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RESEARCH MEMORANDUM

EFFECT AT EIGH SUBSONIC SPEEDS OF
FUSELAGE FOREBODY STRAKES ON THE STATIC STABILITY
AND VERTICAL-TATI-LOAD CHARACTERISTICS OF A
COMPLETE MODEL HAVING A DELTA WING

By Edward C. Polhamus and Kenneth P. Spreemenn
SUMMARY e

A wind-tumnmel investigetion at high subsonic speeds has been con-
ducted to determine the effect of fuselage forebody strakes on the static
stabllity and the verticel-tail-load characteristics of an airplane-type
configuration having a delts wing. The tests were made at Mach numbers

from 0.60 to 0.92 corresponding to Reynolds numbers from 3.0 X lO6 to

k.2 x 106, based on the wing mean aerodynamic chord, and at angles of
attack from approximately -2° to 24°. The strakes provided improvements
in the directional stebility characteristics of the wing-fuselage con-
figuration which were reflected in the characteristics of the complete
configuration in the angle-of-attack range where extreme losses in direc-
tional stebility quite often ocecur. It was also found that the strakes,
through their beneficial effect on the wing-fuselage directional stability,
reduced the vertical-tall load per unit restoring moment at high angles

of attack. The results also indicated that, despite the inherent tendency
for strakes to produce & pitch-up, acceptable pliching~-moment chareacter-
istics can be obtalned provided the strakes are properly chosen and used
in conjunction with a wing~body-tall configuration characterized by
increasing stability with increasing lift.

INTRODUCTION

The trend of elrcraft conflgurations toward low aspect ratio or
relatively highly swept wings, in order to provide the desired perform-
ance, has made it necessary for these configurations quite often to
operate at rather high angles of attack. In addition, the trend toward
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high fuselage mess loadings end long noses have made these configurs-
tions susceptible to rather violent motions (see refs. 1 to 3) in which
extremely high engles of attack can be encountered. These trends, there-
fore, have made the variation of directionsl stability with angle of
attack very lmportant and, unfortunately, large deficiencies in static
directional stebility are often encountered at high angles of attack.
Although a portion of this deflciency is assoclated with losses in
vertical-tall effectiveness, the increase in wing-fuselage instability
with increasing angle of attack (which 1s characteristic of rather a
large number of conventional configurations (see ref. 4)) plays an
important role. It has been shown in reference 5 that these wing-
fuselage characteristics usually are associated with the flow field
induced on the fuselage afterbody by the wing and that the directionsl
stebillity (relative to the body axis) 1s essentially independent of
angle of attack when the afterbody is removed. In reference 6 it is
shown thet plecing the efterbody volume in two bodies outboard on the
wing (forming a three-body configuration) results in a wing-fuselage
configuration that has & desirable reduction in directional instebility
with angle of attack and even becomes stable at high angles of attack.
Although this type of configuration appears promising from several stand-
points, less extreme configuretion changes sre also of interest, and
reference 7 describes a relatively simple modification which results in
desirable directional stability characteristics. This modification con-
sists of a narrow strake (or flange) placed on the fuselage forebody in
the horizontal plane and running from the nose to the wing leading edge.
This modification improved the directional stablility at high angles of
attack through its effect on the wing-fuselage configuration which
actually became stable at high angles of attack with the strake on. For
the particular configuration of reference T, however, lmprovements in
directional stability were accompanied by pitch-up tendencies due to the
nonltinear 1ift charscteristics of these strakes.

The purpose of the present investigetion, therefore, is to study
the application of strakes to a configuration for which increased linearity
of longlitudinal characteristics might be expected while at the same time
the directlional stability is improved. For this reason a configuration
having & basic 45° delte wing clipped to aspect ratio 3 and a low hori-
zontal tall was selected, since results of reference 8 indicate that
this configuration has the type of longltudinel stability cheracteristics
(staebility increasing with angle of attack) that might be made more
linear by use of strakes. In addition to the stability characteristics,
the effect of strekes on the loads cerried by the exposed vertical tail
wlll also be presented.

- e e

PR o



NACA RM IS5TK15a RIS 3

COEFFICIENTS AND SYMBOILS

Figure 1 shows the body system of axes used in data reduction with
arrows indicating positive direction of forces, moments, asnd angles. The
coefficlents and symbols used are defined as follows:

CL, 11ft coefficient, -I—*iq—gi
Cp drag coefficient, ngg
Cp pitching-moment coefficient, Pitching_moment
gsS¢
Cy rolling-moment coefficient, Rolling moment
qSb
Cn yawing-moment coefficient, Yawinisioment
Cy side-force coefficlent, §EQEE§9£E§
CB,V vertical-tail root-bending-moment coefficient,
Vertical-tail root-bending moment
WSyby
cn,V vertical-tall yawing-moment coefficient,

Vertical-tail yawing moment

aSyly

(referenced to GCyfh)

CN v vertical-tail normal-force coefficient,
’ Vertical-tail normal force
aSy
1 fuselage length
pv2
q dynamic pressure, = 1b/sq ft

mass density of air, slugs/cu ft
v free-stream velocity, ft/sec

M Mach number




4 AP
S wing ares, 2.20 8q ft
Sy exposed vertical-tail area, 0.435 sq £t
c locel wing chord parallel to plane of symmetry
b/2
¢ wing mean serodynemic. chord, % f c2dy, £t
0
Sy vertical-tail mean serodynamic chord, £t
b wing span, ft
by exposed vertical-tail span, 0.661 ft
¥y spanwise distance from plane of model symmetry, ft
o engle of attack, deg
B angle of sideslip, deg
A aspect ratio, bZ/S
ac
1
Cy = —=2
s " 3p
aC
C =
g dp
oy, = oX
B op
oc
(CB - =B,V
B/V B
Lo}
C = _&LX
nB)V oB
o)
BJV op

iil
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Subscripts:
W wing
T fuselage

MODEL. AND APPARATUS

A two-view drawing of the complete model showlng the general arrange-
ment and some of the pertinent dimensions is given in figure 2. Detalls
of the fuselage are presented in figure 3, while those of the various
forebody strakes are presented in figure L. The wing, which was mounted
on the fuselage in the midposition, was constructed of aluminum and had
an aspect ratio of 3, taper ratio of 0.1k, leading-edge sweep of h5°,
and an NACA 65A006 airfoil section parallel to the plane of symmetry.

The horizontal tail was constructed of steel covered wilth plastic and
fiber glass, had a triangular plan form of aspect ratio 4, and an

NACA 65A006 sirfoll section parallel to the plane of symmetry. The
vertical tail, which was also constructed of steel covered with plastic
and fiber glass, had an aspect ratio and taper ratilo (based on the
effective exposed plan form indicated in fig. 2) of 1.02 and 0.4k6, respec-
tively, a quarter-chord sweep engle of 28°, and an NACA 65A006 airfoil
section parallel to the plene of symmetry. The fuselage (see fig. 3)

was constructed of sluminum, had a fineness ratio of 10.94, and consisted
of an oglvel nose, a cylindrical center section, and a boattailled after-
body. The fuselage forebody strakes were comstructed of 0.05-inch brass
and the three lengths and two widths indicated in figure 4 were
investigated.

The model was tested on the sting-type support system shown in fig-
ure 5. With this support system the model can be remotely operated
through approximately 26° angle range in the plane of the vertical strut.
The model can be rotated 90° so that either angle of attack or angle of
sideslip cen be the remotely controlled varisble. With the wings hori-
zontal, couplings can be used to support the model at angles of sideslip
of -4° and 4O, while the model is tested through the angle-of-attack
range.

The forces and moments acting on the model were measured by means
of a six-component electrical strain-gage balance mounted internally in
the fuselage, while a three-component electrical strain-gage balance
(mounted internally in the fuselage at the base of the vertical tail)
measured the forces and moments acting on the verticel tail. In order
to minimize eir leskage through the small gap which existed between the
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fuselage and the vertical tall at thelr Juncture, a sponge-rubber seal
was utilized. Some detalls of the system used to measure the vertical-
tail loeds are presented in figure 6.

TESTS

The sting-supported model wes tested in the langley hligh-speed
7- by 10-foot tunnel through s Mach number range of 0.60 tg 0.92, which

corresponds to & Reynolds number range fram sbout 3.0 X 10° to 4.2 x 10°,
based on the wing mean serodynamic chord. The longltudinel character-
istics were cobtained at zero sideslip through an angle-of-attack range
which, at a Mach number of 0.60, varied from approximately -2° to 24°.
At the higher Mach numbers the complete engle-of-asttack range was not
obtained due to tunnel power limitations. The effect of angle of attack
on the lateral- and directional-stabllity derivetives and the vertical-
tail-load derivatives was obtalned by testling the model at angles of
gilidesldip of +4° (by the use of bent couplings inserted in the sting
system) through the angle-of-attack range. This technique of obtaining
derivetives requires, of course, the assumption that the forces and
moments vary linearly with sideslip angle. In order t¢ determine the
degree of linearity and effects of higher sideslip angles, a limited
number of tests were obtained by rotating the model 90° and testing
through a range of sideslip angles at a constant angle of attack.

CORRECTIONS

Jet-boundary correctlions to the angle of attack were applied in
accordance with reference 9. The corrections to the pliching moment,
lateral force, yawing moment, and rolling moment were negligible and
therefore were not applied. Past experience has indicated that tare
values should be very small, and, therefore, no tares were applied.
Blockage corrections were applied to the data by the method outlined
in reference 10.

The angle of attack end angle of sideslip have been corrected for
deflection of the sting support and balance system under load. No attempt
hes been made to correct the data for asercelasstic distortion of the model.
In order to provide sufficient instrumentation for the tell-load measure-
ments, the fuselage bage-pressure measurements were omitted and, there-
fore, the drag results have not been corrected to the condition of free-
stream pressure at the fuselage base.
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RESULTS. AND DISCUSSION

Presentation of Results

The basic longitudinal data and the lateral stebility parameters
(based on +4© sideslip) are presented in figures 7T and 8 for several
Mech numbers and configurations. Figures 9 and 10 present the effect
of strakes on the variation of the aerodynamic characteristies with
sideslip angle, whereas figures 11 and 12 present the variation of the
vertical-tall-load characteristics with angle of attack for several Mach
numbers and configurations. It will be noted throughout the figures
that complete data for all of the strakes shown in figure b are not pre-
sented. Since the main purpose of this investigation was to determine
the directional stability and vertical-tail-load characteristics for a
strake configuration which had acceptable longitudinal stability char-
acteristics, it was decided to minimize the tunnel testing time by
determining the longitudinal stability characteristics for the complete
model with each of the strekes at a Mach number of 0.60 and to limit all
other tests to the most promising strakes.

Longltudinal Stability

The effect of the fuselage forebody strakes on the longltudinal
characteristics are presented in figure T for various model configura-
tions. Figure T(a) presents the 1ift coefficient as a function of angle
of attack for the fuselage alone, the wing-fuselage combination, and the
camplete-model configuration. In general, the addition of fuselage fore-
body strakes had small effects throughout the angle-of-attack range except
for the largest strake at the higher angles. However, due to the rather
large moment arms involved, quite sizeable effects on pitching-moment
charscteristice are indicated (see fig. T(b)). As mentioned previously,
the complete range of strake sizes were investigated only for the
camplete-model configuration at a Mach number of 0.60. From these results
it will be noted that the lesrgest strake produced an extremely undesirable
"pltch-up" at the relatively low angle of attack of 8°. This is appar-
ently associated, for the most part, with the nonlinear 1ift variation
which cheracterizes low-aspect-ratio lifting surfaces and which is accen-
tuated by the nonlinear variation of body-induced upwash. In an attempt
to alleviate this situation, several reductions in strake size were inves-
tigated and from the results the 14.38- by 0.50-inch and the 14.38- by
0.25-inch strakes were selected for further study. The effect of these
two strakes on the characteristice of the complete-model configuration
were studied at Mach numbers up to 0.92. Although there still is con-
siderable pitching-moment nonlinearity, which on an actual aircraft con-
figuration might require same tailoring with regard to "wing fixes" and
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horizontal-tall geometry and locaticn, it is felt that the 14.38~ by
0.50-inch and 14%.38- by 0.25-inch strakes cover fairly well the range
of sizes which for this confilguration provide reasonable longitudinal
stabillty characteristics and therefore warrant study of thelr effects
on the directional stebility and vertical-tail-load characteristics.

Because of the angle-of-atteck limitations at the higher Mach num-
bers, these strakes were selected from the low Mach number results and
although the indications are that the strake effects are relatively
independent of Mach number 1t would be desirable to make further studies.
It should salso be kept in mind that these results were obtained at rela-
tively low Reynolds numbers and that there msy be some scale effect.

In order to provide information on possible wing interference
effects and downwash changes the 14.38- by 0.50-inch strake was also
tested on the fuselage alone and on the wing-fuselasge combination, and
the results are included in figure 7. As mentioned previously, the
fuselsge base pressure was not measured and, therefore, it was not pos-
sible to correct the drag to the condition of free-stream static pressure
at the base. It is felt, however, that the relative effects of the
strakes on the drag are valid and therefore the drag resulis for the
camplete configuration are presented in figure T(e). The results indi-
cate that the strekes had a negligible effect on the drag below 1lift
coefficients of about 0.7 and that above this 1lift coefficlent they
usually decreased the drag for e glven 1ift coefficient. This result
1s substantiated in reference 7, where the drag has been corrected for
base pressure.

lateral Stebility

The effects of the fuselage forebody strakes on the lateral stability
characteristics (obtained from tests at sideslip angles of +4°) of the
fuselege, the wing-fuselage configuration, and the complete configurstion
are presented in figure 8 as a function of angle of attack. The following
discussion will be based on the results obtained at M = 0.60 and 0.80
since the angle-~of-attack range is largest for these Mach numbers. For
the fuselage-alone configuration, the results indicate an extremely large
effect of the strakes on the directionsl stability parameter, CnB’ above

an angle of attack of about 13°, with the fuselage becoming neutrally
stable at sbout 18° and exhibiting & rather large degree of positive
directionel stability at the highest angles of attack tested. With the
wing on, the favorable effect of the strakes on directional stability

18 menifested at a somewhat lower angle of attack, due possibly to the
wing induced upwash. However, at the higher angles of attack the effect
of the strake 1s considersbly less with the wing on than with the wing
off. Inasmuch as the strakes appear to have & rather pronounced effect

SCONESDENT RIS
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on the span load distribution of the wing, as indicated by the change in
the effective dihedral parameter CZB: the reduction in strake contribu-

tion to directional stability mey be associated with wing interference
on the fuselage afterbody. (See ref. 5.) On the right-hend portion of
figure 8 the effect of the strekes on the complete-model characteristics
is shown, and it will be noted that in general the expected adverse
effect of the strake on the vertical teil is relatively small and the
overall results reflect the favorable effect on the wing-body configura-
tion. It will be noted that the strakes have rather lsrge effects on
the parameters CZB and CYB, and these effects must be considered when

predicting the flying qualitlies of a configuration.

In order to gain some insight as to the range of sideslip angles for
which the directional stebility parameter reflects the directional sta-~
bllity characteristics, results over a sideslip range are presented for
ean angle of attack of 150 in figure 9. The results indicate no serious
nonlinearities for angles of sideslip less than about 11°.

In order to determine the contribution of each straske, tests on the
fuselage alone were run with one strake removed and the resulis are pre-
sented in figure 10 where they are compared with the results obtained
with both strakes and with no strakes. The results with one strake indi-
cate a rather large yawing moment and side force at zero sideslip. At
zero sideslip the relationship between the side force and yawing moment
indicates that the force is probably concentrated in the reglon of the
gtrake and the direction of the force indicates a lower pressure on the
side opposite that containing the strake. It therefore appears that at
zero sldeslip the strake is acting as a spoller. The values st zero
sideslip are, of course, eliminated when the other strake is added and,
with mutual interference neglected, it is the varietion of yswing moment
with sideslip for each strake which determines the effect of the strakes
on the stability. In the moderate sideslip range (i5°), it appears that
the strake on the windward side has the greater effect since its slope
has the grester deviation from the "no strake" slope. As the model is
sideslipped to higher angles the forces no longer appear to be concen-
trated in the reglion of the strake and the effects appear to be more
caomplicated. For example, at an angle of sideslip of 12° with the strake
on the windward side the strake has negligible effect on the yawing
moment but contributes a rather large positive increment to the side
force. It therefore appears that, in the sidesilpped condition at least,
the strake has considerable effect on other portions of the fuselage and
fuselage pressure-distribution measurements would be desirable in tracing
these effects. :



10 eI NACA RM L5TK15a

Vertical=Tall Loads

The normal-force, yawing-moment, and bending-moment cheracteristics
due to sideslip as measured on the exposed panel of the vertical tail are
presented in figure 11 ss a functlon of angle of attack for several Mach
numbers. As would be expected from the measured tall contribution to
directlional stability (see fig. 8) the vertical-tail normal-force coef-
ficlent per unit sideslip angle (CNB)V decreases rather rapidly at the

higher angles of attack. This decrease 1s assoclated to a large extent
wlth the sidewash induced at the tail by the fuselage forebody separation
vortices and is discussed in some detail in reference 1l. Above an angle
of attack of about 18° it can be seen that the addition of the fuselage
forebody strakes reduced the vertical-tail normal force. A reductlion in
vertical-tall load per unlt sideslip for a configuration which is direc-
tionally unstable with the vertical tell off does not imply that the teil
loeds encountered will be less. In fact the tall load encountered is
usually greater for such a configuration since the larger sideslip angle
required to produce a restoring moment sufficient to counteract a given
displacement results in an increase in the usually unsteble wing-fuselsge
yawing moment which must also be overcome by the vertical tail. A
decrease 1n the unstable wing-fuselage yawing moment will, for a constant
value of teil load per unit sideslip, result in a decrease in the taill

load per unlt restoring moment Cg;v. In addition, for a stable wing-

fuselage comblnation, a reduction in the tail load per unit sideslip will
result in further decreases in vertical-tail load per unit restoring
moment. Fortunately, the addition of the strakes accomplishes both of
these desirable effects at high angles of attack, that is, it results in
a positive (Cnﬁ)wf and a decrease in (CNB)V° It therefore appears

that addition of the strakes will result 1n an appreclable reduction in
the vertical-tall load per unlt yawing moment. This is 1l1lustrated in
figure 12 where the vertical-tsil normal force per unit restoring moment

ngz is plotted as a function of angle of attack for the complete con-
n
figuration both with and without the fuselage strakes. Wlthout the fuse-~
lage strakes, the vertical-tall normsl force lncreases rapldly above an
angle of attack of about 15°. At an angle of attack of 22° a maximum
value, of approximately three tlmes the low angle-of-attack value, was
reached and sbove this angle a rapid decrease occurred. With the fore-
body strakes installed, only & slight increase in tail load occurs and
the maximum load encountered with the strakes is only LO percent of that
encountered without the strakes.

R
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CONCLUDING REMARKS

An investigation at high subsonic speeds of the static longitudinal
and lateral stabllity characteristics of a complete model having a delta
wing indicated that the addition of fuselage forebody strskes lwmproved
the directional stability charascteristics at high angles of attack. The
results indlcated that, despite the inherent tendency for strekes to pro-
duce a pitch-up, acceptable pitching-moment characteristics can be
obtained provided the strakes are properly chosen and used in conjunction
with a wing-body-tall configuration characterized by increasing stability
with increasing 1ift. With regard to directional stabllity, the addition
of the strakes resulted in a reduction in the wing-fuselage instability
at moderate angles of attack and resulted in positive directional sta-
bility at high angles of attack. This improvement was also reflected
in the characteristics of the complete configuration such that the direc-~
tional stabllity at high angles of attack was considerably improved. In
additlon, the loads carried by the exposed verticsl tail were measured
and it was found that the additlion of the strakes, through thelr favorgble
effect on the wing-fuselage directional stebility, resulted in a consider-
gble reduction in the vertical-tail normal force per unit restoring
moment. :

Langley Aeroneutical laeboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., October 28, 1957.
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