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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

OPTIMUM LIFTING BODIES AT HIGH SUPERSONIC ATRSPEEDS

By Meyer M. Resnikoff
SUMMARY

The shapes of bodies having minimum pressure drag for e given 1lift
at high supersonic speeds and satisfying conditions of given length and
width are determined with the aid of Newton's law of resistance. The
resulting shepes, as had been argued by Sanger, have flat bottome which
are, in addition, rectanguler. If it is further required that, for the
given conditions (both geometric and aerodynamic), the shapes have maxi-
mum volume, then they become simple wedges.

To determine 1f these bodies do, in fact, have improved lift-drag
ratios at high supersonic speeds, several wedges satisfying numerically
different sets of glven conditions were tested at a Mach number of 5.
Measured aerodynamic characteristics are compared with theory and with
the measured characteristics of corresponding bodies of revolution having
fineness ratios from 3 to 7. It is found from experiment that the wedges
have maximum 1lift-drag ratios from 4O to 100 percent higher than those
of the corresponding bodies of revolution.

INTRODUCTION

It was argued by Ssnger (refs. 1 and 2) that at high supersonic
speeds a lifting body having a flat bottom would have higher 1lift-drag
ratio than one having, say, & round bottom like a body of revolution.
S&hger d4id not, however, pursue this subJject to the extent of determining
the shape of en optimum 1ifting body; nor did he prove, for that matter,
that such a body would have a flat bottom.

The determination of an optimum 1ifting body is normally, at best,
8 difficult problem because of the complexity of theories which must be
employed to predict accurately the forces on an aerbitrary shape. In
hypersonic flow, however, a theory of remarkable simplicity becomes
available, nemely, the so-called impact theory of Newton (ref. 3).
Newton himself pointed out that the theory should apply to flows in
which the inertial forces are large compared to the elastic forces and
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it is now well known (see, e.g., refs. 1 and 4) that hypersonic flow
tends to satisfy this condition. For epplication at the high Mach num-
bers presently of interest, say of the order of 5, the theory is, of
courge, only approximate. Nevertheless, it was found to be a useful
tool in the determination of optimum (minimum-drag) nonlifting bodies
of revolution (ref. 5). It might be expected therefore that impact
theory could also be used effectively in determining optimum lifting
bodies.

The objective of the present report ig, then, to determine with the
aid of impact theory, and subject to given conditions, a complete body
shape possessing minimum drag for given 1ift in inviseid hypersonic
flow. In addition, it is undertaken to measure experimentally the
characteristice of the bodies so determined.

SYMBOLS
A plan-form area
Cn drag coefficient, af%;
Cr, Lift coefficient, q:Zw -
D foredrag
d bage diameter of body of revolution
T fineness ratio,;% <}% for bodies of revolutio%>
L 1ift
1 projected body length
M Mach number
P " pressure coefficient, o
P static pressure , : -
] dynanic pressure
Re Reynolds number
S body surface area
v body volume
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X¥,2

y(x)

§:ﬂ:§

air-flow velocity

meximum body width

coordinates of points on surface of body (positive x axis in
the direction of free-stream velocity, origin of the coor-
dinate system coinciding with nose of body)

one-half the lateral dimension of the body at a distance x
downstream of the body nose

angles formed by body surface normels and the Xx,y, and z
axes, respectively

angle of attack of body (for wedges, measured from line
bisecting apex angle)

variable of integration

wedge angle

Subscripts

values on lower and upper surface, respectively
values on vertical portions of body surface

free=-gtream conditions

Superscripts

values pertaining to a comparison body

THECRY

The geometric characteristics of the optimum body will be found by
e comparison procedure rather than by the customary caleulus of vari-

ations.

The comparison procedure will be developed during the applica-

tion and is complete within this report. The method is more direct than
the variational method, thus ensbling constant survelllance of physical
characteristice throughout the development and avoiding some of the
difficult questions associated with the application of the calculus of
variations in two independent variables.

. eme—
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The comparison is made between the physical characteristics of a
glven body and those of its transform.l The transformed body satisfies
the given aerodynamic and geometric conditions. In particular, the
transformetion is so chosen that its application leads to & body with
1ift force unchanged and either leaves the drag force unchanged or
decreases it. Applied to an optimum body, it is necessary that the
transformation leave the drag force unchanged. The requirement that
the optimum body have the same drag as its transform yields analytic
gtatements prescribing the geometric characteristics it must have.

Lift and Drag Expressions

The well-known impact theory expression for local pressure coef-
ficient at a point on a body is (see sketch)

P = 2 sin® (% -E) =2 cos® ¢ (1)
z Y
/nner surfoce ]
normal Y

ds

The 1ift and drag forces acting on an element d4dS of surface area &are
given by the projection of the force P dS on the vertical (z) axis
and on streamwilse (x) axis, respectively, multiplied by the free-stream
dynamic pressure, qo:

1The comparison of given geometric configurstions with properly chosen
transforme leaving desired geometrlc or physlcal properties invariant
has been used extensively by Polya and Szego to solve guite general
problems (ref, 6).
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B

(P cos §) q a8 (2)

and

&

(P cos E) q,38 (3)

By use of the pressure coefficient, equation (1), and the geometric
relations

ds = dx dy sec ¢
cos® £ + cos® y +cos® =1
the 1ift and drag expressions (2) and (3) may be written

dL = 2q, cos® § dx dy (k)

dD = 2q, cos? £ dx dy + dDy (5)
‘\/l-coszg-coszn

where dDy represents the drag force on a vertical surface (i.e., an
area dS for which dx dy = O and cos £ = 0). The 1ift and drag forces
acting on the entire forebody are obtained by summing the 1ift and drag
expressions, respectively, over the forebody surface:

L = hq, jg’ j(-)y(x) [ - cos® E,(x,¥) + cos® &,(x,y)] dy ax (6)

and

cos® £,(x,y)

- bg, 1 ) +

N 1 - cos® tu(x,y) - cos® nyu(x,¥y)

(w)
|

cos3 &, (x,y)

dy dx + Dy (D

J1 - cos? g;(%,7) = cos® 1;(x,y)

where Dy represents the total of the drag forces acting on finite
vertical poritions of the body surface.

RN, -
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Development of Optimum Body Shape

Consider the optimum body satisfying the given length, width, and
1ift requirements and let the angles made by its upper- and lower-surface
normals with the x and y axes be, respectively,

§u(x)y) Tlu(x,y) (8)

§7,(x:}’) le(x,Y)

A second body, satisfying the given requirements of this section, will

be defined in terms of the surface-normal direction angles (eq. (8)). The
requirement that the drag force D of the optimum body be lese than or
equal to the drag force D of the comparison body will specify geomet=~
rical characteristics to determine the shape of the optimum body.r Let
the comparison body be two-dimensional, bounded laterally by the vertical
surfaces y =:tw/2, and with no forward~-facing vertical surface. Let the
cosineg of the angles made by its upper~ and lower-surface normals with
the free-stream-velocity direction be given by the root mean squares of
the corresponding quantities for the optimum body:

cos -Eu(x) =/% fg(x) cos® §,(x,T) aT
(9)

cos Ei(x) =~/€§ Lf(x) cos® §4(x,T) 4T

With the use of the lift-force expression (eq. (6)) and the definitions
of the direction cosines of the comparison body's surface normals (eq.
(9)), a direct computation verifies that the 1lift force acting on the
comparison body is equal to that of the optimum body. Similarly, the
drag force acting on the comparison body is obtained by use of the
direction cosines (eq. (9)) in the drag-force expression (eq. (7)):

cos® Ey(x) cosB -El(x)

hag Jy J3'* + 2 ax
1\/1 - cos® Eu(x) o/l - cos? Ez(x)

D

hq fohgj' [(cos® Ey(x) + % cosS E (x) + . . .) +

(cos® Ez(x) + %‘- cos® -g-z(x) .. o)) ax (10)

lgee footnote 1, p. k..

GRG0
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the last expression being obtained by use of the binomisl expansion of
the radicals in the integral and by an integration.

In order to compare the drag force, D, of the optimum body with the
drag force, D, of the comparison body, the cosine terms in the expression
(10) for the quantity D are evaluated by use of their defining
expression, equations (9):

2n+1

cos®BHL E (x) = [ %gr(x) cos® &, (x,T) d'r] z (11)

Application of Holder's ineq_ualityz (ref. 7) then gives

cog2h+l -Eu(x) <_L—-——(—n-l/2 x) fy(x) cos®Bt2 E.(x,T) dT
(w/z)n+l/2

S%fg(x) cos®BL g (x,T) 4T (12)

The following sequence of inequalities results by using inequality (12),
together with the corresponding expression for the lower surface, in the
drag-force expression (eq. (10)), and comparing the result with the
drag-force expreasion for the optimum body (eq. (7)):

2golder's inequeality states that
o o m m=-1
| [20x) g ax[P< [[2(x) | ax<f|g<x)|m—-1 ax)
for any value of m greater than one. Applied to the right side of
expression (11) with m = n + 1/2, Holder's inequality yields

Ug(x) cos® gu(x,'r) %dT |n+1/2

n+1/2

_<_fgr(X) cos?RFL ¢ (x,7) dT[< 2 >m y(z)Jn-l/a

n-i/2

[ x) :I fg(x) cog2ltl Cu(x,'r) ar

<
- w/2

5[0
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- 3 & s
DSth-%lfg(X) <fcos w0t b dy ax

v 1 - cos® &,

cos3 gl

dy dx (13)

1 - cos? £, - cos® ny
D<D - Dy ' (14)

Since the optimum body cannot have greater drag then another body with
the seme 1lift, the inequalities (12) to (14) inclusive must be equalities,
and the drag force Dy on vertical surfaces must be zero. Thus, by
expression (12), the lateral boundary, y(x), of the surfaces of the
optimum body must also be w/2 throughout the entire length of the body
so that the plan-form shape must be rectangular, and by expression (13),
the surface normals must always be orthogonal to the lateral axis, that
is, the body is "two-dimensional.™ Finally, Dy = O states that the nose
of the body cannot have a finite forward-facing area of infinite slope.

By an analogous procedure, with the application of a second trans-
formation (see Appendix)

cos <.E; ) = 0
— (15)
i _ f1 2% 2
cos ( £, ) = V/% j; [ = cos® £ (x) + cos® §;(x)] ax
it can be shown thaet the upper surfaces may not project beyond the flow

shadow (hence, by impact theory, may not be subject to flow forces) and
the lower surface must be planar.

To show that the body so characterized is unique (insofar as the
lower surface 1s concerned, since this is the only surface subject to
air-flow forces) and actually presents less drag than any other body
satisfying the given conditions, it is noted that the consecutive appli-
cation of the transformations (9) and (15) to an arbitrary body (satisfy~-
ing the given dynamic and geometric conditions) alweys leads to a body
with the same lower surface. That ig, substituting transformation (9)
in transformation (15) and using the lift condition (6) gives

L
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o ()34

L
= EqOZw _ (16)

and the inequalities

fy(X) [ - cos® & (x,1) + cos® &, (x,1) ]d’r ax

(o]

(B <5<

Thus, the optimum body characterized by the surface=-normal direction

( E} ) (eq. §l6)) possesses an absolute minimum drag characteristic.

From equation (16), the angle 6 between the free-gstream direction and
the planar bottom is

2qow1
resulting in a drag force, at the given 1ift, of

/ L
D=1L m (18)

The volumes of the bodies were not considered in the foregoing
optimizing procedure. However, above the flat bottom surface of the
optimum body and in the flow shadow there is a space

2
L2 tan g = 2 L
2 2 2w1qo -1

Thus, if it is desired that the optimum body have a volume V, with

v< wl2 L
=2 Jowig, - L (19)

then the optimizing procedure spplies for the additional condition of
prescribed volume.S It should be noted that 1f the maximum available
volume is utilized, the optimum body is uniquely a simple wedge.

(17)

€@ = arc sin

Sa comparison of several wedges and typicel bodies of revolution showed
that Por given lengths and width, the volumes of wedges were approxi=-
mately equal to those of corresponding bodies of revolution. Thue, it
does not seem probable that the bound on given volume (inequality (19))
will be appreciably exceeded by bodies of usual proportions.

iﬁ F AR



10 CRNFIDENTIALmy NACA RM A5LB15

Expressions (6) and (7) show that according to impact theory the
dynaemic forces on & flat bottom surface are unchanged by a redistribution
of plan-form area. If the geometric requirements of given length and
maximum width sre relaxed, optimum bodies in inviscid corpuscular flow
may be characterized broadly (but precisely) as having flat bottom sur-
faces with shadowed upper surfaces. With plan-form area specified,
expression (18) shows that the drag force on a flat bottom surface, for
8 plen-form area A &and & 1ift force L, is

L
D=L [—=>t—ro
2qu-_L

and expression (17) gives the angle 6 between the free-stream direction
and the flat bottom surface as

é = arc sin L

EQOA

If it is desired that this body contein meximum volume, subject to the
dynemic condition of given lift and the geometric condition of given
plan-form area and shape, then the side and top surfaces of the optimum
body are generated by lines passing through the boundary of the bottom
gurface and alined with the free-stream vector.

EXPERIMENT

The preceeding anslysis, indicating that the wedge is a body with
minimum drag for a given 1ift, is based on the simplifying assumptions
of an inviseid fluid and, in effect, infinite Mach number. An experi-
mental program was underteken, therefore, to determine if such a body has
improved 1lift-drag ratios in viscous air flow at moderately high but
finite supersonic airspeeds. To this end, 1ift and drag characteristics
of three optimum bodies of revolution® and three corresponding wedges

“4The profile shapes of the 3/h-power bodig§4are defined by the expression
d /x
- (})

where r 1is the radius of the body at a distance x downstream of the
nose. The 3/h-power body was shown to approximate the body of given
fineness ratio offering minimum dreg at zero 1lift in hypersonic air
flow (ref. 5), and under the assumption that the pressure forces in
hypersonic air flow are negligible on the upper surface of a lifting
body of revolution, it can be shown by impact theory thet the 3/h-
power body spproximates the body of revolution of given fineness ratio
having maximum lift over drag. )
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(fig. 1(a)) were investigated at & Mach number of 5 (Re per £t = 4x10°)
in the Ames 10~ by lh-inch supersonic wind tunnel. The bodies of
revolution had a 3/h-power profile and were of fineness ratios T, 5, and
3 (fig. 1(b)). The wedges had the same lengths as the bodies of revo-
lution and widths equal to their diameters. The wedge angles were
determined so that, according to impact theory, the 1ift of each wedge
with its upper surface in free-stream alinement was equal to the 1ift
force of the corresponding 3/h-p0wer body at the maximum point on the
theoretical lift-drag curve of the latter. These wedge engles were such
that the volumes of the wedges were approximately 15 percent less than
those of the 3/h-power bodies. The testing was carried out in the

manner described in the experimental investigation reported in reference
8. A detalled description of the wind tunnel and its flow characteristics
may be found in reference 9. All forces are those on the forebodies only,
forces on the model bases having been eliminated by correcting measured
bagse pregsures to free-stream statlc pressure. The estimated accuracy

of the measured maximum lift-drag ratios is spproximately 5 percent.

RESULTS AND DISCUSSION

The theoretical results show that at high supersonic speeds the
flat bottom characterizes the best 1ifting shape. Moreover, it was shown
that the flat bottom must be rectangular for the geometric condliions of
given length and width. Thus, if it is desired to use all of the avail-
able volume above the flat bottom surface, the minimum-drag body for a
given 1ift force, in inviscid hypersonic flow, is a wedge. This finding
is supported by the experimental results® presented in figures 2, 3, and
4, These results show that for all 1ift coefficients within the range
of the tests, the drag of each wedge was significantly less than that of
the corresponding body of revolution. The lower drag resulted in
increased L/D and the maximum 1ift-dreg ratios of the wedges were 100
percent, 42 percent, and 53 percent higher than those of the corresponding
3/h—power bodies for fineness ratlos 3, 5, and 7, respectively.

The measured 1lift and drag forces and lift-drag ratios for the
fineness ratio 7 wedge are compared in figure 5 with predictions based
on impact theory and friction drag estimates (cf. Monaghan, ref. 10).

It is seen that theory underestimates 1ift for a glven angle of attack.
Lift-drag ratio 1s underestimated. by as much as 25 percent at the higher
angles of attack. It follows that the underestimation of the drag forces
is not as great, percentegewlse, as the underestimation of 1ift forces.

She force coefficients are referred to the body length times the base
width, two of the given conditions, in preference to the customary base
reference area used in connection with bodies of revolution.

e
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The greater accuracy of the drag estimate 1s due to the fact that the
drag of the wedge at the lower angles of attack is predominantly the
result of.skin friction. The skin-friction estimate 1s, apparently,
more accurate than the estimate of pressure forces. It is evident,
however, from figure 5 (as had been mentioned previously) that although
impact theory may be somewhat lnaccurate in the estimation of quantita-
tive forces at finite Mach numbers, it is qualitetively useful for
determining optimum body shapes .

CONCLUDING REMARKS

. It was undertaken to determine by use of Newtonlan impact theory the
shape of the general minimum-drag body satisfying conditions of glven
1ift, length, and width. It was found that the lower surface of such a
body must be flat, thus verifying Sénger's speculation, and rectangular,
and that if the meximum available volume is utilized, the minimum-drag
body satisfying the given conditions in hypersonic inviscid air flow is
a wedge. The shape so determined was tested at a Mach number of 5 for
"three numerically different sets of given conditions, together with
corresponding optimum bodies of revolution. Results of the tests showed
that the optimum shepe determined by impact theory hed, for three
different fineness ratios, measured lift-drag ratios 100 percent, 42
percent, and 53 percent higher than those of the corresponding optimum
bodies of revolution.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. 15, 195k
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APPENDIX
APPLICATION OF THE SECOND TRANSFORMATION

. The drag force (D) for the body resulting fram the transformetion
(15) may be put in a form similar to that of expression (10) for D.
Integration then gilves

(5) = 2g.lw l:coss (-;:—) + & cosS (—ET) e .] ,‘(Al)

Because of definition (15), the representative cosine term on the right
of equation (Al) satisfies the inequality

2041

| cog2Rtl (E'L> < l: ':7""' foz cos? Ez(_'l') ar :l - - (a2)

Application of Holder 8 inequality to the right side of equation (A2)
results in

cog2D+l ( 'Ez> <3 coP™ By(n)-ar (43)

Substifuting equation (A3) in.(Al), comparing with expression (10) for
the d.ra.g force D, a.nd. using the inequality (14), there results

(%) <5<p | (ak) -

However, D rebresenis the drag force of an optimum body so that
inequalities (Al), and hence inequalities (A2) and (A3), must be equali-
ties for all positive integral velues of the index n. This fact,
together with  equetion (15), requires that cos Ey(x) = O and there=-
fore, by equation (9), that cos &y(x,y) = O. Thus the optimum body
mey not have upper surfaces subject to flow forces. In addition, the
equality (A3) for n-=1 yields the requirement (squa.ring each side and
applying 'bhe definition (15) to the left side)

(%- f;" cos® El () ar )3 = (%f: cos® EZ. (r) dﬂ'>2 (45)
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By the Schwarz inequality® (ref. T)
A 2 )
1 -3 < _]___ 1 a T l__ 1 -
(Tfo cos® & (T) d.'r> <3 Jy cos® gy (7) ar T J, cos gy (7) a7

and . . . y > (46)

2
(%foz cos &;(T) d'l;) < %foz cos® gz('r) ar

Using equation (A6) to evaluate the left side of equation (A5)

_ (%—' fol cos® &, () d'r>4 w

1A 2T
, fo cos® &;(T) ar

<% _/'oZ cos® EZ(T) d.'rj3

2

<% fgcosa?.'z(T)dT)z <%. _fozcos EZ(T)d'r>
< > (A7)

1 (1 -y
7‘{0 cos® §4(7) ar

2
< (-]Zi fo?' cog® EZ(T) d'r)

®Schwarz's inequality states that
b £ b b
<
<fa £(x) g(x) d.x) < 2 200 ax [0 g(x) ax

with the equelity holding if and only if

d f(x
d_x'l:gx]_o

in the interval of integration.

O@NE IDENT A Liwmy
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Equality (A5) requires that the expressions (A7) be egualities, from which
it follows that expressions (A6) must be equalities. But the expressions
(A6) can be inequalities if and only if

d —

5 cos g,(x) =0
By equation (9) this requires that

i cos &y(x) =0

Thus, the optimum body must have a planar bottom surface.
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Figure |- Concluded.
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