of these tests for the evaluation of o and B will now
be described in detail. For ease in discussion, the ribs whose o and
B are being sought will be assumed to be oriented in the y-direction as
shown in figure 5. After the values of Oy and By have been deter-

mined, however, the subscript y should be changed to x or s if,

in the actual plate, the ribs under consideration are oriented in the
longitudinal or skew direction of the plate.

The conditions of the stretching test illustrated in the right-hand

o Fw _ Fw. N .
side of figure 5 are — = — "= N, = 0. Substituting these conditions

22 y2 7
in equation (10) and making use of equatioms (31), (41), (L43), (Lk),
and (45) gives
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=g
€x 1
T2
A
= B —E_
Ay
2
= FH xy ~ As
Ay
Ay /b
( 1 tg - ity x)( 1t Awy/bx> ( " ’03)2
- pue H 2 H
cpg Mot B0 B /AL - H H 1-p° H (67)
A /D
1%, iy Px
1 - uE H H
Solving for By gives
r )
Ay /b
ts iy Px
1 Ny tg H H
B, = < - > (68)
J Awy/bx EHe 4 H £ Ay /bx _
/i 58, Wl (g L 2)
i B H |
_ —J
Awy/bx
where, for rectangular ribs with circular fillets, ——— 1is as given

by equation (56).

By using for Ny/EHey 1in the right-hand side of this equation the

value obtained in the stretching test, an experimental value of By,
or ﬁyéxp’ is obtained ((—:x is the x~wise straln averaged over at least

one multiple of bx).

The conditions of the bending test illustrated in the left-hand side
of figure 5 are N, = Ny = My = 0. Substituting these conditions in

_equation (1) and making use of equatioms (13), (19), (42), (47), (49),

(51)) and (55) gives

(69)
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where
g [o b
ta \P ta /x
1 S 1 S 2 Y = \e
e s (RN
A X
lg(l_ue)H 1.,2 8 H
A, [b
Ay H
k, =0 ?(70)
=2
n = s
X
2 2, =2
IyAs - As Ayky
=2 =2
I" = IA° - A B

Solving for Oy gives

LK, + 1A P82 - E_ As (By Awﬁ'b::) ,Iyﬁaz— Aﬁﬂy'iﬂ L E(Iyxsa_ Asszfy2) _ Iszsﬂls M (Iyxsa' %2%2>

1'_\52 21 lfsAx(By ﬁ’H/be)‘ KSe E'EI3 g
ay _ ~
s [ Migfex\], - Moty P
%X—wa—s—z—(ﬂy Y H(IyAf-Afﬁyky"‘)-AsAﬁf(ﬂy —4— ) -
‘ Awy/bx
:where, as before, for rectangular ribs with circular .fillets,

is as given by equation (56).
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2 .0, ' 2
3:;”' Substituting for My EHY éLg the value obtained in the bending
:... : ax
ceeeel test, and for By the value obtained from equation (68) permits equa-
zeeeed 5

ogee tion (71) to yield en experimental value of o (57 s the xowise

oo \axg
curvature averaged over at least one multiple of by ). The quantities
KSE, A, Ay, As, E&, I,, Ig are obtained from'equations (41),

(43), (44), (45), (48), (52), and (53), respectively, with
Ay = AWs = Ty, = Iyg = 05 thus,

'W
=2 2
As = .r;:A crx:Ar = AS
Ay b Ay |b
Ag Wy/ X As W / X [ tg
= e A, = =2 A = =
B " *+ By H Y v * H 5 1. ME H
> (72
Ay, b (72)
K, == L Ty
Ay y
Yy u m s 12(1 _ uz) H
~

where Eﬁy is as given by equation (59).

Theoretical Evaluation
Accurate theoretical analysis. of the situations depicted in figure 5
is difficult. However, it is possible to obtain values of « and B
that underestimate or overestimate the stiffness of the specimens.

An underestimate is obviously obtained by assuming no part of the
rib to be effective in resisting transverse stretching or bending in a
direction transverse to itself. A lower-limit value of 8 is, therefore,

B:ﬁLL=O (73)

When B 1is taken as zero the value of a is immaterial.
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An overestimate is obtained by analyzing the two specimens shown
in figure 5 for their small deformations under the assumption that plane
sections perpendicular to the skin and perpendicular or parallel to the
direction of ribbing remain plane. The results of such an analysis of
the two situations illustrated in figure 5 are as follows:

. tafH
Fhe, = T i (7)
e, 2
Lo we by * Ay /bx
Y b5
)

for the double specimen on the right-hand side of figure 5, and

= 1

= - (75)
5 5 2
m0 9¥  1p(1 - 2)¢ fﬁ) HY L o»
N by )\ts] T T/ox
0

for the single specimen on the left-hand side of figure 5, and where I,
g, and f are geometric properties of segments of length by of the )
cross sections shown in figure 5. The letter 1 represents the moment
of inertia of such a segment about its centroid, g is the integral,
taken in the x-direction, of the reciprocal of the locasl thickness
measured in the z-direction, and f is +t«© times a similar integral
of the cube of the reciprocal of the local thickness. When the ribs are

‘rectangular with circular fillets, these quantities are given by the

following formulas:

2
1% & (fwy/tx ;t_8+§) -
I/bx 1ts)5+ts2 E tg\ H /\2 H Wy N Wy/x+
it G o 3
. ..I.'I_fw_y/_x + 1 H
tg\ H

Ay b 2
1ts, _&( ity _x_)(; 554 g )
2 H t H 2 H
S Y (76)
H
t

(—-—-y / ) +1
g H
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e - ‘
coee by g we Wyt
s’ o g:%— y—2ty+ty—ﬁs—+g' (77)
....: S ts s S
[ ]
osee
[ ]
[ 1 1]
by twW Ty By by P
f?j__1_2_1+_l@g+¢' (78)

~where g' and f' are functions of the ratio of fillet radius to skin

Iy [P
thickness plotted in figure 6, and _Ei%;f is as given by equation (62).
B

L
2

. ox
and (75) may be thought of as experimental results and they may therefore

be substituted in equations (68) and (71) to obtain values of Py, and
oy, corresponding to an overestimate of the stiffness of the specimen.

The values of Nx/EH£x and MX/EH5 obtained from equations (Th)

A lower overestimate of stiffness can be obtained by analyzing, on
the basis that plane sections remain plane, the single specimen on the

2
left-hand side of figure 5 for both NX/EHex and MZX/EH3 é—g and thus
ox
including the localized bending that occurs during stretching. Besides
being more conservative, the resulting values of oy, and By, Wwould

also be more appropriate if, in the actual plate under consideration,
there were really only one set of ribs. An upper-limit analysis con-
ducted entirely on the specimen on the left-hand side of figure 5 would
yield the following expression to be used in place of equation (74):

- ts/8 (79)
EHe . 2\t 2
12(1 2)(g ilh ) S 1
5 L4 f /by Awylbx

1+ 2 Z(H
H (ts)

where h 1s tg times the integral, taken over a length by in the

x-direction, of the square of the reciprocal of the local thickness;
for circular-filleted rectangular-section ribbing,

i
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b tw. T tw, fta\2
h=X_1Y_»o w'-V+ Y(-§-> + h! (80)
tS 'ts ts tS H .

where h' is plotted in figure 6. Equation (75) would still be used
I o 0
£ 3@.‘:1‘
or MX/EH 5
ox

EVATLUATION OF «' AND pB'

The coefficients «' and pB', which define the effectiveness of
a rib in resisting twisting and shearing relative to its longitudinal
and transverse directions, are not as readily measured experimentally
nor as readily bounded by an upper limit as o and B, although, of
course, a lower-limit stiffness is obtained by equating B' +to zero.

An apprdximate evaluation of «a' and B' may be made by assuming
that the same volume of rib material resists shear as resists transverse
stretching, that is,

B'y = By (81)

and then by computing where this material must be placed (a') in order
] to give the proper torsional stiffness as determined with the aid of
reference 6. The computation of «' will now be described in detail.

Consider an element, like the one on the left-hand side of figure 5,
having only y-wise ribbing and subjected to a pure Mgy loading. From
“equations (3), (15) and (54%) one can solve for a'y in terms of the

2
measured or computed ratio Mxy/ oW as follows:

. ox oy
o 'F.N&W' - D

aew xy‘
ox Jy
13
= E EH Ixy




Copy _ / 1
RM 1L.53E13a

RESEARCH MEMORANDUM

FORMULAS FOR THE ELASTIC CONSTANTS OF PLATES WITH
INTEGRAL, WAFFLE-LIKE STIFFENING -
By Norris F. Dow, Charles Libove, and .Ralp_h E. Hubka

Langley Aeronautical Laboratory
Langley Field, Va.

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning
of the espionage laws, Title 18, U.S.C., Secs. 793 and 784, the transmission or revelation of which in any
manner to an unauthorized person is prohibited by law.

‘I NATIONAL ADVISORY COMMITTEE
(L FOR AERONAUTICS

WASHINGTON.




i |

NACA RM L53E13a | 31176 01437 7551

NATTIONAL, ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

FORMULAS FOR THE ELASTIC CONSTANTS OF PLATES WITH

INTEGRAL WAFFLE-LIKE STIFFENING

By Norris F. Dow, Charles Libove, and Ralph E. Hubka
SUMMARY

Formulas are derived for the fifteen elastic constants associated
with bending, stretching, twisting, and shearing of plates with closely

i4

34 spaced integral ribbing in a variety of configurations and proportions.

ﬁ; In the derivation the plates are considered, conceptually, as more uniform
- orthotropic plates scmewhat on the order of plywood. The constants, which

include the effectiveness of the ribs for resisting deformations other
than bending and stretching in their longitudinal directions, are defined
in terms of four coefficients «, B, ', and B', and theoretical and
experimental methods for the evaluation of these coefficients are dis-
cussed. Four of the more important elastic constants are predicted by
these formulas and are compared with test results. Good correlation is
. obtained. : '

INTRODUCTION

Growing interest in integrally stiffened construction, evidenced by
such papers as references 1 and 2 and by the large forging press program
(ref. 3) which will provide facilities for production, emphasizes the
need for information on the structural characteristics of integrally
stiffened plates. ‘

A primary requisite for the prediction of structural characteristics
of plates is a knowledge of their elastic constants. In the present
paper, therefore, formulas are derived for the fifteen elastic .constants
associated with the bending, stretching, twisting, and shearing of plates
with closely spaced integral ribs running in one or more directions. The
ribbing patterns covered by the formulas are illustrated in figure 1 and
include those considered in reference 4. The rib cross section is arbi-
trary, although special auxiliary formulas are given for the rectangular-
section rib with circular fillets at its base.

I
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The elastic-constant formulas derived involve four coefficients «,
B, a', PB' for each rib which define the effectiveness of the rib in
resisting deformations other than simple bending or stretching in its
longitudinal direction. For most purposes a reasonably accurate evalua-
tion of these coefficients is required. Experimental and theoretical
methods of evaluating them are discussed.

As a check on the correctness of the elastic-constant formulas, the
predictions of the formulas for four of the more important elastic con-
stants are compared with experimental data.

The principal symbols used are defined in appendix A.
DEFINITION OF ELASTIC CONSTANTS

If the rib spacings are small compared to the plate width and length,
it is plausible, for purposes of studying over-all or average behavior,
to assume that the actual plate may be replaced by an equivalent uniform
orthotropic plate. Figure 2 shows an infinitesimal element of the equiv-
alent plate subjected to bending moments of intensity My and My,

twisting moments of intensity Mky: stretching forces of intensity Ny

and Ny acting in planes I and IT, respectively, and shearing forces of

intensity Nyy 1in plane ITI. The locations of planes I, II, and III are
arbitrary.

The behavior of the element can be described by a set of force-
distortion relationships in which elastic constants appear. Such rela-
tionships are obtainable from reference 5. If deflections due to depth-
wise shear are assumed to be negligible as is customary in ordinary plate
theory, the following equations (egs. (1') to (6'}.of ref. 5) are obtained:

J

c‘l O]L .G,L\ G’l;
P _ }§‘-+91My+*’01v+cm (1)
dx= Dy Dy S WY
2w Qo D:;t 034 Los
bS] Hx
-— =X -2+ + C (2)
QJ? 030
i TNy (3)
Ox oy Dyy
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C(.‘}I_ @4',)‘ 0‘(" eqb
N w'
- X y
€x = ~CuMy - Cngy + E;" E;— Ny = (%)
o Qqz sy el

(5)

Q?
:
g
&
d
;z
+
Fd

Que
S W
= \
ey = 2Dy ¥ o (6)
Xy
2
where é;z and éfz are the curvatures, P is the twist, e,
3x> By? ox oy

and € are the extensional strains in planes I and II, respectively,
and 7yxy 1s the shear strain in plane IIT.

According to these equations, fifteen constants are needed to estab-
lish the force-distortion relationships - namely, two bending stiffnesses
. Dx and Dy, a twisting stiffness Dgy, two stretching moduli Eyx and

Ey, a shearing modulus Gxy, two Poisson's ratios py and Hyr associated
with bending, two Poisson's ratios p'y and “'y associated with

stretching, four coupling terms Cyy, Cxy s ny, and ny assoclated
with bending and stretching, and one coupling term T associated with
twisting and shear. Not all these constants are independent, however,
for, as a consequence of the reciprocity theorem for elastic structures,

Hy = Dyux/Dy and H'y = Eyu'y[Ex.

- The form in which the force-distortion relationships have just been
| given is not the most convenient form for some applications, for example,
b for buckling calculations. For such purposes a more suitable form is
obtained when the first three equations are solved simultaneously for
- My, My, and Mxy' and these expressions are then used to eliminate M.,

' N My, and Myy in the last threeequations. The six new force-distortion
x equations thus obtained are .

32 %) \
? 32 82 .
; M, = "Dz(g% + iy -a-—;-’) + Co1lNy + Coplly (8)
: Y x
R S
£ ,
kY
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i
2 v
W
My, = 2D + CiIV. (9)
Xy k 3x oy k- xy
NG Ny m
€y = Cll a—z + CEl & + __J_(_ - __?_, Ny (lO)
dx? dy2 Ey Ep
2 2 M N
ey =Cp o4 0pp T - Ly 4 L (11)
ox dye By Ep '
%W Nyy

(12)

where py = DguX/Dl and  pp = Eopq fEq .

Of the fifteen elastic constants appearing in equations (7) to (12),
two, p,  and Wy, were also in the original set of force-distortion

equations. The remaining constants (Dy, Dp, Dx, Ej, Ep, Gk, u1,
Hos Cy1s, Cios Cp1, Cop, and Ck) are new. The algebraic relation-

ships between the new and the original elastic constants are given in
appendix B.

METHOD OF ANALYSIS

The analysis is made for a plate with the general pattern of ribbing
shown in figure B(a), which includes, as special cases, the patterns of
figure 1. A typical repeating element of the plate is indicated by the
short-dashed rectangle in figure 3(a) and is shown three-dimensionally
in figure 3(b).

The analysis is based on the assumption that each of the four'rib
segments shown in figure 3(b) may be replaced by three orthotropic sheets
of material parallel to the skin, each one covering the entire area bxby

and each fastened to the skin by means of many hypothetical, perfectly
rigid, infinitesimally small bars imbedded perpendicularly through the
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skin and sheets (see fig. 4). (The rib is understood to include any
fillet material but no part of the skin.) The properties of the three
substitute sheets are so chosen that one sheet (labeled C) in fig. 4)
represents only the effectiveness of the rib in resisting stretching and
bending in its longitudinal direction, another (1abeled C)) represents

~only the effectiveness of the rib in resisting stretching and bending in

its transverse direction, and the third (labeled (3)) represents only
the effectiveness of the rib in resisting shearing and twisting relative
to its longitudinal and transverse directions. (The transverse direc-
tion, as used herein, is the direction in which ty is measured, see
fig. 3.) In order for the three substitute sheets to accomplish their
purpose, they are assigned the following properties:

(a) Sheet () has a volume equal to that of the rib segment it
replaces, with its center of gravity at the same level as that of the
rib. Its stretching or compressing modulus of elasticity in the direc-
tion of the rib is E and its modulus transverse to the rib is zero.
Its stiffness per unit width for bending in the direction of the rid
is equal to the bending stiffness of the rib about its centroid divided
by the rib spacing (i.e., b, for a y-wise rib, by for an x-wise rib,
and bg for a skew rib, fig. 3(a)), while its bending stiffness in the
direction transverse to the rib is zero. The shearing and twisting -
stiffnesses and Polsson's ratios of the- sheet are assumed to be zero.

/

(b) Sheet C) has a volume equal to some fraction B of the volume -
of the rib segment, with its center of gravity at some distance oH :
above the middle surface of the skin. The modulus of elasticity for .
stretching or compressing in the direction transverse to the rib is E, VP

7 whereas that in the longitudinal direction of the rib is zero. The bending;w

shearing, and twisting stiffnesses, and Poisson's ratios for sheet
are all assumed to be zero.

(c) Sheet (3 has a volume equal to some fraction B' of the volume
of the rib segment, with its center of gravity at some distance o'H
above the middle surface of the skin. Its modulus of elasticity for
shearing relative to the longitudinal and transverse directions of the
rib is G, whereas its twisting stiffness relative to these two direc-
tions is zero, as are the stretching and bending stiffnesses and Poisson's
ratios.

It is assumed that the hypothetical sheets offer no interference to
one another.

On the basis of the foregoing assumptions, the integrally stiffened
plate has been converted to a more homogeneous plate somewhat on the
order of plywood. The assumption of rigid bars conmnecting the substitute
sheets and the skin is equivalent to the assumption that material lines
normal to the surface of the plate before deformation remain straight



|
1
1
[/

6 L NACA RM L53El3a

during deformation. If it is further assumed that these lines remain
perpendicular to the surface of the plate and that the stresses are in
the elastic range, any of the methods used for ordinary isotropic plate
analysis may be readily extended to the present idealized structure.

For the present purpose an energy method is adopted to determine
the six forces and moments necessary to maintain the prescribed uniform
3w W P

deformations sy —=» €x5 €y; =—<, and 7y_.. The equations
x= ¥y Y7 ox oy s

obtained for these forces and moments in terms of the distortions are
put in the form of equations (1) to (6) to yield formulas for the
original elastic constants or in the form of equations (7) to (12) to
yield formulas for the new elastic constants.

The details of the analysis and the derivation of the elastic
constants are presented in appendix C. The formulas obtained for these
constants are presented in the following section and the evaluation of
&, p, a', and B' i1s discussed in two succeeding sections.

FORMULAS FOR ELASTIC CONSTANTS

In this section the formulas are presented for the calculation of
the fifteen elastic constants appearing in equations 1 to 6 and the
thirteen new constants appearing in equations T to 12. The formulas
are presented for the most general type of plate considered, which is
illustrated in figure 3. For plates with one or more sets of ribs
omitted, the formulas alsc spply when the terms representing the areas
and moments of inertia of the omitted ribs are set equal to zero.

The formulas for the constants in the original force-distortion
equations (1) to (6) are as follows:

2 = 2\ |
e < w0, - A, Es)g-ux<ls

- - Is_ 1
_f Kgg ng (13)
' [ 2, = oV
A _ T
Dy = BTy - = gy(ky - K5) - “y(—_sé) (%)
| Ag As /|
I ‘
- E)
Dyy = EH ( - (15)
L e
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(Kse (ot~ 1) - Pty )2y B~ Aty (B B0 2 22 15 By ) i -
Ey = ER{—- _ >
,L Ay(Iny -T2 + AxAny( Ky - kz)e - Bg(E; - ky) EEIJ (Z- -xg) - _A_yIE(EJ - Eg) + 58, (E, - xo)E, - Es)ﬂ
J
(16)

5,7t 100 P B 2 e )72 5 w5y ) bl -5

Ey = EH >
] A(TTy - Ts?) + Ay TRy - k1) - Ag(Es - krp) | AgTy(Rs- k) - 28T (i - e+ Aoy (Es - keyp) (B - ES)EI
L &

L

Gy = EH - > (18)
Ly + gk, - kHI)

=2
s

Mx = —— — (19)

TA2 - agtA(E, - Eg)°
T2 |
Ly, = 5 (20)

T nE2 - alay(E - E)?

A (Taty - 16%) 4 Ty - ) (B Be) + Aoy - era) (R - Ba) + Ay~ ) By Krg) - g2 = ) (Ba - ) + Aoty (B ) (E, - k7)o - e ), - )
Ay (Tt = To%) # (- k)2 - AR ) [AgTy (g - k) - 2y 2oy - )+ gy (R - k) (5, - %)?]

H'x =

(21)

R As__('Iily - Fsz\: f\sﬁxfy(fx - og){Ex - Ba) + AsAyTe(Ey - krr) (y = By ) + AxhyTo(Bx - Ky )(Ey - kez) - APTo( Ky - kp)(Fs - p7) + Aghghy(Ey - Xy )( By - dorr Y - B (%, - K )
Ax(TeTy - ) + AxhyTx(¥y - Kp7)® - As‘(is - kgy) Eslz(is - ) - 2Ty (B - ) + Aghy(Kg - kr7) (k- Es)ﬂ

'

¥

(22)
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Aphyle, - ATk Ahy(ky - E)
1 T As” T As (23)
Cxx = = 2
= EH2 AseAx [ = \2 _fsz
Ix - _Q(kx"ks) L By
Ag Ag
N N
= e 25
v | Ashy(Bx - ) . Ach Ky - AgKg
) - Hx I -~ :A: 2
Gy = 1| As™ S (2k)
2 2 T 2
. o . S5 LY
XD g Vx0T 12
- s s ]
N _ _ , _ 2_—
Ahy(Ey - Eg) Ak, - Ag“Kg
- k+ -
— 5 Myl *1 — 2 ‘
Cop = —= As As (25)
Y g A2 T°
i
S —_— =\2 s
Iy - 2Ry - ) - w5
Ag Ag
| _
— o — —_
COAAE - AR A(R - K)
kII - - D B Py i 2
Cyy = 1 Ag S (26)
EH2 A PA o -fsg
T N
Ty - =Ty - R)” - =5 )
Ag 4 Ag
- _
.
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The formulas for the constants in the new equations (egs. (7) to (12))
are as follows:

9 SRS e s
H
1]
1
}_n

| B 2 ]
i : A kv I 2
Dy = EH’ Ix - iix(kx - ks) (28)
| Ag ] ‘
sl AAy o e
Dp = BRIy - 2 (k, - ) (29)
A |
\ I, ,
e Dk = EH%—?)  (30)
T2
. Ep = EH(%—) (31)
<2
A
Ep = B f_> _ (32)
X
. G = EH(A.) (33)
A
| A
pp = = : (34)
Ay
AS
4 Ho = — (35)
° Tk
Co |
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ve %, - Ak
.- S
oy Cyy = g - X¥x "~ fo s (36)
o3 s
‘i -
KYY) —
hn(Ey - E
A A (%, - K
{ Cip=H SAX( = S) (37)
Kse
¥ Achy(E, - &
9 . 021. =H y(—yz . S) (38)
s _

Cpp = H{kyy - — (39)
Ag
O = B(Eyy - kIII)‘ - (40)
Yy The quantities Ay, Tg, Ay, Ay, Ag, and Ay, kx, ky, Kg
and kxy, Iy, Iy, Iy, and Iy, appearing in equations (13) to (LO)
are defined by the following equations:
- 2 2
B2 = gy - Ag (12)
%
| =2 ~2 = —\/= =
L Ig5m = I + A's“x“y(k'x - ks)(ky - ks) (42)
- tg  Auy[P Ay, /Py Auglbs , 3 )
, v Ay = 1 -5 + _____x/ Y + 5y Y/ + S/ (cosue + Bg sinl*e +
1 2 H H H. H
. - |
i 2 R0 2 )
- ! sin~0 cos<6
:;‘_
o & T o
E
k. _ & L _ —
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Ay x/b AW [ox B[ bs
- 1l Y 5 . L
Ay—l—__2H+Bx o + i <51nG+Bscose+
i B's 2 _ sin®0 cosge) (4k)
! 1+
Ay [b @ ©
v il
Ay = —H -5 S <s1n29 cos26 + By sin®6 cos<O -
£ L . 2 H \
, mn
-
B'g —2 s1n2 cos2e> (45)
1+

oy = g (o il @Ayl )

= 1
B = |
Al =

1 A / by de 1 AWY/ bx

+

X2 T )

x/by(

x+By

L )
Hi. By 2(L +p) H

RN
e
A

- Aws/bs | 1 D
1( ] e Sin29 cosEe + BS singe C0529 4 B,S ————— COS 20. (}4‘6)
_ ‘ H (1L + u) - -

Ay, [P hyy b (m C’fi);g )

_——H—,- (ay) + 0 W cos

() .
o
Bsg 51nu9 + B' a'y T sin°6 COSQ%] (&7)
. 2 .
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: ™ Ay jb Ay [ Ay [b
- 1 Wyf Oy Wy/ Ox = Wsf Os (- L
k_y = A—ylfx ————H——-—(ax) + —ﬁ-—-(kwy) + _H_ kws sin'® +
L in2 2) ’
o, cos 0 + B' . sin“6 cos<H 18
ﬁs S B s = l + I-l J ( )
o - _ 1 qu/bs/_ . o, o
A kg = kw 5in0 cos20 + B sin“6 cos“6 -
o As
: [3' a'y : sin29 cos2e> (49)
e 1+
. :.. // R R /.: g%ngqﬂ/ - f~,>
= 1' " T L P e ) . B 1 Awy/b SN
o Ay 17 ¥ 2(1 + ) H{g Y o(r+p) H ( )
: ‘ ' ‘ : o@z
j .
*
5 - AW bs
i " -—S/——- 'lZW 51n26 cos<0 + BsOs sin®0 cos®® + 6 &' % 00522
. . H s, S 21+ p
= (50)
1 tg\> . Ty [Py IWs/bS‘ L 1 Pse o
- Ix=____..___ + 4 — 3 cose+———-—2—TI-(kx) +
z 12(1 - W?)\E i2 H 1.2
R /A b A /b A /b ,
w"/yk DRy g ST e -S(E - By)eos +
Pl H Wy x By —m ( y H Wg x
i 2. Uk =\2f[ 2 . 2 2
f‘ Bs(ozs - kx) sin'® + B' (C‘ kx) (l r— sin™@ cos 9] (51)
E} N~ >
:’;” yal2l’
|
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g x
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b Ay [b ay by [® &
B wa/ y(a -k )2 + Wy/ *l&, - )2 + WS/ i (—' -k 2sin1;e +
g2 (D s &) FERNENCA of 2 \i’.."\'e o
1 g1 7
Bs(as - ky) cos™® + B‘S(a s - y) <17+'Ll sin“6 cos 6) (52)
Q 1 L,/‘b ¢
iy t 3 W S t —
“§’ I, = ;(.ﬁs) + 4 sin®0 cos<o + b 5 -ﬁs—(ks)e +
]_2(1 - Hg) H 1 -p
| Ay [Ps
Sfi ( s " Es)esinge cos®e + ﬁs(as - Es)e 1n20 cos®9 -
= \2 2 2 )
! ﬁ's(a's - s) (l Fam sin“0 cos GH (53)
i 2>
}. ’\b\ 5
i ta\3 Iy v tg,—
B Ly L (—§> + 4 WS/’ ° sin20 cos29 4+ —=° _S..< )2 +
#L 6(1 + u) H O 14w H
! ’ Ay b
” .2 WX/by,a, R J2 ey 2 iy x(a, %
XTyp B OUX" TPYTLUTH y - Exy
:
| Ayl Ps (4 — _
ﬂ - ﬂ ° {(kws - xy) zsinea cos?e + Bs(as - k}w)?singe cos8 +
= \2 1 2
B's(a's - kx;y) %m)- cos‘e_gl} (54)
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bxs by, by  the spacing of the x-wise, y-wise, and skew ribs, respec-
tively, in.

ot 0 the angle of skew of the ribbing, deg
- H the over-all height of skin plus ribs, in.
_ tg the thickness of the skin, in.,

Equations (43) to (54) contain the quantities Ay Awy, and AWS,
- wa, Ewy, Ew , and Iy, Iwy, and Iy, which define the areas, loca-

tions of centroids., and moments of inertias of

+ha r»iha T~ e |
TEL VA LD g Cla Uil Vo Wl LdaCl va Ul LILCT L AdUD . AL

or rectang
ribs with circular fillets, as shown in figure 4, these quantities a
given by the equations

~
Ay |o | 2 t '
v W\ o/t t Wy t
X -=<1-1-ol+5< )———S>——§———x—§, (55)
H ts / \twy/| E ts by
v
. - P S
1 . Ay fb : 2
4 ' _.___Wy/ BT T P o.@(iwz) (t—5—> tsl Wy ts (56)
§i H i ts ) \buy /)| H( Tg By
r. “"
P, : — 3
1 AW\ bS -t
, . /& Wy t
"& g ._SL=2 1-1-043 —5 8 (57)
b H ts bS
4 — 12.“ o N
:‘ . 3 lo_g !l oy /v 4

(Eq. (57) contains a factor 2 to account for the fact that there are two
ribs in the skewed direction - one at an angle +6 +to the x-direction
the other at an angle -6 to the x-direction.)
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Y By [ 2 H ty, NE/ |tg by 2 B
..‘.. H o
— ta\2 31t + ty. ¢ t
ky = 2 l( - ——S-) + 0.1k iw_é) S (.ﬁ) Ms ', 1% (60)
s~ Byg/bs i ty/VE/ |tg by 2 EH

t Ty \/t 2
128 _ o018 Y (_S>
2 " tg H

| "
—-Ew>2+001rw> ts <§)3+
* tg )\t \E

tg 2 Ty, tg
(HH .A FS—E— (61)

- ' by ta\D
- &y 2 L o.on M\t \(I8)7
Y/ tS tWy H

Wy tg

tg by (62)

R o )8
| 0'“3(2—:&)2(%@@5 -3 - 0 18 )(ﬁfﬂg

EJ_S. t_S_ (,63)
tS bs
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The values of ky, kyp, and kyyy depend upon the locations of
the centroids of the forces Ny, Ny, and Nky: respectively, imposed
upon the plate element. (See fig. 2.) For the important case in which

Nx acts in such a plane that it produces no curvature é—— and Ny
\ Bx? :
acts in such a plane that it produces no curvature l;E, Cxx and Cyy
‘ ‘ 9

must equal zero (see egs. 1 and 2) and, therefore,

_ AyRy - APEs + w Ay (Ey - K
2

kt — (64)
A,
P~
Ahyky - ASTE + upachy(Ry - K
XYty s g T Hyfshx\%x s
k = (65)
IT — 0
Ag
S8imilarly, for the case in which ny scts in such a plane that it
produces no twist ng > T must equal zero and, therefore,
X Q¥
k11 = Ky (66)
If Ny and Ny do act in such planes that they produce curvatures
2 2
Aé;z and é—z, the actual locations of the forces (planes I and II) must

locations of the applied forces are to be evaluated. -

EVATUATION OF o AND B

Experimental Evaluation

The coefficients «, B, o', and B’ occurfing in the equations

for the elastic constants express the effectiveness of a rib for resisting

deformations other than bending and stretching in its longitudinal direc-

tion. For the evaluation of o and B for a given set of ribs

.
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(longitudinal, transverse, or skew) probably sufficient accuracy will
be achieved from a direct experimental measurement with a simple model
having one set of ribs whose cross section and spacing duplicate those
of the ribs for which the coefficients o and B are being sought and
with a value of tg equal to that of the actual plate.

A double specimen of the type shown on the right-hand side of fig-
ure 5 may first be used to evaluate B through a tension test and, then,
one-half of the specimen may be used to evaluate « through a bending
test, as illustrated on the left-hand side of figure 5. The use of a
double specimen for the stretching test is suggested because the symmetry

- will eliminate localized bending of the skin between ribs and facilitate

the measurement of over-all straln. Because of the prevention of local-
ized bending, the value of B should be somewhat higher than that which
would be obtained by stretching a single specimen like the one on the
left-hand side of figure 5. However, such an overestimate of B may be
desirable 1f the actual plate has ribs in more than one direction, because
then the localized curvatures associated with one set of ribs will tend
to be reduced by the presence of the other ribs.

The length-to-width ratio of the specimen should be great enough
so that any end grips or heavy end sections will offer negligible resis-
tance to transverse contraction in the stretching test and to the devel-
opment of transverse curvature in the bending test. Furthermcre the width
of the specimen should be sufficiently large compared to the rib spacing
so that the percentage of the specimen subject to shear-lag effects
arising at the rib ends is small.

The use of these tests for the evaluation of o and B will now
be described in detail. For ease in discussion, the ribs whose o and
B are being sought will be assumed to be oriented in the y-direction as
shown in figure 5. After the values of Oy and By have been deter-

mined, however, the subscript y should be changed to x or s if,

in the actual plate, the ribs under consideration are oriented in the
longitudinal or skew direction of the plate.

The conditions of the stretching test illustrated in the right-hand

o Fw _ Fw. N .
side of figure 5 are — = — "= N, = 0. Substituting these conditions

22 y2 7
in equation (10) and making use of equatioms (31), (41), (L43), (Lk),
and (45) gives
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=g
€x 1
T2
A
= B —E_
Ay
2
= FH xy ~ As
Ay
Ay /b
( 1 tg - ity x)( 1t Awy/bx> ( " ’03)2
- pue H 2 H
cpg Mot B0 B /AL - H H 1-p° H (67)
A /D
1%, iy Px
1 - uE H H
Solving for By gives
r )
Ay /b
ts iy Px
1 Ny tg H H
B, = < - > (68)
J Awy/bx EHe 4 H £ Ay /bx _
/i 58, Wl (g L 2)
i B H |
_ —J
Awy/bx
where, for rectangular ribs with circular fillets, ——— 1is as given

by equation (56).

By using for Ny/EHey 1in the right-hand side of this equation the

value obtained in the stretching test, an experimental value of By,
or ﬁyéxp’ is obtained ((—:x is the x~wise straln averaged over at least

one multiple of bx).

The conditions of the bending test illustrated in the left-hand side
of figure 5 are N, = Ny = My = 0. Substituting these conditions in

_equation (1) and making use of equatioms (13), (19), (42), (47), (49),

(51)) and (55) gives

(69)
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where
g [o b
ta \P ta /x
1 S 1 S 2 Y = \e
e s (RN
A X
lg(l_ue)H 1.,2 8 H
A, [b
Ay H
k, =0 ?(70)
=2
n = s
X
2 2, =2
IyAs - As Ayky
=2 =2
I" = IA° - A B

Solving for Oy gives

LK, + 1A P82 - E_ As (By Awﬁ'b::) ,Iyﬁaz— Aﬁﬂy'iﬂ L E(Iyxsa_ Asszfy2) _ Iszsﬂls M (Iyxsa' %2%2>

1'_\52 21 lfsAx(By ﬁ’H/be)‘ KSe E'EI3 g
ay _ ~
s [ Migfex\], - Moty P
%X—wa—s—z—(ﬂy Y H(IyAf-Afﬁyky"‘)-AsAﬁf(ﬂy —4— ) -
‘ Awy/bx
:where, as before, for rectangular ribs with circular .fillets,

is as given by equation (56).
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2 .0, ' 2
3:;”' Substituting for My EHY éLg the value obtained in the bending
:... : ax
ceeeel test, and for By the value obtained from equation (68) permits equa-
zeeeed 5

ogee tion (71) to yield en experimental value of o (57 s the xowise

oo \axg
curvature averaged over at least one multiple of by ). The quantities
KSE, A, Ay, As, E&, I,, Ig are obtained from'equations (41),

(43), (44), (45), (48), (52), and (53), respectively, with
Ay = AWs = Ty, = Iyg = 05 thus,

'W
=2 2
As = .r;:A crx:Ar = AS
Ay b Ay |b
Ag Wy/ X As W / X [ tg
= e A, = =2 A = =
B " *+ By H Y v * H 5 1. ME H
> (72
Ay, b (72)
K, == L Ty
Ay y
Yy u m s 12(1 _ uz) H
~

where Eﬁy is as given by equation (59).

Theoretical Evaluation
Accurate theoretical analysis. of the situations depicted in figure 5
is difficult. However, it is possible to obtain values of « and B
that underestimate or overestimate the stiffness of the specimens.

An underestimate is obviously obtained by assuming no part of the
rib to be effective in resisting transverse stretching or bending in a
direction transverse to itself. A lower-limit value of 8 is, therefore,

B:ﬁLL=O (73)

When B 1is taken as zero the value of a is immaterial.
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An overestimate is obtained by analyzing the two specimens shown
in figure 5 for their small deformations under the assumption that plane
sections perpendicular to the skin and perpendicular or parallel to the
direction of ribbing remain plane. The results of such an analysis of
the two situations illustrated in figure 5 are as follows:

. tafH
Fhe, = T i (7)
e, 2
Lo we by * Ay /bx
Y b5
)

for the double specimen on the right-hand side of figure 5, and

= 1

= - (75)
5 5 2
m0 9¥  1p(1 - 2)¢ fﬁ) HY L o»
N by )\ts] T T/ox
0

for the single specimen on the left-hand side of figure 5, and where I,
g, and f are geometric properties of segments of length by of the )
cross sections shown in figure 5. The letter 1 represents the moment
of inertia of such a segment about its centroid, g is the integral,
taken in the x-direction, of the reciprocal of the locasl thickness
measured in the z-direction, and f is +t«© times a similar integral
of the cube of the reciprocal of the local thickness. When the ribs are

‘rectangular with circular fillets, these quantities are given by the

following formulas:

2
1% & (fwy/tx ;t_8+§) -
I/bx 1ts)5+ts2 E tg\ H /\2 H Wy N Wy/x+
it G o 3
. ..I.'I_fw_y/_x + 1 H
tg\ H

Ay b 2
1ts, _&( ity _x_)(; 554 g )
2 H t H 2 H
S Y (76)
H
t

(—-—-y / ) +1
g H
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e - ‘
coee by g we Wyt
s’ o g:%— y—2ty+ty—ﬁs—+g' (77)
....: S ts s S
[ ]
osee
[ ]
[ 1 1]
by twW Ty By by P
f?j__1_2_1+_l@g+¢' (78)

~where g' and f' are functions of the ratio of fillet radius to skin

Iy [P
thickness plotted in figure 6, and _Ei%;f is as given by equation (62).
B

L
2

. ox
and (75) may be thought of as experimental results and they may therefore

be substituted in equations (68) and (71) to obtain values of Py, and
oy, corresponding to an overestimate of the stiffness of the specimen.

The values of Nx/EH£x and MX/EH5 obtained from equations (Th)

A lower overestimate of stiffness can be obtained by analyzing, on
the basis that plane sections remain plane, the single specimen on the

2
left-hand side of figure 5 for both NX/EHex and MZX/EH3 é—g and thus
ox
including the localized bending that occurs during stretching. Besides
being more conservative, the resulting values of oy, and By, Wwould

also be more appropriate if, in the actual plate under consideration,
there were really only one set of ribs. An upper-limit analysis con-
ducted entirely on the specimen on the left-hand side of figure 5 would
yield the following expression to be used in place of equation (74):

- ts/8 (79)
EHe . 2\t 2
12(1 2)(g ilh ) S 1
5 L4 f /by Awylbx

1+ 2 Z(H
H (ts)

where h 1s tg times the integral, taken over a length by in the

x-direction, of the square of the reciprocal of the local thickness;
for circular-filleted rectangular-section ribbing,

i
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b tw. T tw, fta\2
h=X_1Y_»o w'-V+ Y(-§-> + h! (80)
tS 'ts ts tS H .

where h' is plotted in figure 6. Equation (75) would still be used
I o 0
£ 3@.‘:1‘
or MX/EH 5
ox

EVATLUATION OF «' AND pB'

The coefficients «' and pB', which define the effectiveness of
a rib in resisting twisting and shearing relative to its longitudinal
and transverse directions, are not as readily measured experimentally
nor as readily bounded by an upper limit as o and B, although, of
course, a lower-limit stiffness is obtained by equating B' +to zero.

An apprdximate evaluation of «a' and B' may be made by assuming
that the same volume of rib material resists shear as resists transverse
stretching, that is,

B'y = By (81)

and then by computing where this material must be placed (a') in order
] to give the proper torsional stiffness as determined with the aid of
reference 6. The computation of «' will now be described in detail.

Consider an element, like the one on the left-hand side of figure 5,
having only y-wise ribbing and subjected to a pure Mgy loading. From
“equations (3), (15) and (54%) one can solve for a'y in terms of the

2
measured or computed ratio Mxy/ oW as follows:

. ox oy
o 'F.N&W' - D

aew xy‘
ox Jy
13
= E EH Ixy
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where
By Awy/bx(a'y)
= i
- 8
o tg o, Ay[Px (©2)
TPy TR

(84)

CgkﬁHB %W

The value of the ratio Mky
o (L + un))ox dy
above formula can, in the absenceof—% data, be derived by an adapta-
tion of the method used in reference 6 for computing the torsional stiff-
ness of I-beams and H-beams, which gives

[l o b

o i), 10 - fg)(m)3(t_s)2(f§> :
Y o H - H/\t H b
Gy oy 3P 3 s x

2(1 + u))dx oy

Nt

to be inserted in the

] o ’ ;
3 j/v‘f‘i C’A':::ZL[:Q /’ar’djgri ’
e e o ;-

0.10 (o * EQ)B Eg) + a‘ﬂi ¥ E)g\gs_ (8
5(138 ) (H (_bx (ts) (H (bx) 5)

where d is the diameter of the largest circle which can be inscribed

in the cross section at the junction of the rib and skin and can be com-
puted from the formula

W, \2  tw,/Tw .
Y 1
. (e + (et + § )
2. = (86)
S 2<—X> + 1
tg
Sommmms———

-

- AT ’ / / */“‘ s e
f‘\y.{,{f} R S S 2 DT R P M—»’—tﬂ& Leep® 5 o ‘w‘? L) ’ /
. L .
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‘s 0 and a 1is a constant whose value depends on twy/ts and rwy/ts. The
::": value of a 1s obtainable from figure 7 of reference 6 or, whenever
°2
ty T
goees —J > 0.61 -O.23<T—1j, from the following formula:
oo tS tS
..:
Ty
a = 0.09% + 0.070 t—l (87)
S .

The meanings of the various terms within the parentheses of equa-

te\D
tion (85) are apparent: %(E?) represents the contribution of the skin,

considered as an infinite plate, to the twisting stiffness of the waffle;

tg\ [Ty )\ [t5\2( t
!:G_- —§><—4X> (—§> (~§> is similarly representative of the twisting

3 H /\tg H by i
stiffness of the rib; the term with —0.105(£§Z> corrects for the fact
that the rib is actually not infinitely deep; and the term with a(g‘g)4
represents the additional stiffness due to the fillets. The value 0.105
is based on the assumption that %SEX:Z 2.3; for values of Ebe/twy

y

less than 2.3, the number 0.105 should be replaced by the number obtain-
able in figure 3 of reference 6 with the abscissa label b/n replaced
by the label Ebe/twy.

COMPARISON OF CALCULATED AND EXPERIMENTALLY MEASURED
VALUES OF ELASTTIC CONSTANTS

As a partial check on the theory, experimental measurements were
made of the stretching stiffness’ Ej;, bending stiffness Dy, shearing

stiffness Gy, and twisting stiffness ny of plates with integral ribs

Pt S ST

.

running either longitudinally or transversely (fig. 1(a)) or skewed
(fig. 1(c)). The procedures used for the measurement of Dy and Dxy
were essentially the same as those described in reference 5 for sandwich
plates. The measurements of E; and Gy were made with long-gage-
length resistance-type wire strain gages mounted in the four corners,

or diagonally on the four sides, or square-tube compression or torsion
specimens similar to the square tubes of reference k4.

45

Sy

L

43,

p

[
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The experimental values obtained for the stiffnesses are indicated
by the circles in figures 7 and 8. In figure T the stiffnesses are
plotted against the angle of skew of the ribbing (with 6 = 0° and
0 = 90o . corresponding to purely longitudinal and purely transverse
ribbing, respectively) for plates having nominally the same weight. In
figure 8, for a given angle of skew (6 = 45°), the variation of the
elastic constants with skin thickness is plotted. The relatively large
scatter in the test data is due to the fact that the plates used were
sand castings and, hence, had appreciable variations in thicknesses from
one specimen to another and also within each specimen.

For comparison, theoretical values of the four elastic constants
were computed from equations (31), (13), (33), and (15) and are plotted
in figures 7 and 8. The lowest curve in each graph is obtained from
the lower-limit assumption, P = O; the highest curve gives calculated
upper-limit values based on the use of equations (74) and (75) in calcu-
lating o, and Byp; the middle (dashed) curve shows the results

obtainable by using for o and p values determined experimentally on
specimens like those in figure 5. 1In each case it was assumed that

B' =B, and @' was computed from equations (84%) and (85). Table I
summarizes the upper-limit and experimental values of « and B used
for these calculations. :

In general, figureé 7 and 8 indicate that the agreement between
calculation and experiment is within the experimental scatter, with the
calculations based on the values Oexp and Bexﬁ giving the best results.

CONCLUDING REMARKS

- On the basis of an idealization of integrally stiffened plates to
more uniform plates resembling plywood, formules have been derived for
the elastic .constants of.the plates with integral ribbing in one or more
directions. Two sets of elastic-constant formulas have been given, based

on two different forms of the force-distortion equations.

The formulas for the elastic constants involve four coefficients a,
B, a', and PB' for each rib which define the effectiveness of the rib
in resisting stretching and bending in its transverse direction, hori-
zontal shearing, and twisting. Experimental means of determining these
coefficients are discussed, as are theoretical methods of obtaining
values corresponding to lower-limit or upper-limit assumptions regarding
the stiffness of the plate.



NACA RM L53El3a S 27

The predictions of the formulas for four of the elastic constants
are compared with experiment and good correlation is obtained when
experimentally determined values (or, in most cases, upper-limit values)
of o and B are used in the formulas for the elastic constants.
Despite experimental scatter, the calculations and experiments agree,
in general, both in magnitude and in regard to trends resulting from
variation in angle of skew of ribbing or in skin thickness.
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APPENDIX A
NOMENCLATURE

Plane I is defined as the plane in which N, acts and in which €x
is measured. Plane II is defined as the plane in which Ny acts and in

which €y is measured. Plane IITI is defined as the plane in which Nxy
acts and in which Yxy' is measured.

General Symbols

'j
C
Cxx coupling elastic constants associated with bending and
Xy ? stretching and defined by the force-distortion equa-

Cyx tions (1), (2), (4), and (5), 1b-1

ny)

C N

11 coupling elastic constants associated with bending and

C12 stretching and defined by the force-distortion equa-

Coy ” tions (7), (8), (10), and (11), in.

022J

Cx coupling elastic constant associated with twist and
shear and defined by the force-distortion equa-
tions (9) and (12), in.

Dy» Dy bending stiffnesses in x- and y-directions, respec-

Dys Do tively, in-1b

ny, Dy twisting stiffnesses relative to x~ and y-directions,
in-1b

E : Young's modulus of material, psi

Ey, Ey extensional stiffnesses in x- and y-directions, respec-

E, By tively, 1b/in.

G shear modulus of material, psi

Gyy shear stiffness of plate in xy-plane, 1b/in.
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My, My

€x> €y

Hxs Wy

TR u';;}
His Ho
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resultant bending-moment intensity in x- and
y-directions, respectively, 1lb

resultant twisting-moment intensity with regard to
x- and y-directions, 1b

intensity of resultant normal force acting in
x-direction in plane I, Ib/in.

intensity of resultant normal force acting in
x-direction in plane II, 1b/in.

intensity of resultant shear force acting in x- and
y-directions in plane III, 1b/in.

~ coordinate, measured parallel to skewed rib, in.

coordinate, measured perpendicular to skewed rib, in.

coupling elastic constant associated with twist and
shear and defined by the force-distortion equa-
tions (3) and (6), 1b-Ll

displacement in z-direction, in.

strain energy, in-1b

coordinate, measured in longitudinal direction, .in.

coordinate, measured in transverse direction, in.

coordinate,'measured perpendicular to faces of skin,'in.

shear strain, with respect to x- and y-directions, of
plane TIT

strain of plane I in x-direction and of plane II in
y-direction, respectively

Poisson's ratio for material

Poisson's ratios associated with bending in x- and
y-directions, respectively, and defined by the force-
distortion equations (1), (2), (7), and (8)-

Poisson's ratios associated with extension in x- and
y-directions, respectively, and defined by the force-
distortion equations (4), (5), (10), and (11)
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Symbols Representing Dimensions

x-wlse and y-wise length, respectively, of smallest
repeating unit of plate, in.

spacing of skew ribs, equal to bx/sin 6 or byjcos 0,
in. '

rib spacing (measured between center lines of parallel
ribs), in.

rib depth, H - tg, in.

diameter of largest circle that can be inscribed in
cross section at intersection of rib and skin, in.

distance from planes of zero strain to rib centroids,
in.

over-all height of rib plus skin, in.
radius of fillet, in.
thickness, in.

angle of skewed ribbing, measured from the longitudinal
direction, deg ‘

Symbols Used in Equations for Elastic Constants

a

A.Wx, Awy ’ AWS

£, &, n

Tyyr Ty Ty

constant used in equations for calculating a'UL
cross-sectional area (including fillets) of x-wise,

y-wise, and skewed ribs (AWS includes area of two
ribs), sq in.

general symbol for wa, AWy’ or AWS

constants used in equations for calculating QuL,

and ByuL,

cross-sectional moment of inertia of x-wise, y-wise,
or skewed ribs about their centroids (IWS is twice

the moment of inertia of a single skew rib), in.l‘L
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ky, kII: k11T

i Ky g

O‘LL’ Cexps O‘UL}

0/

1 ] 1
a'y, a'y, a'g

BLL» Bexp’ PuL
Bx) By) BS

B
B'x, B'y’ B'S

Bl

S5, X, ¥

E

T 31

dimensionless distance from middle surface of sheet
to planes I, II, and IITI, respectively, expressed as
fractions of the over-all height H

dimensionless distance from middle surface of sheet
to centroid of x-wise, y-wise, or skewed rib,
expressed as a fraction of the over-all height H

constants used to locate the effective centroid of a
rib for resisting bending in its transverse direction

Qy, Or Og

constants used to locate the effective centroid of =a
rib for resisting twisting

general symbol representing ay,

general symbol representing a'y, a'y, or a'g

constants used to define effectiveness of a rib in
resisting stretching in its transverse direction

general symbol representing By,

By, or Bs

constants used to define effectiveness of a rib in
resisting shearing

general symbol representing B'y>s ﬁ'y, or B'g

Subscripts
longitudinal
sheet or skin
transverse
rib (web)

indicate application to skewed, x-wise, or y-wise ribs
or directions

lower limit
upper limit

experimental
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RELATIONSHIPS BETWEEN NEW AND ORIGINAL ELASTIC CONSTANTS

The relationships between the new and original elastic constants

are as follows:

D
e Dy = DL - iyty) (1)
D, = _ % Dy = Dp(1 - tghly) (B2)
1 - gy
D .
D = —F Dyy = 2Dk (3)
)
E
E] = — I _ X
D D
L- EXIEX"(l - }:xuy>(cxx + uyCy) + ny(l —yuxuy) (Cyx + 1xCix)
?
E = o
X
1 - bxCol 21 - “ycl
1+E,<C
1{11[1(1 - “x“y] 21[2(1 - “x“y
</
(Bk4)
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:..: ~
.:-- E2 = e e Ey -
® : D
" . Ey[ (25 e = o )]
?
E = e -
HxCoo Cop - yCio
1+ Ep<C
2{12[1(1 - ity ) :’ e P'x“Yi]}
v,
(B5)
G
% s Xk (86)
1 - 2Dyy Gy T2 Dy + C2G,
D D R
Ciq = C X y
" ""<l - “x“v> B y"(l - w)
> (B7)
Ci1 - HxCoy
D1t - vty )
-/
D .
Cip = C X e[ Dr _ Ci2 - mxCop .
12 =y (1 - uxuy> * b W(l = Hyhy Cxy (1 - uxp;j (88)
Dx D Coy - wyC
c c y _ Co1 - myCiy
g ) e w
DX Dy 022 - }J.ycle .
Cop = pyC c =
S "’<1 - “xuy> ' ”(l = by W T Ty

@ o R o . R
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(B11)

"
Cx
Cg = -D, T = - =
k xy 2Dy
. H'xExExx(i_l::xTy) (Cni- ”yc.yx) + ny(l_nypﬂy) (cyx'l' l-'xcnj)’ + ExEn(l_D_:;W) (Cw"" uvcyy) + cyx(;__j):Tw) (cy'y*' l"xcwﬂ
1-Ex Exx(l -D:x“y) (Cxx* uycyx) - ny( _Dixuy)(cyx'# uxcnﬂ
By - El{cll gﬂz_yl(l- 'ZC::I + 0oy DC—T—LEEI _upipl:}
By =
1+ El{cn _Ei_z-l- -uxuiiig + CelEcZ](.; _“ilu;;}}
J
ey ¢ R'yBy C’W(l-_:n:xu_y) (Cxy+ wyCy3) + cyy(fi)yuTuy) {Cyy+ “"C"Vil + Ey E’W<1—D§xuy) (G + 1y Oy + cyy(tn%m)(cyﬂ uxcﬂi!

F (s12)

R =

feo - "ycu—l

Cyq ~1,C
Hp - 32%12 Dﬁl _u:ﬁ;} +Cop

P ]

[oez- eyt |

3 ¥y _‘
a2 - 1Cpp
1+ Ee{clz Dy(I- uxuy)_j +Ca2

[Po(t - )|

(B13)
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APPENDIX C
DERIVATION OF FORMULAS FOR ELASTIC CONSTANTS

The basic assumptions of the analysis have already been described.
In the derivations that. follow, where the word "ribd" is used, it will
usually be understood to mean one of the substitute sheets, depending
on which property of the rib is under consideration. Separate deriva-
tions are given for the constants associated with bending and stretching
and those associated with twisting and shear.

Constants Associated With Bending and Stretching

In the derivation of the formulas for the elastic constants asso-~
ciated with bending and stretching, an element of the integrally stiffened
plate will be considered; the element has the average prescribed curva-

Fw oPw
— and -— and the strains ey (measured in some arbitrary

% dy2
plane which will be referred to as plane I) and €y (measured in some
other arbitrary plane which will be referred to as plane II). The
development of these prescribed deformations requires the application
of moments of intensity My and My and forces of intensity Ny
(acting in plane I) and Ny (acting in plane IT). These moments and
forces and the locations of planes I and II are shown in figure 9.

tures

If the strains are assumed to vary linearly through the thickness
: 2
of the element, two horizontal planes can be found <;n terms of 2;;,

32w

5’ and ey> in which the x-wise strain and y-wise strain, respec-
Ay
tively, are zero. These planes are indicated in figure 10.

Gx,

Strains of components of plate.- The longitudinal extensional strains
of the ribs measured at their cross-sectional centroids can be written in
terms of the curvatures and the distance between the rib centroids and
the planes of zero extensional strains. The strains of the x-wise,
y-wise, and skewed ribs are, respectively,

%W

=h, 2¥ c1
S, T U3 52 (c1)
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G -k
N EWLYL & aye (c2)
ey.. =hy Pw cos®0 + Ik s sin20 (c3)
SL %= 12

where the subscript I denotes longitudinal direction of a rib; the
subscript x, the x-wise rib; the subscript ¥y, the y-wise rib; and the
subscript s +the skew rib. The distances h3, k3, hy, and k; are

shown in figure 10.

The transverse strains of the ribs are as follows:

32
citgy = ~(k2 - )2 (ck)
iy = (12 - )22 >
T 3"
Wop = ~(be - @ H)_z% sin®e - (k2 - asﬁ)ig cos?e (c6)

The extensional strains of the sheet midplane in terms of the curva-
tures are

€5, = “Bo g;g- (c7)
GSy = -k2 g (08)
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The curvatures QEE and QEE of the element are alsc the curva-
d9x= dy=2
tures of the x-wise and y-wise ribs, respectively. The curvature of the
skew ribs is

QEE = §EE c0529 + §E§ sinee (09)
ds? Bxe oy

The horizontal shear strain in one of the skew ribs, relative to
the longitudinal and transverse directions of the rib, can be written in
terms of the x-wise and y-wise strains at the same level, which in turn
are determined by the x-wise and y-wise curvatures; thus,

2

i~ o 2

L_ a Uy _l

The x-wise and y-wise ribs have no shear strain.

= 2’T(h2 - a'sH)-a—z-g- + (k- a'SH>& sin 6 cos 6 (c10)

Expressions for the dimensions hy, hp, h3, ky, ko, and k5.-

In the derivation of equations (C1) to (C8) and of equation (C10), the
assumption was made that the strains varied linearly from the planes of
zero strain. On the basis of the same assumption, expressions are
written for the strains in planes I and II - the planes in which Ny
Ny act and in which ¢y and €y are measured. These expressions are

2

ex = ~(hp - k) ¥ - (cw)
ox
Pw
ey = -(k - kIIH)g;E— (c12)
from which
€
= kH -~ X (c13)
hy = ky 2u
ox=



[ 2]
[ 3
[ 1) [
odae
L 1] -

eose
.
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ky = kygH - =5~ (c1h)

By geometry the dimensions hy, h5, ky, and k3 ma& be written

hy = Ey H - hy (C15)
hy = EWXH - by (c16)
Ky = ky H - Kk (c17)
k5 = Ewa -k, ‘ (c18)

where EWXH,' ky H, EWSH locate the centroidal axes of the ribs from

the center line of the sheet. Substituting for hp and kp from equa-
tions (C13) and (Clk4) gives

by = (kws - kI>H = (c19)
32
X

I
m

X (c20)

jnx
N
|
28
2
1
G
t
+
Q/ o/
“m, z:'°|

m

(ca1)

N
]
=l

=
wn
t
H?\“
o
jus]
+
Q/
| 30|

= [k, - H4+ 2 _
ks (wy kII) + & (c22)
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Evaluation of strain energy.- The total strain energy of the element

- of the integrally stiffened plate can be written as the sum of the strain

energies of its component parts; thus,

bx by ' bysecd
va=1 j ey PEAy dx + = j ey, °EAy dy + = f ey, EEAdes +
2 Jo L * 2Jdo . YV 2 L
b By
1 x 2 1 2
= € E dx + = € E dy +
2 L W Pacbir 2 j(; Wy Byty &y

1 bysecHd o bxseco 5
= € ER Ay ds + GR' Ay ds -+
WST Bs Wg 5 7ws B's We

2 Jo

M-

by j‘by
1 <€ 2 b e 40 N—E— tqaxa
= g € + 2ueq € )—— v+
2 jo 0 x Sy SxBy)1 .2

by 5 \2 v 2 \p ‘bysecd 2_\D
;f B_WEIWd,HLF M)E:[Wdy+%£ a_g)’EIst+
2 o \ax@ x 2 Jo \3y2 y ds s

b o 2.\2 2 \2 3
1 [Px [Py I(a w) N (a w) yo, Pudv|l_m b7
1 — - dxdy (ce3
2j; L x> dy° u8x28y21—u212 )

In equation (C23) the first three terms give the energy of exten-
sion of the ribs in their longitudinal directions, the second three
terms the energy of extension of the ribs in their transverse direc-
tions, the seventh term the energy associated with the shearing of the
ribs, and the eighth term the energy of extension of the skin. The
next three terms give the energy of bending of the ribs, and the final
term gives the energy of bending of the skin.

Carrying out the integrations of equation (023), dividing by bxby

to reduce the result to strain energy per unit area, and substituting
the previously derived expressions for the distortions ewx, €y.» and
Y

so forth gives
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2 =V
o0 bxby
® e
e L J
Z.O.E
A A ‘
3 Bl g e ey Ty Mo(oogho 4 g stk

A
B's I f s1n°0 coseeﬂ ex2 + El: = 5 tg + z (sin26 cos®0 +
i 1 S
- u

2 2 2 2 -1
Bg s1n“6 cos“6 - B'g Ten £in20 cos GEJ exey + 2{-1—_52- tS(kIH) +

Ay (— Ay Ay Y
Ty - ko) H i, - k H+—(k -k)Hcose+
b, (kwx kI) * By 5 (O 7 bs [\ "8~ °L

Bs(as - kI>H sin*e + B's(a's - kI) H(l sin°0 cosee]

S Ay [—
2{1 _“ 5 tg(krrH) + “B'EKKWS - kII>H £1n20 cos20 +
Bt’a‘(o‘s - kII)H 51070 cos26 -

e cos ]}ex-——+

A A A
i 1 tg + By Wx + Ny + ws(sinl*e + Bg cos*o +
1.2 by ~ bx | bg

B'S(a's - kII)H(

B's 1 f_ m s1n°0 coseeﬂ ey2 + E{l_i_z. tS(kIH) +
- u

Aws (kw - kp)H 5100 cos”® + B (0 - kp)H 5in0 cos2e -

(Equation continued on next page)
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' (o' - ko )H 1?ecos,29 O 4 p)_ =L kr1H) +
Bs( s I)( sin :l}eyaxg ﬁ_ug S( II)

A Ay — Ay
Bx %\’f(ax - kII)H + %(‘kwy - .kII)H + _g_:@ws - kg )H sinkt

Bs(o:s - kII)H coste + B's( g - kII) ( 2 5in6 COSEGJ}

I I
1 t85 + x Ve coshe + 1 5 tS(kIH)g +
12(1 - p? by bg 1-u

-—(wa - kI)2H2 + By f-]‘;‘r—::(@y - kI)2H2 + Ablz(iws - kI)echosl*e +

2
Po(0e - kp) Hetn’e + pry(ars - kp) 22— sine ﬂ} (3“)

I
1211 - p s 1 -pu
Ay
S|{{% . - 25,2 2
oo | (Rwg - kx) (g kpy) B751n%6 cos20 +

Bs(o‘s - kI)(Cts - kII)HESinEG cos?0 -

B's(o"s - kI)(a's - kII)H2(1 " T o “ coseﬂ} ::2; giw

5 s (kIIH>

I Tw
1 t53 + —BXW + —8 s:Lnl‘e + 1

Bx Ab%(ax - kII)eHE + A_“Zi(iwy - kII)EHE + f\‘z_:‘,_[}_ws - kII)2H251n)"'6 +

Bs(ozs - kII) ®Hecoske 4+ 5'S(a's - kII)2H2(1 2 sin2e cosze:,} ayE

(c2k)
O
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where the identities i = —2'— sin 6 and i = % cos 8 have been sub-
bs by- s

stituted to simplify the expressions.

Invoking the principle of virtual displacements by differéntiatiﬁg
the energy expression (C24) with respect to each of the strains and

curvatures and dividing by EH or EH? gives the following expressions
for the forces and moments:

vt L
dex EH

CHEIE

By [Px | Bis[s (1 hg )
+By T + o cos™0 + By sin™0 +

. 2 20 cos? w tg MsfPse o
le+usin9cose €x + ———E—E-+—T—(sin6cose+
1-u

Bs s1n26 cos0 - B'lg —— s —2 sin ® cos J { +

— AW bx A, bS .
__}%/I_(kwx - kI) + By 31'{_/(% - kp)+ _.V.J%__kas - kI)cos“e +

)-I- 1 1 2 62w
Bsas—klsin8+ﬁsas—k1>( sin®8 cos6 v
( ) ( H e
t AW /bS
- ’s 8 (— _ ) . D2 2
—-’="———:L 3 Iﬁ T kII + — [kws kII sin®8 cos"™6 +
2 2 2 Fw
Bs|®sy - krr)sin“6 cos<8 - B' -k ( s1n9cosSHH—
S( S II) ( II) n ayg
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w1 Yy
Bey EH EH
Ay |b
t W, s
= | R 5y ——s—/——<sin26 cos26 + Bs sin®6 cos28 -
1 - ug H H
.2 24 25‘ i 1 s Bty [Py Ay [Px
sin cos €y + — + +
B'g 1T+ H X !i _ p,2 H BX H H +
Ay /bs
5 " L 2 o 2 )
---—H——-<sine+ﬁscos9+le+usin9cos6 ey +
t Ay /bs
-i S s = s 2 2
—_— ke + — |k - 6 e
1_p2 = ¥I T KWS kI)sn.n cos<0 +
B (Ots -k )sin26 cos2o - B'sfa's - k ) 2 5in2o cosgejl H—ai +
5 1 s( s I\ + 3%2
t Ay b b
S Wy [Py Wy [ Px
— u2-I-{-1~:]:I+t3x (o - Eqp) + (kwy-kII) +
Ay /bs
s = .
Ekws - kII) s1n,+9 + gs(as - kII) coshe +
B! (oz's -k ) 2 5in®0 coszejl H Pu (ca6)
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Wx/ by

Ayt [ bx
il

e%s-kl (kW —kI)+f3y (ay-k1)+

AWS / bg

KEWS - kI) costo + Bs(ozs - kI) sinte +

sin £] coseej}

Ayg [Ps [7—
S}{ S&{Ws - kI) sin®0 cos?0 + Ss(as - kI) 5in20 cos2g -

sin®8 cos ]} {]_2(1 - u2) tS)

AWx / by

B's(a's - kI)( T2

6'5((1’8 _ kI)( 2

IWx/by N st/bs
"D "1

cos

t

+1_2H (W—kl)e

A b A b
By _Eg__x(ay - 'kI)2 + Ws}{ ° KEWS - kI)Qcos)*e +

5in20 26}, Bzw
m cos H _B—:_cz +

Bs(s - kr)2sin"0 + B's(a's - kI)E(l =

Iy /b
n (ts>3 Ws/Ps . o 2 b tg
—_—— =] + —2____ 5in~0 cos<o + - k-k:
12(1 - 2)\E 3 1-, 25 TIL7
Sf{ Bkw - k)( Ky, - kpp)sin®e cos?e +
f3s(as - kI)(aS - kII)sin29 cos2o -

- kII)(l

B's(a's - kI)(a's f m sin2e COSEQB}H gz"l (c27)
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3 32y EHS EH?
%2
t Ay /bs -
= - S 11 + WS/ Sk - k1) sin®6 cos?o +
\1-42 H |\ Ws = “II)

BS(aS - kII)sinQG 00529 - B'S(als - kII)(lf sin26 cosae},}ex +

- Ay /b
{ : S R o X/by( oy - kr7) + _W%Iu(kwy - kpp) +

l-p,2

ﬂSH/EKkW - kII) sinl*e + Bs( - kII) cos4 6 +

S sin2e cos29ﬂ} € + {—__{” __ts)5
+ U yA | y anfn oy\ H
: J 3e(1 -

pe)

B's(o"s - kII) (l

Iy. /b
s/ Ps sin®6 cos28 + _}i_ <] S kpkpy +
i 1= 2
Ay _[b
Ws/ s|f— — o o
: kas - k1 )(Ew, - ky7)sin®e cos?e +

55(05 - kI)(O:s - kII)sin26 cos2o -

29 cos29H}H Pw

B'S(a’S - kI)(a'S - kII)(l i " sin
R S E§>3 Tiy/Px  Twg/Ps 1 tg 2
{12(1 - ug)( + + sin*o + (kII) +

112 ) "1 -2 °H

Aot oy

Ay b
Bx "—H—( kII)2+ " / x

Ay |b
(Ewy - kr)° + Wi[l SKEWS - kH)Qsin’*e +




46 R NACA RM L53El3a

The equations for Ny, Ny, My, and M/ (eqs. (€25) to (C28)) can

be written as

Ny — 2w %W
Y Cne 4 Age, + A (kg - & HQ_“+A:,(£:,-1< )H_BEE (c30)
EHE 8 X A A s\"s I) BXE “IT ayg

ES + Ag(ks - kp)(¥g - Xkox)| B ée_‘g'. (c31)

Es + Ag(Eg - ky) (kg - kIaH o+ [Iy + Ay(ky - kII)ﬂH 2;2%
(c32)

where Ay, A, and so forth, are given in equations (43) to (54).

In order to ldentify the desired elastic constants associated with
extension and bending, the foregoing force-distortion relationships,

" equations (C29) to (C32), need only to be put into the form of equa-

tions (1), (2), (4), and (5) or (7), (8), (10), and (11).

Constants Associated With Twisting and Shearing

The derivation of the formulas for the elastic constants associated
with twisting and shearing is a parallel one to that for the bending and

stretching constants.
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An element of the integrally stiffened plate will be considered

which has the average prescribed twist 2w and shear strain vy

ox dy X
(measured in some arbitrary plane which will be referred to as plane III).
These prescribed deformations can be effected by the application of
twisting moments of intensity Mky and shearing forces of intensity ny

(acting in plane IIT) to the element (see fig. 11).

If the horizontal shear strain is assumed to vary lineariy through

2
the thickness, the horizontal plane cen be found (in terms of Sé—gt
X oy

and 7xy) which has zero shear strain. This plane is shown in figure 12.

Strains of components of plate.- The extensional strains of the
longitudinal and transverse and one of the skew ribs in their longitu-~
dinal directions at their centroids are

eka =0v A (c33)

€ =0V (C34

"L, )
ey =t W o sy (C35)
Ws, ~ 7 13k oy

The transverse strains of the ribs are

Sy 0 (C36)
ey =07 (c
Wy 37)
= + ! - Bzw
W, t(n', aSH)ax - sin 26 V (c38)
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The extensional strains of the sheet are

€sx =0 (039)
GSy =0 (C’-I-O)
The twist 852;' causes bending of the diagonal ribs. The curvature of \{(
X Qy
one of these ribs is given by \f‘)
2 2
OW _ . OV ginpp s (c1) o {<
3s2 T dx oy W &
The curvatures of the longitudinal and transverse ribs are zero. The g“
shear strain in the skin middle surface is given by ‘\
vy = -ohip Sy (che)
S 2 dx oy

The. magnitude of the shear strain of the diagonal ribs is given by

Ta, = ,2(h'2 - a'sﬂ)aizgy cos. 20 - (ch3)
The shear strain of the x-wise and y-wise ribs is given by o
7wx = -2(h'2‘ - )ai gy (ChL) @
: t ! Baw ,
= -2h', - H)-2 ¥ CL
My 2( g.a‘y}axay (ch3)

Expressions for the dimensions h'y and h's.- The following

- expressions can be written for the strains in plane III (the plane in

which Nyy acts and in which Txy is measured, see fig. 11):

— 1 \ 62w
Txy T "2(h 2 - kIIIH) dx dy ! (ch6)
from which
his =kypiH - 5 —x'Lag v (ck7)
ox BY
. =
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‘ ’ ,D/?L N N
By geometry l,,, = km$H - ;ﬁ, L~ cwe_my/.,m,é\
_ Q‘rd;} ) J
h'y =ky H - h'y g (cu48)
f } N
Substituting for h'p from equation (Ch7) gives P
Txy /
n'y = (R, - krrpE + L > )

Evalustion of strain energy.- The total strain energy can be
written as

1 wxsecH o 1 bxsect o
U== BA;; ds + = ER Ay ds +
2 Jo €WsL Ws 2 eWsT Ps Ws

L— O ._[' A
- . DY PSS I TPEN

.. - R ) . AP )
N ‘ . X ) ! / I
* \zg\, (; . {,'\:,,'.v/' . (99 P RIS RN S (',‘
" P .

[

bx Al \ i I . by \/ h/ d/,»\.lf‘
o Yy
2GB' A, dx + * Ay Y +
L 7W P'x Wy + 2 \L 7Wy ‘GB }jAwy Y 0 . j/’ e
\j’,mm:. . / e (,/ Qu ‘)( ]x.';.u/,v! g y- Al “%?’7

bxsece by o | /7,»;&74 ,
%f ! Awd“‘ff I e JW’@L
o '.‘ . e ‘.L/ Z]/\‘n A ‘,‘{J 41’('\\""‘ ’-i Djrv‘—'ﬁ“u"l

)

bx 5 bysecd ;. o \o.
62w % s .l_f W\ Ers 4
L[ L[ BX oy ”g _64_dXdy + 2 Jo <Bse EIWS s (C50)

0

£
= - P A
A Qajl , ) ?J, . J0 af e /f 7 2l

n -

In equation (050) the first term gives the energy of extension of
the skewed ribs in their longitudinal directions, the second term the
energy of extension of the skewed ribs.in their transverse directions,
the next three terms the energy of shearing of the ribs, and the sixth
term the energy of shearing of the skin. The next term represents the
energy of twisting of the skin, and the last term gives the energy of
bending of the skew ribs. ’

Carrying out the integrations of equation (050), dividing by bxby,
substituting previously derived expressions, and so forth, gives
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Ul

Ay Ay
E 1 tS + 1 th X + 1 Bty N +
2 12(1 + p) 2(1 + p) by  2(1 + u) by
W
—8[6in°0 cos26 +£Bg sin®8 cos26 + B!

A |
g ——-— cos>20
bs 5 5(1 + 7"3’

-1 1 WXI ]
—_— ta(k - HY) + ' o -k H +
b 2(1 + p) S( IIT ) 2(1 + p) Plx 5, (% 'x III)

Ay Ay (_
L 7 — 2 2

2(1 + p)

2 2
Bs(as - kIII>H sin“@ cos<6 +

' 1 - 1 2 1 3
#o(er's - Krzz)f oy oos 2]} o s g ey

Ws o 2 2 2
= 0
L . sin<6 cos“0 + = tS(kIIIH) +
2 o Aug 2q2 2 WA 2g2
- k -
l+qub(ax III) +:|.+uf‘:3y b\ Y kIII) +

22 2 2 22 2 2
Avg - - )
4 bs{kws kIII) Hsin“0 cos<0 + Bs(as kIII) Hsin<8 cos<6 +

1 1 - H —— 2
B's(a's kryr)? [(1 y o) o8 2]} ax ay (c51)
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Differentiasting the energy expression (C51) with respect to each

of the distortions and dividing by EH or FH? gives the following
expressions for the forces and moments:

v 1 Ny
ayxyEH EH
_ 1 %, 1 pr wa/b 1 Awy/b
o(1L + p) H 2(1 + 1) H 2(1 + )

Aug[Ps[ 5 2 2 2
5 sin“® cos“® + By sin“6 cos<O +

: 1 2 -1 tg
———— c0s5“28 + 2| ——= 2k +
Pls 2 + 1) ]} Txy 2(1+ ) B I

' Ay /Px
2(11 0y Px 3;{ (@"x - kg +
2(1 + u) (a - kIII)+
Aws/bs = . 2 2
% (kws - kIII) sin®8 cos<0 + Bs(as - kIII) sin“0 cos2e +

(C52)

H ' 1 2 BEW
Brs(e's - kIII)l-g;(ﬁfﬂ cos 25]} Ty

JANREmE—
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r

_ou' 1 _ oMy
2 2
. 32y EH EH
ox oy
A
t Wx
-1 s 1 B,
=~ 9% aty, - k +
(2(1+u) g IIr t 2(l+u) ( III)
Ay /b
1 ' Wy/xa. -k +
s+ P Y T E 'y I11)

NS 5 2 2 2 2
- + - 0 +
{( W kIII) sin“6 cos<8 ﬁs (st kIII) sin“6 cos

' 1 2 1 tg 3
B'S<a s - kIII) E—(—m—)— cOs 29]} 7)(y- + -6——(1—;T)(-E) +

L fy—:{/;—— sin°0 cos26 + I f_ " EHS-(kIII)E +

T Bx Aw’fi/by(a'x - k) +

1 f L Py AW);I/bx(a,y - krrr)” +

L AWSHbs (EWS - kIII)esin26 cos®o +

Bs(as - krrp)°sin®e cos®e +

B's(a's - kIII)E[E——(l]; 3 005225,} H aiaay (c53)
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The equations for Ny, and Myy (eqs. (C52) and (C53)) can be

wriltten as

; . %W
EH_’S”_ = AyYoy + 2Bl Exy - Erpr)E —— ~ (c5k)

=

%W
> (c55)

2 N . 2y = krr) 7y + [:Ixy + (g - kIII)%lH ™

where A, Eﬁy’ and Iy, are given in equations (46), (50), and (54),
respectively.

Equations (C54) and (C55) may readily be put into the form of
equations (6) and (3) or (12) and (9) to yield either the original or
the new elastic constants, respectively.
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TABIE 1
VAIUES OF «, ', B, AND B' USED IN THE CALCULATION OF
THE ELASTIC CONSTANTS FOR COMPARISON WITH EXPERIMENTAL

MEASUREMENTS OF E, Ggs Dy, AND Dy

bu/ts | Cexp oL @ B'Pexp | B'=PuL | Pexp BuL,
bw/bs = 0.2
(a)
1 0.2k 0.25 0.45 0.25 0.20 0.66
2 17 .15 .33 24 .23 45
in A2 .085 43 .31 b .29
8 .00k 046 .53 43 12 .19
by /bg = 0.k
(b)
1 (N ——— ————
2 |l mmaaa ———— _————
g 0.1k 0.k 0.1k

8These values, computed from equations (68), (71), (74), (75),
(84), and (85) were used for calculating constants for all configura-
tions given in figures 7 and 8 except those for which 6 = 0° and
9 = 90° (one-way stiffening).

PThese values, computed from eguations (68), (1), (713), (79),
(84), and (85) were used for calculating constants for configurations

of figure 7 having 6 = 0° and 6 = 90°.
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(c) Skewed (d) Skewed plus longitudinal and transverse

Figure 1.- Ribbing configurations considered.



NACA RM L53El3a
=

*‘!ﬂ!’,"

- ———— Plane I
——na—— Plane I
——ee— Plane I

Forces and moments acting on element.



e

S LI

NSy

i e

e

R

oty

IR

NACA RM L53El3a -

(2) Most general pattern of ribbing considered. (Short-dashed lines
enclose typical elemeut.) .
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A
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,:9_} . T ® Rib centroids
- by _ —

(b) Three-dimensional view of typical element.

Figure 3.- Repeating element of plate with integral, waffle-like stiffening.
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Figure 4.- Comparison of idealized and actual rib-skin combinations.
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Figure 5.- Specimens for evaluation of o and B.
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Figure 6.- Values of f', g', and h' wused in upper-limit evaluation
of a and B.
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INDEX
SubJject Number
Plates, Flat - Stiffened h.3.3.1.2
ABSTRACT

Formulas are derived for the elastic constants of plates with
integral ribbing. The constants, which include the effectiveness of the
ribs for resisting deformations other than bending and stretching in
their longitudinal directions, are defined in terms of four coefficients,
and methods for the evaluation of these coefficients are discussed.

Four of the more important elastic constants are predicted by these
formulas and are compared with test results.
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