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RESEARCH ME" 

AJ!JNUUR TURBOJET COMBUSTOR HAVING LOW PRESSURE LOSS 
t 

By Carl T. Norgren 

SUMMARY 

An invest igat ion w a s  conducted to  reduce the pressure drop i n  an 
e-aer imental  combustor designed to operate with h igh   e f f ic ienc ies  at 
high  a l t f tude.  The combustor u t i l i z e d  a previously  designed  prevaporizing 
fuel  system that supplied vapor f u e l  to the in jec tors   for   h igh-a l t i tude  
operation. The combustor  geometry incorporated a streamlined combustor 
i n l e t   s ec t ion ,  scoops for primary-air  admission,  and  longitudinal U- 

to fi t  in to  a one-quarter  sector of an  annular  housing w i t h  an  outside 
diameter of 25.5 inches,  an  insfde  diameter  of 10.6 inches,  and a com- 

bustor was invest igated a t  simulated  high-alt i tude flight conditions 
corresponding t o  operation i n  a 5.2-pressure-ratio  engine at a f l i g h t  
Mach  number of 0.6. The effectiveness  of the  fuel   prevaporizer  was 
examined qua l i t a t ive ly  by  comparing the performance  of the combustor with 
gaseous  propane f u e l  and l i q u i d  and  preheated JP-4 and JP-5 f u e l s .  

? shaped  channels  for  secondary-air adm-lseion. The combustor was designed 

3 bustor  length of approxlmately 23 Inches. The performance of the com- 

? 
F4 

The total-pressure loss of the experimental combustor was 2 t o  4 
percent at a reference  velocity  of 80 f e e t  per second, as compared with 
a total-pressure loss of 4 t o  6 percent fo r  most current  production 
model combustors. Combustion e f f i c i enc ie s  of 98, 88, and 81 percent 
were obtained with JP-4 f u e l  at conditions  simulating  rated  engine  speed 
operation at a l t i tudes   o f ,56 ,000 ,  70,000, and 80,000 feet, respect ively.  
Pressures of 15, 8, and  5 inches of mercury absolu te   in   the  couibustor 
were obtained  for   these a l t i tudes  w i t h  the 5.2-pressure-ratio and the 
l o w  f l i g h t  Mach  number conditions. Combustion eff ic iencies   obtained with 
gaseous  propane were similar t o  those  obtained w i t h  Jp-4, indicat ing 
that  su f f i c i en t  f u e l  vaporization was obtalned w i t h  this f u e l  under 
normal operating  condittons.  Increasing the airf low rate to 69 percent 
above cur ren t   p rac t ice  at an a l t i t u d e  of 56,000 f e e t  or using  the less 
v o l a t i l e  JP-5 f u e l  i n  the combustor had a detr imental   effect  on  combustion 
eff ic iency.  The los ses   i n   e f f i c i ency  were recovered,  in  both  cases, when 
the temperature of the f u e l  admitted t o  the prevaporizer was increased 
t o  250° or  350' F. While these results indicate  a need for   g rea te r  
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prevaporizer  capacity i n  the experimental combustor for  operation  with 
low-temperature f u e l  (€IOo F ) ,  i n  most a i r c ra f t   app l i ca t ions  f u e l  is 
delivered  to the combustor a t  temperatures in the  range of 250° t o  350° F. 

A t  the test   conditions  investigated  the combustor  exhaust-temperature 
profile  followed the pat tern  general ly  desired at the turbine  posi t ion.  

INTRODUCTION 

High-a l t i tude  operation of turbojet  engines i s  frequent ly   acco~panied 
by ser ious  losses  i n  combustion eff ic iency.  It has been shown t h a t  at 
high  alt i tudes  preheating the l iqu id  f u e l  before   inject ion  into  the com- 
bustion chamber increases  combustion  efficiency  significantly; u s e  of a 
@;aeeous f u e l  results i n  even  greater  gains  in  efficiency  (ref.  1). Re- 
search  on  an  experimental.  turbojet combustor t h a t  incorporated a l i q u i d -  
fueL  prevaporizer is reported  herein. 

A prevaporizing combustor incorporating a fuel-system, designed  to 
supply  l iquid fuel at sea l eve l  and low a l t i t u d e s ,  preheated f u e l  with 
a n  fncresaing vapor content up t o  a simulated a l t i t u d e  of 56,000 f ee t ,  
and  100-percent  vaporized f u e l  a t  higher a l t i tudes,  is described i n  ref= 
erence 2. The prevaporizing  coils of this combustor were located at t h e  
downstream  end of  the primary zone p r i o r   t o  the e n t r y  of secondary air. 
This locat ion was chosen for two reasons: (1) to  avoid  quenching  effects 
Fn t h e  burning zone due to  cold  prevaporizer walls, and ( 2 )  t o  minimize 
pressure loss due  to t he  cotls by  placing them i n  8 Low mass-flow region. 
The combustm- operated wi th  a high combustion efficiency. While the 
pressure  losses w e r e  of the same-magnitude..erlco~tered in  current  produc- 
tion engines,  redesfgn  of  the combustor l i n e r  was undertaken to   exglore  
t h e  p o s s i b i l i t f e s  of reducing  pressure  losses. 

The reduced  pressure-loss combustor  had an   a i r -en t ry   pa t te rn  similar 
to   t ha t  of model 30 of  reference 2 which incorporated  the  prevaporizfng 
system  described in   reference 2. Desfgn  modifications  to  reduce the 
pressure loss were directed toward improvement of' the combustor-liner 
geometry wi th  respect   to  the combustor  housing and provlsion  for  adequate 
open a i r -en t ry  area. The fuel  manifold  and  the upstream primary zone 
walls were integrated  into  an  annular,  symmetrical wedge arrangement 
tha t  improved the entrance a i r  diffusing  passages.  Modification  of the 
primary zone to   obtain low pressure loss r e su l t ed  in  decreasing the air-  
en t ry   o r i f ice   coef f ic ien ts ,  which i n  turn reduced the mass f low  into the 
primary  region. The requi red  primary  flow was obtained  by the use  of 
special   airscoops that 6eparated a small fraction. of_ the a,ir from the 
mainstream, end  then admitted t h i s  alr f r a c t i o n   i n  a predetermined 
manner. 
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The design of the  secondary zone r equ i r ed   e f f i c i en t  mixing  of the 

leaving" hot and cold gas  zones, as discussed  in   reference 3, was used 
i n   t h e  combustor. The walls of the secondary zone were made  up of a 
s e r i e s  of U-shaped channels  extending  from  the  primary w a l l  to   the   ou ter  
housing. The long i tud ina l   s lo t s  between the channels formed air admission 
po r t s  w i t h  low entrance loss c h ~ a c t e r i s t i c s   ( r e f .  4 ) .  

&- cold and hot  gases w i t h  minimum mixing  losses. The pr inc ip le  of " in te r -  

These features ,   incorporated  into a quarter-sector  annular combustor 
configuration, were inves t iga ted   in  a connected  duct test system.  High- 
a l t i t ude   f l i gh t   cond i t ions  were simulated assuming a turbojet   engine wi th  
a conrpressor pressure   ra t io   o f  5;2 operating at 0.6 fl-lght Mach number. 
Combustion eff ic iency,   out le t   temperature   prof l le ,  combustor pressure 
loss,  and prevaporizer  performance data were obtained with two l iqu id-  
hydrocarbon f u e l s  and compared with similar data obtained w i t h  gaseous 
propane at s e l e c t e d   f l i g h t   a l t i t u d e s  up t o  80,000 feet. One of the 
l i q u i d  hydrocarbons used was the current jet f u e l  Jp-4; the other ,  JP-5, 
is representat ive of a fue l   hav ing   be t t e r   vo la t i l i t y   cha rac t e r i s t i c s   fo r  
supersonic flight appl ica t ions   ( re f .  5 ) .  

rl APPARATLlS 

d 7  Installat fon 
J 

The combustor i n s t a l l a t i o n   ( f i g .  1) w a s  similar t o  that of  reference 
2. The combustor-inlet  and  -outlet  ducts were connected t o  the laboratory- 
s i r -supply and  low-pressure-exhaust  systems,  respectively.  Airflow rates 
and combustor pressures were regulated by remote-controlled  valves  located 
upstream  and downstream of the  combustor. Gaseous propane was supplied 
from  an  800-gallon  pressurized  tank w i t h  automatic   controls   preset   to  
deliver  the  prescribed  fuel-vapor  requirements.  Liquid f u e l  was supplied 
from individual   barrels   connected  to  a s u i t a b l e  pumping system. The 
inspection data f o r  MIL-F-65243, grades Jp-4 and Jp-5 j e t   f u e l  are 
presented i n  table I. The desired combustor-inlet air and f u e l  tempera- 
tures  were-obtained by means o f   e l ec t r i c   p rehea te r s .  

Instrumentation 

Airflow was metered  by a sharp-edged o r i f i c e   ( f i g .  1) i n s t a l l e d  
according  to ASME spec i f ica t ions .  The l i q u i d  fuel-flow rate w a s  metered 
w i t h  a calibrated  rotameter,  and the vapor fuel-flow rate, w i t h  a c a l i -  
brated  sharp-edged  orifice. Thermocouples  and pressure  tubes were located 

1. The  number, type, and posit ion  of  these  instruments a t  each of the 
th ree   s t a t ions  are indica ted   in   f igures  2(a) t o  ( c ) .  The combustor-outlet 
thermocouples ( s t a t i o n  Z >  and pressure  probes  (s ta t ion 3) were  Located at 

.i a t  the  combustor-inlet   and  -outlet   instrument  stations  indicated i n  f igu re  

- 
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centers  of equa l  area i n  the duct. The design  of. the  individual  probes 
is shown i n  figures 2 (d )   t o  ( h ) .  Manifolded  upstream  total-pressure 
probee  (station 1) and downstream stat ic-pressure  probes  (s ta t ion 3) were 
connected  to  absolute manometers; individual downstream t o t a l -  and 
static-pressure  probes were connected t o  banks of d i f f e r e n t i a l  manometers. 
The cbromel-alumel  thermocouples ( s t a t ion  2 )  were connected t o  a self- 
balancing,  recording  potentiometer. . -  -. . . . . .  . .. . - . . . - _  . -. 

c 

I 

Combus t o r  - 

The experimental combustor incorporated a fuel-prevaporizing  system 
developed fo r  a previous  experimental combustor ...( model 30, ref .  2). The 
heat- t ransfer  area of the prevaporizer was contained  in  three coi ls   of  
the type shown i n   f i g u r e  3. Liquid f u e l  W&B supplied t o  the three  pre-  
vaporizing  coils,  which were connected i n  series. The vaporized f u e l  
was re turned  to  the  fuel manifold, where it was d i s t r ibu ted   t o  the f u e l  
nozzles. The total   heat- t ransfer   surface area was 70.9 squa re  inches, 
which, from previous  calculations  and  emerimental data, was considered 
suf f ic ien t   to   vapor ize  a l l  of a Jp-4 type f u e l  needed for  rated-speed 
operation a t  56,000 feet. 

Design  considerations. - The design  of the. final coiibustor  model-& 5. .- 

e s s e n t i a l l y   i n  two steps:  (1) in i t i a l   des ign  of  t he  combustor  geometry 
to   ensure low pressure Losses, and (2)  "cut-and-try"  modification  of-the 1 

a i r -en t ry   a reas   and   fue l   in jec tors  t o  obtain  high  combustion  efficiency. 
The combustor  geometry was designed to   s t reamline  the flow of air past I 
the combustor  and maintain  an adequate hole area. The cross-sectional 
view of t h e  combustor i s  shown i n   f i g u r e  4. An annular wedge was Installed 
i n  the  in le t -d i f fuser   sec t ion   to   d iv ide  the air between the inner  and - . .  

outer walls. The  wedge became an   i n t eg ra l  part of the combustor,  forming 
the f u e l  manifold and par t   of   the  prlmary-zone wall. The wedge angle  and 
posi t ion were se lec ted   to   in tegra te  the combustor l i n e r  and  combustor 
housing  into  an improved in le t -d i f fuser   un i tx  However, a consideration 
of  boundary-layer  separation,  available  length,  combustor-housing con- 
figuration,  passage  depth,  and  hydraulic radius of  the  combustion  space 
necessi ta ted a compromise design  configuration. The walls of the primary 
zone  downstream of  the wedge were p a r a l l e l .  The secondary zone was com- 
posed o f - a   s e r i e s   o f  U-shaped channels that extended  from  the  primary- 
zone walls t o  the combustor housing. The longi tudina l   s lo t s  formed by 
the  channels-provided  an  effective means of control l ing the out le t -  
temperature d i s t r ibu t ton  by  "interleaving" the hot  combustion gases and 
the  co ld   d i lu t ion  air. 

- I  

I 

Combustor development. - Modification  of  the  initial  low-pressure- 
loss combustor design was directed toward  improving t h e  combustion eff i -  
ciency. The modif €cat ion  included  a l terat ions of  the  combustor a i r -en t ry  

c 
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- c 
holes,  addition  of  various  scoop  arrangements  for  the  primary  entry  holes, 

tabulated as follows: 
ff and the  use of various f u e l  nozzles. The various  fuel  nozzles used are 

Nozzle 
des ignat iona 

Description 
~~ ~~ ~~ 

F Extended fan spray  nozzles, 1~ in .   long 
I Simple  sharp-edged o r i f i c e ,  7/64-in. diam. 
K 

Simple  sharp-edged orifice  (with  simple L 
Simple  sharp-edged or i f ice ,   1 /8- in .  diam. 

swirl generator),  1/8-in. am. 
w Simple  sharp-edged o r i f i c e ,  9/64-Fn. diem. 
0 Simple  sharp-edged o r i f i c e ,  11/64-in. diam. 
P Simple  sharp-edged o r i f i c e  (with simple 

Q Simple sharp-edged  orifice (wlth simple 

1 

swirl generator),  9/64-in. diam. 
swfrl generator),  11/64-in. dim. 

&The fuel   nozzle   designat ion is a continuation of the  
system used i n  ref. 2. 

The combustor modifications t h a t  l e d  t o  the   f ina l   des ign  are as 
e follows : 

I Combustor 
rnodela I Description I 
3l.K 
32K 
33K, XI, 34N 
35m 

36B,37N 
381 

391,39N,390,39F,39P 
4OK, 4lK,4lL 

42L,  43L 
44L 

45L, 45K, 458 
47N,47L 

Original  low-pressure-loss design 
Secondary  channels  modifled 
Primary-zone holes modified 
Continuous  scoops  added  to  top and 

Primary-zone holes m d i f i e d  
Continuous  scoops removed, primary- 

Primary-zone  holes modified 
Nozzle  placement changed,  combuetor 

Primary-zone  holes wdified 
Large  continuous scoops added in  

Channel  open area  decreased 
Continuous  scoope were removed Porn 

model 84, and two 9/16- by 2-in. 
scoops approximately 6 in.   long 
were added to  reinforce  primary 
zone. Small individual  scoops 
were added for two se lec ted  rows 
of primary-zones  holes. 

bottom of primary-zone w a l l s  

zoqe  holes modlried 

faceplate modified 

primary-zone walle 

%e combustor m o d e l  number is a continuation of the 
model de6ignatiOnS  used Ln ref. 2. Latter  designation 
ind ica tes  the f ie1 nozzles used i n  a particular model. 

I 
I 

I 

I 

I 

i 

I 

! 

I 

I 



6 II- NACA RM E56114 

Final  configuration. - The air-entry-hole  pattern f o r  model 47  
combustor is shown i n   f i g u r e  5(a). The r a t i o  of the accumulated  hole 
area along the combustor length  to  the to t a l   ho le   a r ea  is shown as a 
function of combustor length   in  f i g u r e  5 (b ) .  Data from model 30 (ref. 2) 
are  included  for comparison. Note tha t  these curves represent  the  pro- 
po r t ion ing   o f the   ho le  area and not  necessarily the proportioning of' the 
air admi-tked along  the combustor. The t o t a l  open areas   for   these two 
combustors are q u i t e  d i f fe ren t  (model 47, 95.9 sq in..  and model 30, 69.4 
sq in . ) ;   in   addi tkon,  the scoops i n  the  primary zone of  model 47 a r e  
expected  to change the discharge  coefficients of t h e  individual  holes 
( r e f ;  6) . .~ - .  

A photograph  of combustor l i n e r  model 47 and an artist's sketch of 
the assembled combustor is shown i n  f i g u r e  6. As  shown i n  the photograph 
( f i g .  6(a)), a variety of  scoop^ was used i n  model 47. The d i f f e ren t  - 

shapes were se lec ted   pure ly   for  convenfence i n  fabr icat ion,  and the p a r t i -  
cular scoop  shape is not  considered  significant. The capture  area of the 
s c o o p ,  however, wa8 cons idered   c r i t l ca l  and was based on  the area re- 
qu i r ed  for maximum flow through the hole assuming a 0.6 or i f ice   d i scharge  
coe f f i c i en t   fo r  the hole. 

PROCEDURE 

The test  conditions used for   the  invest igat ion are as follows: 

Test- 
i n l e t   t o t a l   cond i t ion  
Combustor- 

preesure, 

i n .  H g  abs 
pi 3 

A 
B 

15. 

15 E 
5 C 
8 

Combus t o r  - 
i n l e t   t o t a l  
temperature, 

T i  2 

OF 

268 
268 
268 
268 

Airflow rate 
per   uni t  are@ 

lb /  (sec)  (sq f t ) 
%b, 

2.14- 
1.14 
0.714 
3.62 

Simulated f l i g h t  
a l t i t u d e  i n   r e f  - 
erence  engine at 
cruise  speed, f t  

56,000 
70,000 
80,000 
56,000 

~ ~~ ~~ 

%ased on &mum combustor cross-sectional area of 0.73 sq ft. 

Test- conditions A, B, and C represent  three  simulated  flight  condi- 
t ions f o r  a reference  turbojet  engine w i t h  a 5.2 pressure   ra t io  at a 
Pl ight  Mach number of 0.6. Cruise  speed was taken as 85 percent of the 
rated r o t o r  speed. One additional  condition, test  condition E, was 
selected  to   represent   an  a i r f low rate 69 percent above that requi red   in  
the reference  engine. A t  each test  condition  combustion  efficiencies 
and  presaure-loss data were recorded for a range of fuel-air ratios. 

I 

tP 
CT 

I 



NaCA RM E56114 
s 

Propane was used as the fue  !1 for   the  combustor development. The fin& 
a experimental  combustor, model 47L, was operated w i t h  gaseous  propane, 

the  current Jp-4 j e t   fue l ,   and  the Jp-5 jet f u e l  wi th  low v o l a t i l i t y .  

7 

Combustion e f f ic iency  was computed by the method of  reference 7 as 
the  percentage of the r a t i o  of the   ac tua l   to   the   theore t ica l   Fncrease   in  
enthalpy  from the combustor-inlet to the  combustor-outlet  instrumentation 
plane  (s ta t ions 1 and 2 ) .  The ar i thmet ica l  mean of the 30 thermocouple 
out le t   ind ica t ions  w a s  used to   ob ta in  the value  of the combustor-outlet 
enthalpy  for  the experimental combustor configuration. The bulk  tempera- 
tures  as determined.from  thermocouple  indications are subjec t   to  numerous 
e r ro r s  due t o  mass d i s t r ibu t ion  and hea t - t ransfer   e f fec ts ;  however, no 
corrections were appl ied   to  the data presented  in  t h i s  report .  

A qua l i t a t ive   i nd ica t ion  of the errors  involved at the test conditions 
invest igated w a s  obtained from two independent  measurements  of  combustion 
e f f ic iency .   Ef f ic ienc ies   ca lcu la ted  from indicated  thermocouple  readings 
were compared w i t h  (1) eff ic ienc ies   ca lcu la ted  f’rom bare-wire  chromel- 
slumel  thermocouple readings corrected  for  conduction  and  rad-tion 
errors  according  to  the  procedure recommended in   re fe rence  8 and corrected 
fo r  nonuniform  mass-flow d is t r ibu t ion ,  and (2) efficienciee  determined 

1 from  sampling and analysis  of unburned cons t i tuents   in  the exhaust gas. 

The thermocouple  correction  equations requtre information that can- 
* not be obtained  accurately  in  the experimental combustor t e s t  r i g  used. 

An approximation was attempted  for a limited number of data points  by 
measuring w a l l  temperatures a t  the  instrumentation  plane  and  assuming no 
flame  radiation a t  the low pressures .  The resu l t s   ob ta ined   for  combustor 
model 43L at an  outlet   temperature of approximately 1450° F for   th ree   o f  
the   t es t   condi t ions  are as follows : 

Condition Combustion efficiency,  percent 
Calculated Indicated 

A 

99.7 LOO. 8 E 

99.2 100.4 
c 83.6 96.6 

It is apparent that at the low-pressure  condition (C) the  combustion 
e f f ic iency  from indica ted   themcouple   readings  was l ow.  

An exhaust-gas sample was obtained by using a water-cooled sampling 
probe with po r t s   l oca t ed   i n   t he  same pos i t ion  as the thermocouples. Two 

(I) small percentages of unburned  products  are  difficult   to  determine 
accurately  from a small sample, and ( 2 )  i t  is d i f f i c u l t   t o   o b t a i n  a 

e! diaadvantsges in  using  exhaust-gas  sampling i n   f u l l - s c a l e  combustors are 

- representat ive sample because of unburned f u e l  droplets passing  through 

1 
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the combustion  zone. The accuracy  of t he  method was improved  by using a 
precisi-on  gas  analyzer  technique  in  conjunction with vapor f u e l - i n  the 
combustor  (gaseous  propane was used with a fuel-air r a t i o  of  approximately 
0.020). Combustion e f f ic ienc ies  were determined wi th  exper-imental corn- 
bustor model 45Q at tes t   condi t ion  C (5 in .  Hg abs.; runs 35 and 36 i n  
t ab le  11) . Analysis of the  exhaust-gas sample showed tha t   the  unburned 
consti tuent was mainly carbon monoxide wtth traces of hydrogen and methane. 
present. No t r ace  of  unburned  propane was detected. The eff ic iency 
computed by gas a n a l y s b  was 87"percent; the eff ic iency  calculated from 
t he  thermocouple  indications w a s  79 percent..  These data agree q u a l i t a -  
t i v e l y  wi th . the  results obtained  by  thermocouple  correction, i n  that the 2 
e f f i c i e n c y   c a l c u l a t b n  from i n d k a t e d  thermocouple  readings was low com- 
pared w i t h  the efficiency  obtained from exhaust-gas analyeis. .~ 

- 

IP 

A t  the low presxures,  combustion  efficiency  indications were low. 
At the  higher pressures corresponding  to-most of the test=conditions cam- . - . "" - 1  

pensating  factors, such as increased rad ia t ion  from the flame &d in- 
creased  convective  heat transfer, enter   into  the  temperature  measurements, 
and the difference between the  indicated and corrected  eff ic iency was 
small. The limited data obtained  indicate   that-- the combustion eff ic ien-  
cies reported at the  low-pressure  condition ( C )  may be low by a8 much- as 
10 percent; however, the qual i ta t ive  cmparlson between the  various com- 
bustor models and the  differences among f u e l s  I s  considered reliable. 

. . . . . . . - 

4 ,  

The rad ia l  temperature  distribution a t  the combustor o u t l e t   ( s t a t i o n  b 

2) was determined f o r  a temperature  ris-e-across  the combustor of 
approximately ll8Oo F, which  corresponds t o   t h e  requLred.  value f o r  a 

above the tropopause. The radial temperature  indications were obtained 
from the- -s ix  thermocouple  rakes  (fig. 2 ) .  The total-pressure loss was 
computed as the dimensionless r a t i o  of  the  total-pressure loss to   the  
combustor-inlet to ta l   p ressure .   Thi r ty  i n d i v i d u a l  total   pressure  readings 
were averaged  to  obtain the to ta lpr .essure  a t - t h e  combustor o u t l e t .  Com- 
bustor   reference  veloci t ies  were 'computed from the air wss-flow rate, 
the combustor-inlet  density, and the maximum combustor.cros6-sectional 
area. 

. rated  engine  speed  operation  in the reference  turbojet  engine at a l t i t u d e s  I 

RESULTS AND DISCUSSION 

combustor Development 
. " 

The experimental combustor configurations were firat operated  with 
gaseous  propane. Gaseous propane faci l i ta ted  prel iminary  operat ion  s ince 
it represented the optimum condition  (100-percent  vapor). tha t  could be - 
obtained with prevaporized JP-4 f u e l .  The experimental data obtained 
during  the  investigation  are  presented  in  table 11. 

- 1  
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Combustion eff ic iencies   obtained  with  propane  fuel   in   the model 3LK 
combustor ( i n i t i a l  design) are   presented  in  figure 7 f o r  a range of fue l -  
air ratios at tes t   condi t ions  B and C. It is apparent  that the combustor 
operated  with a fuel-rich  primary zone s ince  the  eff ic iencies   decreased 
rap id ly   wi th   an   increase   in   fue l -a i r   ra t io ,   and  that the  temperature 
rise required .for rated speed w a s  not  obtainable.  Early  modifications 
were therefore  aimed a t  d i rec t ing  more a i r  into  the  primary zone,  and 
eliminating  severe  hot  spots  in the outlet-temperature  profile.  The f u e l -  
r ich  primary zone was ant ic ipa ted   s ince  it is shown in   re fe rence  4 t ha t  
the  over-al l   coeff ic ient   of  the primary zone is reduced as the  pressure 
drop is decreased. 

m i c i e n t  burning i n  the primary cambustion zone requires control  
of f u e l  spray as well  as a i r -en t ry   d i s t r ibu t ion .  Data obtained  during 
the test program with  successive combustor configurations  substantiated 
the  importance  of  selecting  an optimum fuel-injector  system. I n  f igure  
8, the couibustion e f f i c i enc ie s  are presented f o r  combustor model 45 w i t h  
f u e l  nozzles L, K, and Q at test condition C using  propane  fuel.  Effi- 
ciency  differences as high as 15 percent  (nozzles L and K) were obtained 
at this  operating  condition.  These  differences were due t o   t h e  f u e l  
spray  pat tern.  Nozzle L contained a swirl generator;  nozzle K did not. 

were installed and the fue l -nozz le   o r i f ice  was enlarged from 1/8 t o  
11/64 inch   in  diameter (nozzles L and Q) . 

.x 
I 3 -  Smaller  differences (5 percent) w e r e  obtained when the swirl generators 

.- 
In  combustor  model 45 the f ive   fue l   nozz le s  were p laced   d i rec t ly  

in l ine   wi th   the   longi tudina l  rows of primary-air   holes.   In 8 preceeding 
combustor  (model 39) alternate f u e l  and air zones were establ ished 
circumferent ia l ly  in the  primary zone  by placing the fuel  nozzles between 
the rows of  primary air holes. The cotabustion eff ic iencies   obtained w i t h  
combustor model 39P are shown i n  figure 9. Although t h i s  combustor 
operated w i t h  a fuel-rich  primary, the combustion e f f ic tency  was over 
80 percent up t o  a f u e l - a i r  r a t i o  of 0.019 at  test condftion C. This 
e f f ic iency  compares favorably  over most of   the  fuel-air   ra t io   range  with 
the   e f f ic ienc ies   ob ta ined  w i t h  combustor m d e l  45, as shown i n   f i g u r e  8. 
The present  research  indicates,   then,  that  a par t icular   c i rcumferent ia l  
loca t ion  of the  f u e l  nozzles relative t o  the  air holes may not be neces- 
sary  to   achieve high e f f i c i enc ie s .  I n  any  case, however, considerable 
modification  of the primary  zone may be required t o  obtain  hfgh  perform- 
ance. The later combustor configurations,  models 45, 46, and 47, were 
operated w i t h  f u e l  nozz les   in   l ine  w i t h  air holes. - 

Performance  of F ina l  Combustor Model 47L 
c 

Combustion e f f ic iency  w i t h  propane. - The combustion efficiencies 
obtained w i t h  the model 47L combustor operating on  propane f u e l   a r e  .. presented in  f igu re  10 for   the   t es t   condi t ions  A, By C y  and E: Data are 



presented  for the gaseous f u e l  (1) in jec ted   d i rec t ly   in to  the combustor 
with no prevaporizer,  and (2)  injected with the prevaporizing  equipment. 
Data obtained with propane i n  combustor  model 30 (ref, 21, which ~ a 6  the 
best previous combustor configuration,  are  included for comparison. The 
combustion eff ic i -encies   for  the three curves  vary by approximately 5 
percent.  The e f f ic ienc ies  wlth the prevaporizer   instal led  in  model 475; 
are comparable with those  obtained wi th  model 30; combustor model 471; 
without the prevaporlzing  coils gave s l igh t ly   h igher   e f f ic ienc ies .  The 
prevaporizing system may have affected combustor  performance by causing 
red is t r ibu t ion   of  a l r  between the  primary  and  secondary  zone and by 
introducing  cold  surfaces  into the react ion zone. 

1 

Combustion eff ic iency w i t h  JP-4 f u e l .  - The combustion  efficiency 
data obtained  with JP-4 f u e l   i n  model 47L combustor are presented i n  
f igure  11 f o r  the test  conditions A, B;C, and E. Two curves are shown 
fo r  model 47L, one f o r  f u e l  suppl-led t o  the grevaporizer a t  mrox lmgte ly  
BO0 F and the other  for fuel   suppl ied at 250 F. The ef fec t   o f   addi t fona l  
f u e l  preheating is mst pronounced at condition E ( f i g .   U ( d )  ) . Since 
t h i s  test  conditFon  required  fuel-flow rates 69 percent  higher  than 
condition A, the condition  for which the prevaporizer w w  designed, the 
reduced  efficiencies w i t h  the 80° F f u e l  are a t t r i b u t e d   t o  the in su f f i c i en t  
prevaporizing  capacity of the coils. In actual aircraft operation fuel 
would probably be de l ivered   to  the combustor at temperatures in  excess 
of 250° F, since the f u e l  i s  heated i n  the engine pumping system, used 
t o   coo l   l ub r i ca t ing   o i l ,  and a l so  used to   cool  a number of a i r c r a f t  com- 
ponents. The data indicate  that under these conditions the prevaporizing 
co i l s  have  an adequate capacity to supply  fuel requirementR for   a i r f lows 
69 percent higher than  those  used in   current   engines .  

3 

- 
" 

Combustion efficiencies  obtained with JP-4 f u e l  I n  combustor  model 
30 are included in f igure  11. The e f f i c i e n c i m  of model 47L are equal 
t o  o r b e t t e r   t h a n  the eff ic iencies   obtained  with model 30. While model 
30 required three sizes of fuel   nozzles  t o  obtain high eff ic iency Over 
the range  of tes t  conditions, m o d e l  4 7  was operated  with only m e  nozzle 
s ize .  The fuel-nozzle  requirements  for  low-altitude  and  sea-level 
operation were not established for either combustor. However, the nozzles 
used i n  model 47 combustor  would supply the f u e l  flow requi red   for  the 
reference  engine at sea-level  take-off  conditions w i t h  fue l   p ressures   o f  
Less than 150 pounds per  square  inch. 

Combustion eff ic iency with Jp-5 fue l .  - The curre'nt JP-4 j e t  f u e l  use6 
i n  the design  calculat iom and i n  the emerimental  research ha8 a re l a t ive -  
l y  h igh   vo la t i l i t y  (Reid vapor pressure of 2.9 lb/sq i n .  ), and would re- 
quire special   handling i f  used for  supersonic  f l ight  because of the  high 
temperature and subsequent fue l   bo i l i ng   ( r e f .  9) . A lower v o l a t i l i t y  f ie1  
such as JP-5 ( r e f .  6 )  may be preferred for supersonic flight. Since it 
may be desirable, from a logistic  viewpoint,  t o  have a minimum number of L. 

- 



NACA RM 356114 - 11 

fuel  types,   high-alt i tude  subsonic aircraft m y  be required t o  aperate on 
the same low-vola t i l i ty   fue l .  It has been  shoun (ref. 10) that decreasing 
the f u e l  v o l a t i l i t y   i n  a turbojet  combustor tends  to  decrease combustlon 
eff ic iency a t  the low-pressure qe ra t iug   cond i t ions  that a re   t yp ica l  of 
low-speed high-alt i tude flight. Prevaporization may be a means of 
eliminating this  penalty.  

Combustion e f f ic iency  data are   presented  in  figure 1 2  fo r  JP-5 f u e l  
operation at test conditions A, B, and C .  These data were obtained 
with combustor model 47N pr io r  t o  the Select ion of model 47L. Extensive 
data f o r  JP-5 f u e l  i n  model 47L were not  obtained  because  of the accidental  
plugging  of the vaporizer that is discussed later. The ef f ic iency  wi th  
JP-5 fuel   decreased &th i n c r e a s i n g   f u e l - a i r   r a t i o s   f o r  a l l  conditions; 
the same t rend w a s  obtained with JP-4 f u e l  a t  test condition C. A t  low 
fue l - a i r   r a t io s ,   e f f i c i enc ie s  with Jp-5 f u e l  were higher than  those w i t h  
JP-4 at the low-pressure  condition.  Furthemre,  the sharp drop i n  
eff ic iency w i t h  Jp-5 f u e l  is compensated f o r  by increasing the fue l -  
supply  temperature  to 25O0 F ( f i g .  1 2 ) .  The l imited combustion e f f ic iency  
data obtained with JP-5 f u e l  i n  combustor model 47L are   presented  in  
f igure  13. The eff ic iency  of  JP-5 f u e l  with an 800 F f u e l  temperature at 
test condition B is approximately 5 percent  lower  than that of JP-4 at 
r a t ed  speed, and the ef f ic iency  at test condition E is considerably 
lower. A t  test condition E two additional curves are presented f o r  i n l e t  
f u e l  temperatures  of 250°. and 350° F. As would be expected, the combusti.on 
e f f ic iency  improves with increasing fuel temperatures; although even w i t h  
an inlet fuel  temperature of 350° F, JF-5 f u e l   e f f i c i e n c y  i s  s t i l l  5 per- 
cent  lower than that of JP-4. 

1 

1 

The degree o f  vaporizat ion  a t ta ined  in   the  coi ls  is indicated 
qua l i t a t ive ly  by the fue l   p ressure  required t o   i n j e c t   f u e l  at a given 
flow rate. I n  f igure  14 the f u e l  pressure at the prevaporizer   inlet  is 
shown as a function of  the fuel   f low at  test condition E. These data 
were obtained with one nozzle  configuration L (combustion model 47) uFth 
JP-5 and JP-4 f u e l s .  As the f u e l  f low is increased the f u e l  pressure 
increases   to  a cer ta in   po in t  beyond  which a f u r t h e r  i nc rease   i n  f u e l  f low 
results i n  a decrease i n  f u e l  pressure at the prevaporizer   inlet .  Th€s 
decrease  in f u e l  pressure at high flow r a t e s  iB a result  of  incomplete 
fuel   vaporizat ion and, consequently, decreased volume handling r e q u i r e -  
ments. The e f f e c t  of f u e l  v o l a t i l i t y  on the degree of  prevaporization 
is readily  apparent  and is d i r e c t l y  reflected in   in jec t lon   pressure  
requirements. The inject ion  pressure required fo r  Jp-4 fue l ,  at an   i n l e t  
temperature  of 80° F, i s  considerably  higher  than that required  for  JP-5, 
and the in jec t ion  pressure required  for  preheated (250° F) Jp-5 is higher 
than that required for JP-5 at 80° F. A larger   heat- t ransfer   surface 
would be required w i t h  JP-5 f u e l  than wi th  JF-4 f o r  the same degree  of 
prevaporization  because  of  the low v o l a t i l i t y  of JP-5. 
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N o  spec ia l  attempt was made t o  provide e q u a l  f u e l   d i s t r i b u t i o n   t o  

each  nozzle  or  to eliminate slugging w h i c h  could  occur  during  partial " 

vaporization  operation  since these problems were not detrimental a t  the 
tes t   condi t ions  invest igated.  The manifold  pressure drop supplied  uniform 
fue l   d i s t r ibu t ion   t o   t he   l imi t ed  number of f u e l  injectors,   an6 swirl 
generators  effectively  broke up and d is t r ibu ted  the par t ia l ly   vaporized 
f u e l  . 

Prevaporizer  system. - No detai led,   control led  tes ts  were conducted 
t o  determine  the  extent  to which the  vaporizer  coils might become plugged 

I P  
I- 
(E 

because  of coke and gum deposition. The prevaporizer  heat-exchanging 
c o i l s  accumulated approximately 75 hours of running  time with Jp-4 fuel 
dur ing  this invest igat ion,  and 50 hours of  running  'time with Jp-4 during 
the  invest igat ion  reported i n  reference 2. No opera t iona l   d l f f icu l t iee  
were encountered during this time. During the tests wi th  Jp-5 f u e l  one 
case of prevaporizer  coil   plugging was encountered. The p l m n g  occurred 
when Jp-5 f u e l  was L e f t  i n  the prevaporizing  tubes and, a performance 
check point  was obtained wi th  propane f u e l  admitted d i r ec t ly   i n to   t he  
fuel   in jectors   without   c i rculat ing  the  fuel   through  the  coi ls .  Because 
of the low vo la t i l i t y   o f  JP-5 f u e l ,  the   coi ls   contained a considerable 
amount of residual fue l ,  which  cracked and plugged the tubes  when heated 
externally  during the propane operat ion. 

C 

Further tests explored the p o s s i b i l i t g  of plugging with Jp-5 f u e l .  
Approximately 65 starts and stops w e r e  made during a total   run  t ime of 
20 hours to   inves t iga te  the ef fec t   o f   l eav ing   ho t   fue l  trapped without 
purging i n  the co i l s .  The average  fuel-outlet  temperature during the . 
runs was between 600° and 7OO0 F. No increase   in  the prevaporizer  pres- 
sure drop was noted, as shown i n  f i g u r e  15. The fue l   p ressure  a t  the 
prevaporizer   inlet  is shown as a function of time for. Jp-5 fue l   opera t ion  
with the  prevaporizing  coils st t es t   condi t ion  B. The fue l -out le t  tem- 
perature  and  the  progressive number of starts and stops are   a lso  indicated 
i n  the f i g u r e .  - 

. ." 
IL 

L 

Coking of hydrocarbon f u e l s  i n  e lec t r ica l ly   hea ted  tubes hae been 
invest igated a t  t h i s  laboratory  ( ref .  11). In tests with f u e l s  having 
high aromatic  and gum contents a rapid buildup of deposft  and u l t i m a t e  
plugging  of  the t u b e  occurred.  These  fuels had gum contents-greater  . 

than  those  permitted  under  present  procurement  specifications of MIEF- 
5624C. A Jp-4 f u e l  meeting  specffication of MIL-F-5624C with low gum 
content was run as long 88 70 hours i n  a heated tube  giving a f u e l  t e m -  
perature  of  1000° F, and showed  no evidence  of coke form&tion. The aromat- 
ic  and gum contents of  the Jp-5 f u e l  used i n  this study and of the pro- 
duction JP-4 f u e l  tested in   re fe rence  11 were very similar. From 
observations made i n  t h i s  invest igat ion and  from re su l t s   r epor t ed   i n  
reference 11 it appears that the f u e l  prevaporizer  system  described  herein 
w i l l  not  encounter  plugging  troubles. .- 

. 
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Correlation  of  combustion  ef'fictency. - Figure 16 presents   the 

cor re la t ion  of  the  combustion-efficiency data f o r  the prevaporizing com- 
bus tor  model 47L with  the  combustion  parameter Vr/PiTi ( r e f .  12), where 
Vr is the combustor reference  veloci ty  based on the maximum cross-  

sec t iona l  area (105 sq in . ) ;  P i  is the inlet to ta l   p ressure ;  and T i  
is the i n l e t - a i r  temperature. The values  of combustion e f f ic iency  were 
obtained from the prevaporized 3p-4 f u e l  efficiency  curves of  figure 10 
a t  a temperature-rise  level  of l180° F (required  temperature r ise f o r  
rated speed  of the reference turboje t  engine).  The combustion effi-  
ciencies  obtained with model 30 ( r e f .  2 )  and a commercial vaporizing 
combustor operated w i t h  Jp-4 f u e l  are lncluded i n  figure 16 f o r  comparison. 
A t  a combustor reference  veloci ty  of 80 feet  per  second  ( test   conditions 
A, B, and C )  combustor  model 47L operated at approximately  the same 
ef f ic iency   as  model 30. Combustion e f f i c i enc ie s  of  the  commercial  vapor- 
iz ing  combustor are  considerably  lower  than  those  obtained wi th  the 
experimental  configurations. 

Pressure  losses.  - The combustor pressure  losses  obtained i n  com- 
bustor model 47L are shown in figure 17. The pressure  losses  are 
presented as t h e   r a t i o  of the total-pressure loss to the coubustor-inlet 

reference  veloci ty  of 80 feet per second was achieved by the redesign 
of  the combustor  geometry of model 30. Pressure   losses   in   the  range of  
2 t o  4 percent were obtained for model 47L, as compared w i t h  losses  of 
4 t o  6 percent  in  current  production model combustors. I n  this inves t i -  
gat ion no attempt was made t o  redesign the combustor housing, and it I s  
possible  that a,fur ther  ref inement   of . the combustor in le t -d i f fuser   sec t ion  
would be r e f l e c t e d   i n  a somewhat lower pressure loss thror;gh the conibustor. 

I t o t a l   p re s su re .  A 30-percent  reduction  in  pressure loss at a combustor 

- 

Combustor-outlet temperature p r o f i l e s .  - The outlet-radial-temperature 
p r o f i l e  of combustor  model 47L and the desired  temperature  profLle  are 
shown i n   f i g u r e  18. The desired  temperature  profile  represents  an  approxi- 
mate average  of  profiles required or   des i red  i n  a number of current turbo- 
je t   engines .   In  fr@;ure 18(a) the   p rof i le   ob ta ined  with gaseous  propane 
is presented f o r  tes t   condi t ions A, B, and C.  The average radial tempera- 
t u r e  prof i le   ob ta ined  wi th  gaseous  propane  follows the des i r ed   p ro f i l e  
shape closely.  With prevaporized l i q u i d  f u e l  ( f i g .  18(b)) t he   ou t l e t  
temperature w a s  somewhat lower at the roo t   pos i t i on   fo r  test  conditions 
B and C; however, at test condition A the p r o f i l e  was comparable t o  that 
obtained d t h  gaseous  propane  operation. 

SUMMARY OF RESULTS 
c 

An invest igat ion wa6 conducted to   explore  means of  reducing  pressure 
- losses  in  an  experimental   fuel-prevaporizing  turbojet  combustor. The 

research w a s  directed toward  improving the design of the air  passages at 
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the i n l e t   t o  the combustor. The r e s u l t s   f o r  a s i m u l a t e d  high-alt i tude 
f l i g h t   i n  a 5.2-pressure-ratio  engine at a f l ight  Mach  number of 0.6 are I 

summarized as follows : . .  - " 

1. The combustor (47L) qperated w i t h  approximately a =-percent 
decrease  in  pressure loss  from the previous  design (model 30) . A t  a 
reference  velocity  of 80 feet per  second the combustor pressure  losses 
ranged  from 2 to  4 percent as compared wi th  about 4 t o  6 percent in 
production model combustors. 

2. Combustion e f f ic ienc ies  were comparable to  those  obtained i n  
previous  experimental  designs. COtnbUstiOn ef f ic ienc iee  of 98, 88, and 
81 percent at 56,000, 70,000, and 80,000 feet, respectively,  a t  a tempha- 
t u r e  rise of 11800 F and a combustor reference  -peloctty of 80 feet pe r  
second were obtained wi th  an   in le t  f u e l  temperature of 80° F. 

3. As the combustor in le t   re fe rence   ve loc i ty  was fncreased from 80 
feet per  second t o  140 feet per  second, a marked decrease  in  combustion 
e f f ic iency  w a s  observed.  High  efficiencies were again obtained, however, 
by increas-lng the i n l e t  f u e l  temperature t o  250° F, a value  expected in 
an  actual   . f l ight   operat ion.  - 

4..The prevaporizer was operated with .three fuels,  propane, Jp-4, 
and JP-5. As f u e l  v o l a t i l i t y  decreased combustion e f f ic iency  also 
decreased. The combustion e f f ic iency  was maintained by supplying addi- 
t i o n a l  heat from an outside  source  to the low-volat i l i ty  f u e l .  

5. The out le t - temperature   prof i le  was genera l ly   sa t i s fac tory   for  
t h e  f i n a l  combustor -design. 

An experimental  fuel  prevaporizing combustor having  pressure losses 
less   than  those of current   turbojet  combustors was developed to provide 
high combustion eff ic iencies  at high-altitude operating condttions wi th  
Jp-4 f u e l .  The use  of the less v o l a t i l e  JP-5 f u e l  resu l ted  i n  some 
performance  decrease-due, .at l e a s t  ia part, t o  l imited prevaporlzer 
capacity. This disadvantage  could be eliminated by incorporatfng a Larger 
heat- t ransfer   surface  into the prevaporizing  coils. From the  data 
obtained, it appears that the combustor could be designed  to operate over 
a wide range  of  conditions wi th  8 f u e l  similar t o  JP-5. 

4 

L 

#P 

Turbojet  combustors have been  investigated  experimentally  over 
increasingly.severe  operating  conditions.   Since these inlet   conditione 
approach  those that are obtained  in   high-al t i tude ram-jet appllcations,  
it may be possible  to  consider  turboJet  designs  for  moderately high flight .. 
Mach  number ram-jet engines where the pressure lo s s  is  not  too  costly. 

'I 
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The use  of a vapor fue 

15 

:1 instead of l iqu id- fue l   for  ram-jet engines would - be  advantageous i n   t h a t  a wider  operating range of  fuel-air r a t io  would 
be  possible,  and it  would be eaa ie r   to   cont ro l   the  f u e l  d i s t r ibu t ion .  

The prevaporizing C O l l S  w e r e  operated  for  .a short  endurance  run of 
20 hours  including  approximately  65  cycles  of  start-up  and shut-down 
procedure  with Jp-5 f u e l .  No apparent  detrimental   effects were noted 
even though  hot Jp-5 f u e l  w a s  l e f t  in  the  prevaporizer  during shut-down 
and no provision was made t o  purge the system. Additional  studies,  
however,  would be   r equ i r ed   t o   e s t ab l i sh   fu l ly   t he   r e l i ab i l i t y   o f  the 
heat exchanger  design. 

L e w i s  Flight  Propulsion  Laboratory 
National  Advisory Conunittee for  Aeronautics 

Cleveland, Ohio, September 18, 1956 
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n 3 
"I * 

M 

& 

Fuel propert ies  

A.S .T.M. d i s t i l l a t i o n ,  D86-46, % 
I n i t i a l   b o i l i n g   p o i n t  
Percent  evaporated 

5 
LO 
20 
30 
40 
50 
60 
70 
80 
90 

Fina l   bo i l ing   po in t  
Residue,  percent 

.-romatics-silica  gel,  percent 

Specif ic   gravi ty  
Reid vapor pressure 
Accelerated gum, mg/lOO ml 
Hydrogen-carbon r a t i o  
Net heat of combustion, Btu/lb 

by volume 

Jp-4 f u e l  

5624C) 
(FITL-F- 

136 

183 
200 
225 
244 
263 
278 
301 
321 
347 
400 
49 8 
1.2 

10.7 
0.757 
2.9 

0.170 
18,700 

-" 

JT-5 fue l  

5624C) 
( m - F -  

360 

373 
382 
399 
409 
419 
429 
439 
449 
459 
473 
502 -" 
13; 7 
0.815 

5 
0.160 
18,600 

"" 
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0 >> 0 

0 
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(a) Inlet  thermocouples (Frolticonstar~i5an) 
and total-pressure probes in plane at 
station 1. 

(b) Outlet  thermocouples (chromel-alumel) 
in plane  at  station 2. 

8 Thermocouple 
0 Total-pressure  probe 

0 0 

0 0 

0 0 

0 0 

v 

0 

0 0 0 0 0 9 
(c) Outlet  total-pressure  probes in plane 

Figure 2. - Experimental  combustor  instrumentatlon. 
at statLon 3. 
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(a) Inlet  total-pressure rake. 

(e) Outlet thermocouple rake. 

Inlet thermocouple 
Figure 2. 

( 8 )  Static-pressure orifice. 

(h) Wedge stream-static probe. 
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(a) Wall pattern. (Dimensions are in inches .) 

Figure 5. - Hole mea. 
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Distance from upstream end of combustor, x, In. 
(b) Distribution. 

Flgwe 5. - Concluded. Hole area. 
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Figure 9. - Combustion efficiency o f  model 39P with propane fuel at test cod i t ion  C. 
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Flgure 10. - Combustion efficiency of prevaporizing combustor model 47L with and vith- 
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with gaseous propane fuel at various test COnditiOUS. 
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(a) Test condition E. 
Figure 10. - Concluded. kmbustion  efficiency of prevaporizing combustor model 47L 

with and without preraporizer installed and compared with model 30 (ref.  2); a l l  
data obtained with gaaeous propane fuel at various test condition6. 

. 

. 



I 
(a)  Test condltlon A. 

“rir  ratio 

(b) Tsst conditlon B. 

I I 

I 
P 
F 



.. . . . .. .. 

* * 
. . . . . . . . . 

t , CH-5 back elao ' '  
t . 

I 
- - - W e 1  30 (ref. 2 )  "- Fuel-air ratio r,qudnd for tm- 

peratme r i se  of lLB00 p 
70 
,008 .om . OU .014 .OM .om ,020 .cQ2 * 024 

I 

Figure U. - Concluded. Combuetioa efficiency of prevaporiaing combustor model 47L vlth -P-4 fuel 

( a )  Teet coadition E. 
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at  two inlet temgsrature levele campard with data of d e l  30 (rsi. 2 ) .  
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F i w e  12. - Combustion efficiency of prwaporiaing combustor d e l  47A with JP-5 fuel compared with JP-4 at O1 
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Figure 13. - Combustion efficiency of prevaporizing combustor model 47L with Jp-5 f u e l  a t  three 
fue l   in le t  temperatures. 
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Figure 14. - Fuel preseure at prevaporizer inlet far fuel flows at test condition E. 
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Figure 15. - Variation of fue l  pressure at pxevaporizer in le t  with tjme 
for n - 5  fuel in model 47~. Uet-fuel  tenperatme, 900 F; outlet- 
fuel. temperature, 600' t o  7000 F.  Number of accumulated s t a r t s  i s  
inaicated beside each data point. 
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Figure 16. - Correlation of combustion-efficiency  data of model 47L C0liibu~- 

t o r  compared with model 30 (ref. 2 )  a t  temperature r i s e   l eve l  of l160° F 
with JP-4 fuel.  
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Figure 17. - Combustor preasure loss o f  d e l  47L co&uator compared with model 30 (ref. 2) .  
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(a) Gaseous propane. 

Distance along turb ine  b w e ,  in .  

(b ) Prevapor ized liquid JP-4 fuel. 

Figure m. - Temperature profiles with combustor m 6 d C l  47L. 
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