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RESEARCH MEMORANDUM 

FIZITER AT VERY HIGH SPEEDS 

By Harry L. Runyan and Homer G. Morgan 

SUMMARY 

This paper is concerned with a discussion of some of the problems 
of flutter and aeroelasticity that are or may be important at high speeds. 
Various theoretical procedures for treating high Mach number flutter are 
reviewed. Application of two of these methods, namely, the Van Dyke 
method and piston-theory method, is made to a specific example and com- 
pared with linear two- and three-dimensional results. It is shown that 
the effects of thickness and airfoil shape are destabilizing as compared 
with linear theory at high Mach number. In order to demonstrate the 
validity of these large predicted effects, experimental flutter results 
are shown for two rectangular wings at Mach numbers of 6.86 and 3. The 
results of nonlinear piston-theory calculations were in good agreement 
with experiment, whereas the results of using two- and three-dimensional 
linear theory were not. 

In addition, some results demonstrating the importance of including 
camber modes in a flutter analysis are shown, as well as a discussion 
of one case of flutter due to aerodynamic heating. 

INTRODUCTION 

This paper is concerned with some problems of flutter and aero- 
elasticity at very high flight speeds. For this purpose high speeds 
will be defined as starting in the Mach number range of 2.5 to 3. 

Some of the problems which are or may be important at high speeds 
are discussed according to the forces in the aeroelastic problem - aero- 
dynamic, structural, and inertial. Under the aerodynamic part are: 

(a) Nonlinear effect of airfoil shape, thickness, and angle of 
attack: There appears to be a very large effect of these factors on 
the flutter speed, which is discussed subsequently. 

(b) Effect of shocks: Information is lacking and this area requires 
some research effort. 
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(c) Boundary layer and viscous effects: Here again information is 
lacking, (of course, even in the low speed case),but, with the thick 
boundary layers encountered at high-speed flight, the dynamics of the 
boundary layer could become important, particularly, interactions of 
the boundary layer with shocks. 

(d) Plan form: Some of the new plan forms having sweep angles of 
the order of 75O will pose special problems with respect to unsteady 
aerodynamics, and there arises the difficult problem of studying and 
developing theories that will take into account the effect of both air- 
foil shape and aspect ratio. 

(e) Controls: Controls have always been a source of trouble for 
the flutter analysts. In the Mach number range of 10 to 20, the type 
of control that will prove to be satisfactory is not known. But from 
past experience, whatever type of aerodynamic control, if any, is found 
to be satisfactory, it will probably constitute a flutter problem. 

Structures required for high-speed flight present another area of 
difficulty. Some of the problems are: 

(a) Aerodynamic heating: An example of aerodynamic heating relating 
to flutter is briefly discussed. 

(b) Panels and heat shields: For the flat-bottomed highly heated 
aircraft now envisioned for high-speed flight, it appears that the 
flutter of panels and heat shields will be a very real problem. Under 
high-temperature conditions, buckling will probably occur and will 
require nonlinear treatment. 

(c) Plan form: For wings of high aspect ratio, the distortions of 
the wing involved mainly a twisting and bending of the wing, so that the 
elementary concepts of "beamology" could be used. However, the low- 
aspect-ratio wings now being considered behave more like plates and 
involve a large amount of chordwise deflection. 

Inertial force is the third type of force in the aeroelastic prob- 
lem. The aircraft structural weight is decreasing in comparison with 
the weight of the fuel, particularly with regard to missiles. Conse- 
quently, such nonlinear problems as fuel sloshing and swirl are becoming 
exceedingly important. 

Three of these problems will be discussed: the effect of airfoil 
shape, structural plan form, and aerodynamic heating. 
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SYMBOLS 

A 

a 

b 

CP 

Ia 

M 

m 

P 

PO 

9 

ra, 

X?Y 

a 

Y 

?-l 

% 

w1 

v 

aspect ratio 

speed of sound 

half chord, in. 

pressure coefficient, P - PO 
9 

moment of inertia about elastic axis 

Mach number 

mass of wing per unit of span length, lb-sec2 
in. 2 

pressure at point x,y 

pressure in undisturbed stream 

dynamic pressure 

radius of gyration, rc 2-h - - 
mb 2 

thickness ratio 

vertical induced velocity or downwash 

stream velocity, ft/sec 

Cartesian coordinates 

angle of attack 

specific-heat ratio 

bending frequency, radians/set 

torsional frequency, radians/see 

first bending frequency, radians/set 

mass ratio, S- 
sob2 

3 
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P fluid density 

cp velocity potential 

Subscripts: 

L linear 

N-LO nonlinear 
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ANALYTICAL METHODS 

This section is concerned with a brief description of the theoretical 
methods available for high Mach number studies. The complete nonlinear 
partial differential equations for the potential and the pressure coeffi- 
cient are shown by 

cq,+Q&=o 

cp = Cp,L + CP$L 

(1) 

and can be broken down into a linear part plus a nonlinear part. 
The linear solution now in general use is obtained from equations (1) 
and (2) by setting the nonlinear part equal to zero, as given by 

‘9,=0 

Cp = Cp,L 

(3) 

(4) 

and then solving the equations with suitable boundary conditions. 

Several approximate methods are available for obtaining nonlinear 
solutions. The first of these is the solution of Van Dyke (ref. 1). He 
first eliminated the third-order terms from these two nonlinear equations 
(this procedure, in effect, eliminates the effect of finite shocks) and 
then inserted the solution for the linear equation (3) in the nonlinear 
part of equation (1). This procedure resulted in a linear partial differ- 
ential equation plus a known function as 

'PL + fb,y,t) = 0 (5) 

cp = Cp,L + CP$L 
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By a laborious technique, Van Dyke then solved these equations for the 
pressure on specific airfoils. 

Another nonlinear method is the so-called piston theory. This pro- 
cedure was originally suggested by Hayes (ref. 2), was used by Lighthill 
(ref. 3) to check the results of Van Dyke at high Mach number, and later 
was elaborated on and applied to the flutter problem by Ashley and 
Zartarian (ref. 4). The advantage of piston theory is its utter sim- 
plicity as compared with other theories. The pressure coefficient is 
easily derived on the basis of a piston moving in a one-dimensional 
channel. The expression for the pressure coefficient is given in 

Cp+-($+~($2+~M($3+. . ] 

where w is the instantaneous vertical velocity of a point on the wing, 
and V is the stream velocity. Note that, as M is increased, the 
first term would become less important, and the higher order nonlinear 
terms would begin to take an added importance. 

Another method is use of the Newtonian concept. In this procedure 
it is assumed that the flow striking the exposed surface is compressed 
to a very thin boundary layer and the force exerted on the airfoil is 
due to the component of momentum perpendicular to the surface. The 
resulting pressure coefficient 

cp = 2[$)2 - $ M2($ + . . J 

was obtained by expanding cos 2 M. For a curved surface or an oscillating 
surface, additional terms due toVcentrifugal force could be added. Note 
that the first term is missing as compared with piston theory and the 
coefficient of the squared term has a factor of 1 as compared with 0.6 
for y = 1.4. Later, use will be made of the Van Dyke and piston-theory 
solution. 

APPLICATION TO SPECIFIC EXAMPLES 

Some applications and comparisons of the various theories are given. 
In figure 1 are shown the results of calculating the flutter of a rectan- 
gular wing of panel aspect ratio 1.5 throughout the Mach number range 
of 1.3 to 10. The airfoil section was 65 series, tapering from 4 percent 
at the root to 3 percent at the tip. Four theories have been used: 
linear two-dimensional theory, linear three-dimensional theory, nonlinear 
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p is ton  theory ,  a n d  V a n  Dyke  theory .  T h e  resul ts  a re  p lo t ted aga ins t  th e  
st i f fness-al t i tude p a r a m e ter,  % \/;. T h e  flu tte r  r eg ion  is b e l o w  th e  
curves.  C o n s ta n t-al t i tude l ines  a re  hor izon ta l  a n d  cons tan t -dynamic-  
p ressu re  l ines  a re  rad ia l  l ines  e m a n a tin g  f rom th e  or ig in .  T h e r e  a re  
fou r  p o i n ts o f interest  in  th is  plot.  First, th e  l a rge  d i f fe rence b e tween  
th e  l inear  theo r ies  a n d  th e  two theo r ies  wh ich  i nc lude  th e  e ffect  o f 
th ickness  a t th e  h i ghe r  M a c h  n u m b e r s . Th is  e ffect  is pr imar i ly  d u e  to  
a  fo rwa rd  shift in  th e  c e n te r  o f p ressure .  d u e  to  air foi l  s h a p e  w h e r e a s  
th e  c e n te r  o f p ressu re  fo r  th e  two-d imens iona l  l inear  theo ry  is f ixed a t 
th e  50 -percen t  cho rd  a n d  th e  fo rwa rd  shift o f th e  c e n te r  o f p ressu re  in  
th e  th ree -d imens iona l  tip  d o e s  n o t pred ic t  as  m u c h  fo rwa rd  m o v e m e n t as  th e  
non l i nea r  theor ies .  A n o the r  p o i n t is th e  a g r e e m e n t o f th e  m o r e  compl i -  
ca ted  V a n  Dyke  theo ry  wi th th e  s imp le r  a n d  m o r e  read i ly  u s e d  p is ton  
theory-a t  th e  h i ghe r  M a c h  n u m b e r . A  th i rd  p o i n t o f interest  is th e  cross 
ove r  o f th e  two-  a n d  th ree -d imens iona l  theo ry  a t M  =  1 .6 . It h a s  usua l ly  
b e e n  a s s u m e d  th a t inc lus ion  o f th e  th ree -d imens iona l  e ffects is a  
re l iev ing  e ffect  w h e n  c o m p a r e d  wi th th e  two-d imens iona l  theory .  Th is  
is usua l ly  t rue a t th e  l ower  M a c h  n u m b e r s  b u t it is n o t necessar i l y  t rue 
a t th e  h i g h  M a c h  n u m b e r s . A  four th  p o i n t is th a t th e  e ffect  o f air foi l  
s h a p e  a n d  th ickness  is d e s tabi l iz ing.  For  ins tance,  a t a n  a l t i tude cor-  
r e s p o n d i n g  to  a  va lue  o f th e  o rd ina te  o f 3 .3 , non l i nea r  theo ry  ind ica tes  
th a t flu tte r  w o u l d  b e  e x p e r i e n c e d  a t a  M a c h  n u m b e r  o f 5 , w h e r e a s  th e  
l inear  theo ry  w o u l d  pred ic t  th e  air foi l  to  b e  flu tte r  free. 

In  fig u r e  2  is s h o w n  th e  ca lcu la ted  e ffect  o f th ickness  a n d  air foi l  
s h a p e  o n  flu tte r  a t M  =  1 0  o b ta i n e d  by  us ing  non l i nea r  p is ton  theory .  
T h e  st i f fness-al t i tude p a r a m e ter  is s h o w n  p lo t ted aga ins t  th e  rat io o f 
b e n d i n g  to  to rs ion  f requency.  T h e  flu tte r  r eg ion  is b e l o w  th e  curve.  
Curves  a re  p r e s e n te d  fo r  a  fla t p late,  a  b -percen t  w e d g e , a n d  a  b -percen t  
b i convex  airfoi l .  L e t us  focus  ou r  a tte n tio n  o n  th e  curves  fo r  th e  fla t 
p la te  o r  zero- th ickness air foi l  a n d  th e  b i convex  airfoi l .  For  low-  
f requency  rat io, th e  zero- th ickness air foi l  g ives  n o  flu tte r  so lu t ion  
w h e r e a s  th e  b i convex  air foi l  s h o w s  a  d e fin i te  flu tte r  so lut ion.  A s  th e  
f requency  rat io is inc reased,  h o w e v e r , th e  curves  te n d  to  a p p r o a c h  e a c h  
o the r  a n d  a t %  - =  1 .2  th e y  actual ly  cross.  

L u a  
T h a t is, th e  e ffect  o f 

th ickness  is d e s tab i l i z ing  fo r  l ow  va lues  o f th e  f requency  rat io a n d  
stabi l iz ing fo r  h i g h  va lues,  a t least  fo r  th is  case.  N o te  th a t th e  w e d g e  
h a s  a  s h a p e  s imi lar  to  th e  fla t p la te  e x c e p t it is s l ight ly d e s tabi l iz ing.  

In  figu res  1  a n d  2  a re  s h o w n  s o m e  ra ther  l a rge  a n d  d is tu rb ing  e ffects 
o f th ickness  a n d  air foi l  s h a p e  in  r educ ing  th e  flu tte r  s p e e d . T h e  ques -  
tio n  is th e n  Ila re  th e s e  la rge  e ffects, in  fact, t rue."  In  a n  a tte m p t 
to  a n s w e r  th is  q u e s tio n  two w ings  h a v e  b e e n  flu tte r e d  a t h i g h  s p e e d . T h e  
f requency  rat io se lec ted  fo r  th e s e  w ings  w a s  de l ibera te ly  c h o s e n  so  th a t 
as  w i d e  a  s p r e a d  as  poss ib le  b e tween  th e  zero- th ickness a n d  th e  th ickness  
so lu t ion  cou ld  b e  o b ta i n e d . For  th e s e  cases  th e  f requency  rat io w a s  
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approximately 0.35. Although the parameters for figure 2 are not the . 
same as those for the experiment, the trends are the same and at a fre- 
quency ratio of about 0.35 there is quite a difference between the zero- 
thickness and the thickness cases. 

j COMPARISON OFEXPlZRIMEXWXGAlDTlEORRTICALREZXJLTS 
/ * \ 

Flutter at Mach Numbers of 6.86 and 3.0 

Results for two rectangular wings are shown in figures 3 and 4, 
each having a panel aspect ratio of 0.8. One is an ll-percent double- 
wedge section and the other is a 4-percent flat wing. The properties 
of these wings are given in the following table: 

ll-percent wedge 4-percent plate 

b......... 2.55 2.57 
m......... 0.0001276 0.000127 
ra 2 . . . . . . . . 0.251 o -269 
x0 . . . . . . . . 0.467 o .46 
k . . . . . . . . o .o545 0.0745 
cob . . . . . . . . 110.9 106 
cl& . . . . . . . . 314 322 
VatM=3.0 . . . 2,110 
V at M = 6.86 . . . 

2,120 
3,250 3,255 

(The torsion mode for both wings was taken as unity across the span. 

i 

The bending mode for the ll-percent wing was taken as fh = 0.23 + 0.1925x 
and for the 4-percent wing as 

-4 

fh = 0.335 + 0.186x where x varies 
from 0 to 4 inches.) The wings were very rigid and were mounted on 
flexible shafts so that, in effect, they corresponded to all-movable 
controls. The results are again plotted as the stiffness-altitude 
parameter against Mach number. The experimental results are shown as 
solid points and were obtained at Mach numbers of 6.86 and 3 in the 
Langley ll-inch hypersonic tunnel and the Langley g- by 18-inch super- 
sonic flutter tunnel, respectively. Let us examine first the double 
wedge. The solid line is the result of using nonlinear piston theory and 
fairly good agreement is indicated with the experiment. The two- 
dimensional, zero-thickness method gave no solution. The three- 
dimensional linear case indicated a flutter-free wing at a Mach number 
of 6.86 but gave a solution at a lower Mach number as indicated. For 
the 4-percent plate, similar agreement between piston theory and 
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experiment was obtained. Again, two-dimensional zero thickness gave no 
solution and indicated the wing to be flutter free; whereas, inclusion of 
the three-dimensional tip effect gave a solution as indicated. The value 
of reduced frequency k for the M = 6.86 test was k and a first-order 
theory in frequency such as the piston theory should be satisfactory. 

Thus, it appears that the detrimental effect of thickness on flutter 
as predicted by piston theory is in fact true and that nonlinear theories 
must be used at the high flight speeds. One interesting fact is that 
lines drawn through the experimental points intersect the origin; thus 
a constant 'q' flutter variation is indicated. 

Flutter of Delta Wings 

Now let us turn our attention to some flutter calculations of two 
low-aspect-ratio cantilever wings. In figure 5 the stiffness-altitude 
coefficient has been plotted against Mach number for 45’ and 60' delta 
wings. The wings were flat plates with beveled leading and trailing edges. 
The circular points are the experimental results from reference 5 
and the solid and dashed lines are analytical results. Piston theory 
was used for the aerodynamic input. A modal type of analyses which was 
based on experimentally measured mode shapes was used. Since these 
modes had a large amount of deflection in the chord direction, it did 
not seem that the deflection curves could be approximated by the usual 
procedure of bending and twisting of a straight line. Hence, analytical 
curves were fitted to the experimental deflection curves at each of 
10 spanwise stations for use in the analysis. The results are shown by 
solid lines and show fairly good agreement with experiment. In order 
to assess the effect of chordwise deflection, the camber was arbitrarily 
eliminated from each mode and then recalculated. The results are shown 
by the dashed lines. For the 600 wing, the curve was shifted over to 
the nonconservative side, whereas for the 45O wing a very wide divergence 
is found. Thus the importance of including the camber deflection in the 
analysis of a low-aspect-ratio wing is demonstrated. 

Flutter Due to Aerodynamic Heating 

Another well-known problem of high speed is the effect of aero- 
dynamic heating. With regard to flutter, the main effect of aerodynamic 
heating is to cause a 10~s in torsional stiffness, particularly during 
transient conditions. A solid duralumin wing has been tested at a Mach 
number of 2 in the preflight jet of the Langley Pilotless Aircraft 
Research Station at Wallops Island, Va. Two runs were made, a cold run 
during which the wing did not flutter and a hot run during which the wing 
fluttered. This phenomena can be explained with the aid of figure 1. These 
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calculations apply to this heated wing. In the cold condition the value 
of the stiffness-altitude parameter at a Mach number of 2 is 3.07 and is 
well in the stable region. During the fast start of the tunnel, the 
leading and trailing edges heated up much more rapidly than the thicker 
center section; this condition causes a momentary loss in torsional stiff- 
ness. Thus the torsional frequency was reduced; the stiffness-altitude 
parameter is correspondingly reduced and would follow a vertical line to 
an intersection of the flutter curve. Calculations of the loss in tor- 
sional stiffness have been made and show a reduction in the torsional fre- 
quency of 50 percent which is sufficient to intersect the flutter region. 
Thus, flutter which has been induced by aerodynamic heating, at least for 
a simple solid wing, can be calculated. 

CONCLUDING REMARKS 

New flutter and aeroelastic problems will appear at high flight 
speeds. Configurations dictated by high-speed requirements will probably 
also exhibit new problems in the lower speed ranges. An essential fea- 
ture of many of these problems is their inherent nonlinearity. For 
accurate flutter prediction, inclusion of these nonlinearities, such as 
the effect of airfoil thickness and shape, is a necessity. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., March 7, 1957. 
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FLUTTER FOR VARIOUS AERODYNAMIC THEORIES 

bw,Jp 0 

6, 

5, 

4 

‘3 

2 

I- - 
FLUTTER REGION 

I I I I I I 
0 2 4 6 a IO 

M 

Figure i 

CALCULATED EFFECT OF AIRFOIL SHAPE 
M=10jr,2 =0.25i C.G.=50%iE.A.=40% 

8r 

6- 

*& 4 ---- 

2- 

- FLAT PLATE 

---- 4% WEDGE 

0 
I 

.4 

------- 4 % BICONVEX 

I I I I 
.8 1.2 1.6 2.0 

Wh /WQ 

Figure2 



NACA RM L5p16a 

FLUTTER OF A DOUBLE WEDGE WING AT HIGH SPEED 
E.A.=46.7%$ C.G.=49.4%iA=0.8 
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