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A CORRELATION BY MEANS OF THE TRANSONIC SIMITARTTY RULES
OF THE EXPERIMENTALLY DETERMINED CHARACTERTSTICS OF
22 RECTANGULAR WINGS OF SYMMETRICAL FROFILE L

By John B. McDevitt

SUMMARY

The transonic similarity rules have been epplied to the correlation
of experimental data for a series of 22 rectangular wings having sym-
metrical NACA 63A-series sections, aspect ratios from 1/2 to 6, and
thicknesses from 2 to 10 percent. The data were obtalned by use of the
transonic bump technigue over a Mach number range from 0.4%0 to 1.10,
corresponding to a Reynolds number range from 1.25 to 2.05 million.

The results show that it is possible to correlate experimental data

o throughout the subsonic, transonic, and moderate supersonic regimes by
using the transonic similaerity parameters in forme which are consistent
with the Prandtl-Glsuert rule of linearized theory.-

'S

The multiple families of basic data curves for the various aspect
ratios and thilckness ratios have been summarized in single presentations
involving only one geometric variable - the product of the aspect ratio
and the 1/3 power of the thickness ratio.

INTRODUCTION

A unified approach toward an understanding of transonic flows has
been achieved only in recent years. Our meager knowledge of transonic
f£lows, in comparison with the more complete and cogent understanding of
subsonic and supersonic flows, is due not only to the complexities of
the mathematics involved but also to the limitations of test facillitles
at transonic speeds.

Similarity rules for transonic flow in two dimensions were derived
by von Kfrmdn (reference 1) and were extended recently by Spreiter
(reference 2) and Berndt (reference 3) to include wings of finlte spen.
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These rules csh be shown to coincide with one of the possible forms of
the  Prandtl-Glauert rule of subsonic and supersonic flows. (Reference 2.)
Although the similarity rules do not provide explicit solutions, they do
suggest the manner in which experimental data can be correlated.

A recent systematic experimental investigation of the effects of
wing aspect ratio and thickness at transonic speeds (reference k) has
provided experimental data ideally suited to correlation using the tran-
sonic similarity parameters. The snalysis of these dats is presented in
this paper to provide the transonic characterigtice of rectangular wings
of symmetrical profile and to help evaluate the usefulness of the tran-
sonic similarity perameters for the correlation of experimental data.

The similerity rules are presented in slightly modified forms to
permit a direct and convenient application in the data correlation. The
form of the data presentation was chosen so that direct comparisons with
the various linearized theoriles could be indicated.

The correlation is epplied to the experimental data for 22 rectan-
gular wings having symmetrical NACA 63A-series sections, aspect ratios
from 1/2 to 6, and thicknesses from 2 to 10 percent. The data were
obtained by use of the transonic bump technique over a Mach number range
of 0.40 to 1.10, corresponding to a Reynolds number range from 1.25 to .
2,05 million. The basic data for the aspect ratios 1, 2, 4, and 6 have
been published in reference 4. The basic date for the aspect ratios 0.5,
1.5, and 3 were obtaired by identical testing procedures but have not
been published previously. A description of the wing models and the
testing procedure is given in.reference k.

SYMBOLS'
A aspect ratio <g>
b wing span
c wing chord
Cp total drag coefficient <EQEE%§EEE%> I
CDmin minimm drag coefficient

(CDP)min minimum pressure-drag coefficient

Cpe friction-drag coefficient, assumed equal to minimum drag
coefficient at 0.7 Mach number :

LS
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drag coefficient due to 1lift (Cp - Chpin)

1ift coefficient <%E£%>
aS

1ift coefficient for meximum lift-drag ratio

pitching-moment coefficient, referred to 0.25¢
pitching momenﬁ) ‘ :
gSc

pressure coefficient

ordinate distribution function

\

thickness distribution function

camber distribution funection
camber parameter proportional to the amount of camber

meximm lift-drag ratio

free-stream Mach number
critical Mach number
drag-divergence Mach number
dynamic pressure

wing area
thickness-to-chord ratio

Caritesian coordinates where x extends in the direction of
the free-gtream velocity

angle of attack
ratio of specific heats (for air ¥ = 1.}4)

ordinate-amplitude parameter

4
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perturbation-velocity potential

@

acr

i’ CL& slope of ;ift curve, measured at zero 1ift coefficient
dCp

slope of pitching-moment curve __ e o

dcCy,

E% _pressure-drag funetion

AD _drag-due-to-1ift function . §
L . 1ift function

M pitching-moment function

P pressure-coefficient function

THEORETICAL CONSIDERATIONS

Transonic Similaerity Rules

Similarity rules (references 1, 2; and.3) for the transonic flow
around thin wings show how a wing can be affinely distorted in order to
retain a related potential distribution when the free-stream Mach number
is altered. These rules of correspondence can be shown to coincide with
one of the possible forms of the Prandtl-Glauert rule, derived from the
linearized potential equation of subsonic or supersonic £léws (refer-
ence 2). The various results of linearized theory can be expressed in
terms of the transonic similarity parameters and the use of these param-
eters will be consistent for both the linearized theory and the nonlinear
transonic theory.

Experience hags shown that the linearized potential equation is a
good approximation for sufficiently thin wings when the whole field of
flow is subsonic or well-established supersonically. In the transonic
regime certain nonlinear terms must be retained to show the mixed nsture
of the flow. The nonlinear terms of the basic potential equation are
important only near sonic speed and only the nonlinear terms involving
derivatives with respect to the direction of the undisturbed fluid motion
need be retained, since perturbations in sonic flow diminish more slowly
in the directions perpendicular to the flow than in the direction parallel
to it. This assumption 1s valid only for unswept plan forms, which 1s the
only case to be consldered here. The baslc potential equation may there-
fore be written as '
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(1-M2)Px + Pyy + Pz = (7+1)M%PxPrx , (1)

where M is the free-stream Mach number and ¢ 1is the perturbation-
velocity potential normalized by division by the free-stream velocity.
This equation retains the essentlal features of both linearized and
transonic theory and the similarity rules may be obtained from this
equation and applied at subsonic, transonic, and moderately supersonic
Mach numbers.

Similarity of flow about wings of finite span requires the con-
stancy of two parsmeters (M2-1)A2 and

[ a(x/c) ( )T/s

X
where T 18 an ordinate-amplitude parameter and F(E’%) is the ordi-

nate distribution function. In general, T may be used to denocte

changes in profile thickness, angle of attack, and casmber. The constancy
of these two parameters lmplies the existence of an glternative similarity
parameter

« ABTSZXi/c—)-F <—§,%>

which 18 of fundamental importence. Since the ratio of specific heats .
v 1is constant for s fixed medium the expression (7+l) which appears
in equation (1) has not been retained in the similerity parameters nor
in the following similarity rules.

The similerity rule for the pressure coefficient on the surface of
the wing may be written in the form

o [ GO+l

s GO 5 1) )

3 X '
The expression T mj‘ (—c-,%r) represents the slope of the airfoil

- surface and can be expressed as .

. Ta<xa/c)F &Y - (t/"’-Txa/c") [f( IE < DRl

(3)
S
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c’d c’d
distribution furctions with the origin at the leading edge of the root
chord and the parameter h is proportional to the smount of camber. _
For airfoils having the same thickness and camber distribution functions
the similarity rule for the pressure coefficient may be expressed in the
more useful form R .

where f (x y> end g <§ y) are the &irfoil thickness and camber

2 .
2/3 M™-1 1/3 o h x ¥y
Cp = (t/e P A(t/c —"y T T = 4
P ( /) [(t/c)278’ ( /) 3 't/c’ 'b/c’ e’ b ( )
In this equation a and t/c can be pimultaneously interchenged, that

is, t/c may be replaced by a, and « by t/c. This is possible by
virtue of the presence of the parameter . ﬁ;. The form of the function P,

however, may be altered in the process.
Generalized Force and Moment Coefficients

From the similarity rule for the pressure coéfficient the general-
ized expressions for 1ift coefficient and lift-curve slope are obtained

CL, M2-1 /8 o h '
7% " L[(t/c)zfs‘_’ ME/e) " L t/cJ 2
and | | . -
(/G = L[y M0 S ] ®)

When the 1ift coefficient varies linearly with angle of attack the param-
eter ﬁg mey be omitted from equation (6).

The generalized expressions for moment coefficient, pitching-
moment slope, and center of pressure are

a—,g_l/gs =M !:(_'E%c_;%a’ A(t/c)llsi ?7;: 5;] (7)
aCm M2.1 i/s h
T~ W rere M 5 8)

M2.1 /3, @ b |
C.P. = Ma[————-—(t/c)elaa A(t/C) ’ t/c, 'b/c] ‘ (9)
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The total drag coefficlent may be expressed as
Ch=2¢C c + AC 1
p = Opg + (Cpp)yy, b (10)

The friction-drag coefficient Cpp cennot be expressed in terms of the
similarity parameters since the theory neglects all viscous effects.
The generslized expression for minimum pressure drag is

(Pp)pin [ M-1 s)i/8. B
IR "% G A% ] o

Although the similarity rule implies a genei‘alized drag-due-to-1ift

paraemeter 295—]%5 » & more useful generalized expression is

ACp 21 1 « h )
(t/e)'/® — = ADl[mc)—zfé’ A/e) ™21 oo ;75} (12)
and a comparison of ACp with CLZ may be obtained from
AC ME2-1 ' o _h
-1/ 2¥D 1/3 _—
(t/c) CL2 ADg [('t/c)273, A(t/c) ) t/c’ 't/c:l (13)

In equations (12) and (13) the ratio ;on_ may be neglected if the drag

c
due to lift shows a parsbolic veriation with angle of attack end with
1ift coefficlent.

A comparison of drag due to 1lift wilth the limits for drag with full
leading-edge suction (elliptic spenwise loading) and drag with no leading-
edge suction may be obtained by use of the expression

CL® < pon S
A ACp = Cra

or, when written in terms of the generaslized lift-curve slope and assum-
ing a linear varilation of Cj, with «a,

[(t/c)l/sclmlz < | 18 ACp < 1/3
ea(ejayie  (Hfe) TR = (vfe) oy (14)

b
In the preceding generalized expressions the argument 7 vanishes
2 c

M=-1 .
for symmetrical profiles, Wg vanishes at M = 1, and in the case

of two-dimensionsl flow A(t/c)*/3 does not enter into the similarity
rules.

AORYTOENTIAL>
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Use of the Similarity Parameters

The generalized coefficilents and derivatives can be applied only
to experimental date for wings having the same thickness and camber dis-

tribution functions. For constant values of E%E and E%— the general-
c

ized expressions will remein constant and the flow patterns will be simi-
lar if the Mach numbers are chosen so that @/[MELIIA and MA-1
(t/c)2/3
remaein constant. This will be possible only if the wings have equal
values A(t/c)1/®, and thus similarity can exist only if the wing geome-
tries are related in e special manner. The variations of Mach number
with thickness ratio and with aspect ratio for several constant values of

. 2
./!MELl[A and ?E§;§é7§ are shqwn in figure 1(a). The variat;ons _
between aspect ratio and thickness ratio for several constant values of
A(t/e)1/® are shown in figure 1(b).

According to small perturbation theory the thickness ratio must be
small but no restriction is necessary concerning the magnitude of the
agpect ratio. A given value of A(t/c)/2® must alweys correspond %o a
small thickness ratlo and therefore a systematic survey of airfoil data
should cover a wide range of A(t/c) /2 values as was done for the
analysis of this paper. (The values of A(t/c)*/3 for these airfoils
are tebuléted in table I.)

For Wingsahaving unequal values of A(t/c)*/® the use of the two
M=-1 ' 1/3
arameters and A(t/c ests two different but essen-
P (675)%7 (t/e) suggests
tially equivalent forms of data correlastion, one showing the variation
of the generalized coefficients with A(t/c)*/® for constant vaelues of

2
the speed parameter M7-1 » the other shawing the variation with
M2-1 t/c)3/3
(57—7§7§ for constant values of A(t/c)lfa. For convenience, the corre-
¢ ' M2-1
lation in this paper will be made for constent values of —;——3575 and
c

the results summarized for constant values of A(t/c):/®. Thus, the use
of the similarity parameters permits the multiple families of basic data
curves for varilous aspect ratios and thickness rastios to. be sumarized
in a presentation involving only one geometric varisble, the parameter

A(t/e)/8,

The actual flow about wings will slways violate to some extent the
assumptions necessary in the derivation of small disturbance theory,
which assumes that the flow deflection is everywhere small. The theory
elso lgnores the existence of a stagnation region at the leading edge

w!
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and of a boundary layer. A theory for transonic flow must also consider
the extent and position of the mixed subsonic and supersonic flow regions.
Although the essential properties of shock waves and of Prandtl-Meyer
flow can be approximated in terms of the speed parameter, provided the
flow deflection angle is small (references 1 and 5), a successful corre-
lation of experimental data will be possible only if the boundaries of
the mixed flow regions for related airfoils possess similitude of size
and position. ’

The usefulness of the similarity rules can be determined only from
a systematic survey of experimental data.

Slender-Wing Theory

A solution in general is not known for the nonlinear transonic
potential equation

(1-M%) P + Oy + Pgy = (T+LIMEQP (1)

For two-dimensional flow the partial derivetives Px and Pyx are
known to become very large as the Mach number approaches 1. However,

for wings of slender plan form, that is, wings of sufficiently low aspect
ratio, these derivatives may be considered to be of the same relative
magnitude as_the partial derivatives ny and @y and the nonlinear
term (7+1) xPxx, which is of the second order, can therefore be
neglected. Thus, for slender wings the linearized equation

(l‘Mz)cP;gg + q’y-y + Pgz =0 (15)
can be used throughout the transonic speed range.

For vanishingly small sspect ratios, or for moderate aspect ratios
at near sonic speeds where the coefficient 1-M2 becomes small Independ-
ently of OPxx, the linearized equation reduces to Laplece's equation in
two dimensions

q)yy + Py = o

for which solutions are well known. Such solutions have been given by
R. T. Jones (reference 6) for the case of slender, pointed wings and by
various authors (see, e.g., references 7 and 8) for slender wing-body
combinations. The slender-wing theory furnishes the interesting result
that all the 1ift is carried upstream of the point of maximum spen end
the center of pressure of a rectangular wing of vanishing aspect ratio
will, at sonic speed, be at the leading edge. The theory, however, is
unable to predict the effects of profile thickness and is restricted to
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the lifting case. A solution cannot be obtained for the zero-1ift pres-
gsure drag.

The theory of reference 6 provides the following expresslons for
the 1lift and drag coefficlents: :

T
= = Aq
CL. 5 .

ACp = % Ad® (full leading-edge suctilon)

The slternative expressions
(8/e)Y2 5L = Z a(t/e)™/® (16)

(t/c)V® égg = % A(t/c)*/® (full leading-edge suction) (17)

will be used in the data correlation to obtain a comparison between - .

theory and experiment for the- wings of low aspect ratio at the sonic
Mach number.

DATA CORRELATION

Before beginning the data correlation it might be well to point
out that the experimental data were obtailned by mounting semispan wing
models in the high-velocity flow fleld of the Ames 16-foot high-speed
wind-tunnel transonic bump. The streamlines of the bump flow fleld are
slightly curved with Mach number gradients in the plane of the wing
model. Typical Mach number contours are presented in reference L,
These gradients are most pronounced at the higher Mach numbers and for
the larger aspect ratios. The effects of the nonuniformity of the flow
field are unknown but a certain rounding off of any sherp breaks In force
end moment coefficient variation with Mach number cen be expected.

Minimum Pressure Drag

The drag-similarity rule cannot be .applied directly to a correla-
tion of minimum drag data since small perturbation theory ignores the
existence of friction drag. The friction drag coefficient is believed
to change little with Mach number in the transonic range and the corre-’
lation can be applied to the minimum pressure drag coefficient. The
minimum pressure drag has been calculated by subtracting a constant_
friction dreg, assumed equal to the minimum drag at 0. 7 Mach number,
from the minimum drag, that is, _ - -

(CDpXmin = CDmin = (CDmin)M=o_7 (18)
~QENTTIENTIAT
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The basic data curves for the variation of minimum drag coefficient
with Mach number are presented in figure 2. The variation of the general-

(Cpp) -1
min :
ized coefficient t/ Y575 with the speed parameter (%7;7575 ie shown

in figure 3 as an introductive step to the completely generalized data
correlation of figures 4 and 5. (The symbols used in fig. 3 represent
the aectuasl test data points and were included to show the manner in
which the data have been faired.)

The data curves for the wings of aspect ratio 6 in figure 3 may be
closely represented by a common curve, indicating that at this aspect

(cp.)
ratio the values of E—;Egg%% may be considered to depend only on the
t/c
2
value of -(-l/i-)'-]z'% and that the flow is essentially two-dimensionmal. -
t/c . :

The aspect-ratio=6 wings also exhibit the negative variation of the
force coefficient with Mach number which is characteristic of two-
dimensional flows at sonic speed. This variation is a consequence of
the relative variations of local and free-stream dynamic pressures.

The local Mach numbers are effectlvely frozen at near-sonlc values as
the free-stream Mach number increases through the transonic speed range.
(See references 9 and 10.) It is interesting to note that the experi-

ch:l{ for the wings of aspect ratio 6, figure 2,
dM }

agree qualitatively with the values implied by the following relation=-
ship (an exact theoreticel result applicable to symmetrical profiles
of any shape, reference 10):

mental values of

dCp

™M ey 74_—1 (CD)ygy (19)

This agreement occurred in spite of the fact that the test conditions
are not 1deal and do not agree with the concept of an Infinite and
uniform flow field assumed in the theoretical reasoning.

The lower aspect ratios show increasing effects of three-dimensional
flow and the smaller thickness ratios have progressively lower general-
ized drag coefficients with the exception of the thinnest (2-percent-
thic%) w%ng models. These thinnest airfolls have unusually large values

c _
of zESET%%%,'Which are believed to be largely the result of the boundary
layer creating an effectlive thiclkness considerably larger than the
actual profile thickness. The generalized drag coefflcients are then
magnified for the thin airfoils by the 5/3 powers of the ratios of
effective thickness to profile thickness.
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The completely generalized correlation of minimum pressure drag is
presented in figures 4 and 5. (The symbols used in these figures and in
the remaining figures of the report represent values taken from faired
curves of preliminary cross plots. A different symbol has been used to
represent the data for each particular wing tested,) The transonic

correlation for constent values of ./ Il-Ma’A is presented in figure L
merely to illustrate the inability of presenting data at the sonle '

M2.1
veloclty using simultaneously the parameters ~/IM?-1|A and z;7—757§.
[
M2-1

The correlation for constant values of (t/c)2/5 1s presented in

figure 5. The correlation 1s best at the sonle velocity and the curve
for this particularly interesting Mach number is repeated in flgure 6.
Although the data for 2-percent thickness have been omitted from the
preceding correlation becasuge the extraordinarily lsrge values interfere
with the adjacent correlation curves, these data have been included in
figure 6 to show the pronounced effect of the boundary layer for these
thinneat profiles.

At the sonic speed the minimum pressure drag is seen to vary lin-.
early with aspect ratio and with the second power of the thickness ratio
for velues of A(t/c)l/s less then sbout 1 ag can be expressed by

M=1

(Cop)pyy, = 2-3A(/e)%; ATV ~ (20)

For values of A(t/c)l/a greater than sbout 1 the generalized coeffi-
(c
cient (tDP)sig spproaches rapidly and asymptotically toward s constent
c

value for which the minimum pressure drag varies with the 5/3 power of
the thickness ratio in accordance with the drag similarity rule for
sonic, two-dimensional flow. The extrapolated two-dimensional-flow
value for M=1, (CDP)min = 3.55 (t/c)5/3, was obtained by plotting

against the inverse parameter -1/A(t/c);/3. The calculated theoretical
pregsure drag for a double-wedge profile (reference 11) is somewhat
higher. . :

_ The correlation.of minimum pressure drag is summarized in figure T
by croes plotting from the faired curves of figure 5. The predicted
critical Mach numbers® for NACA éﬁOXX profiles are given in reference 13

and may be approximated by ?%7§Té7§'= -1.95. The compressibility drag

I1Tn reference 12 Kaplan has shown that the section eritical Mach number,
according to first-order linearized theory, is related to the thick-
ness ratioc by a constant value of the sgpeed paremeter, the constant
depending on the particular profile shape.

A
[

T

Ll
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risg becomes noticeable at slightly higher Mech numbers, that is, for
M2~
= -1.80.
(t/c)273

The fundemental importance of the similarity parameter A(t/c)1/S
is clearly evident from the summarization of minimum pressure drag as
presented in figure 7. The curves of figure 1 and the values of table IT
mey be used with figure 7 for convenlence in calculating the minimum
pressure drag for given values of aspect ratio, thickness ratio, and
Mach number. '

Lift

The varistion of the 1ift coefficient with angle of attack is
essentlally linear at moderate angles of attack throughout. the Mach
mumber range for aspect ratios greater than 1.5. The lower aspect _
ratios, however, show an increasingly nonlinear variation of 1ift with
angle of attack and spproach the theoretical sir® a variation for
vanishing aspect ratio. For convenience the 1ift analysis will be
restricted to a consideration of the lift-curve slope evaluated at zero-
1ift coefficient, which provides a close approximation for 1lift charac-
teristics at the moderate angles of attack for which the similarity
rules can be expected to hold.

The variation of lift-curve slope with Mach number is shown in
figure 8 and is compared with the theoretical 1lift-curve slopes calcu-
lated by applying the three-dimensional Prandtl-Glauert transformetion
to the Weissinger 1ifting-line theory of reference 1l4k. The agreement
between theory and experiment for aspect ratios greater than sbout 3 1is
satisfactory only in the suberiticel Mach number range.

Above the eritical Mech number an gbrupt decrease in lift-curve
slope occurs for some of the wings of larger aspect ratio and thickness
ratio and is believed to be the result of the formation of strong
velocity discontinuities and flow separation at the airfoil surfaces.
This "bucket" type variation in the lift-curve slope is a phenomenon
apparently dependent on a combination of thickness and aspect-ratio
effect since the smaller thickness ratiocs and smaller aspect ratios
show no such irregularities in the lift-curve variation with Mach number.
Indeed, it will be shown in the following data correlation that this
erratic variation occurs only for the wings having values of A(t/e)r/s
greater than about 1.6.

The variétion of the generalized lift-curve-glope paraméter

1/3 QEL M=-1 .
(t/e) <€a o with the speed parameter O] is shown in

G EIDENTTAT
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figure 9 as an introductive step to the completely generalized deta
correlation of figure 10. A comparison of figures 8 and 9 shows that
the curves for aspect ratio 6 have converged toward a single variation
at the transonic speeds, indicating that the flow is essentially two-
dimensionsl for the higher agpect ratios. -For thege wipgs the lift-
curve  glope shows the characteristic negative variation with Msch number
at near-sonic speeds. _

ac
The correlation of (t/c)t’ s< L) for several constant values
a=0

z
of (tMc;i/é is presented in figure 10. The correlation and comparison
with theory are good for the large negative values of the speed param-
eter (i.e., low Mach numbers) and a reasonsbly good correlation is
indicated at near-sonic speeds. At supercritical Mach numbers and ——
values of A(t/c)1/8 greater than 1.6 the poor correlation suggests a
seperated flow for which the concepts of smsll perturbation theory
would be violated. The value A(t/c)1/8 = 1.6 appears to be the limit-
ing value for airfoils which do not exhibit noticesble irregularities in
1ift-curve-slope varistion with Mach number.

At M=1l, end for small values of A(t/c)1/8, the experimental 1ift
agrees well with the lifting-line and slehder-wing theories. Hence,
within the indicated 1limits, the 1lift may be approximated by the follow—
ing equatilon:

M=1
Ao, (21)

Ci =
A(t/e)Y/® <1

x
2
For increesingly greater values of A t/c)l/s a rapid and apparently

ac
asymptotic approach of (t/c)1/8 &;L- __ to a constant value is

indicated. The theoretical result of Guderley and Yoshihara?® for a
double-wedge profile in sonic, two-dimensional flow is included in
figure 10.

The results of the data correlation for lift-curve slope are summa-

rized in figure 1] for those values of A('t/_c)l/s and ?E%—7%7§ where

& good correlation was Indicated.

2This theoretical value of the lift-curve slope was calculated in
Air Force Technical Report 6683, Unsymmetric Flow Patterns at Mach
Number One, by Gottfried Guderley and Hideo Yoshihars.

QANELIERTIE).
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Moment

The variation of the degree of static longitudinal stabllity with
Mach number 1s presented 1n figure 12, The pitching-moment-curve slope

dCp/dC7, was measured for ;EL ratios of 0, 1, and 2 radians. (The
]

values of o in degrees are tszbulated in teble ITI.)

af
For the larger aspect ratios Egm- varies smoothly with Mach number
‘ L

in the low subsonic and in the supersonic regimes, although at different
levels, but behaves erratically at high subsonic speeds. This erratic
behavior is probebly due to the same causes as the irregularities of the
lift-curve slope at the corresponding Mach numbers. At Mach numbers up
to the critical the effects of compressibility are relatively small as
is predicted by linearized theory. At transonic speeds a large change
in the center of pressure occurs for the wings of large aspect ratio as
the aerodynamic center moves from the vieinity of the 25-percent-chord
point of subsonlc speeds towards the LO-percent-chord point. Only for
very low values of the aspect ratio is this undesirable change in center
of pressure substantislly decreased.

The correlation of pitching-moment-curve slope for wvarious

Cm
_ dcy, ]
values of the speed parsmeter ?E737§7§ is presented in figure 13.

Although conslderable scatter of data is evident the curves have been

faired favoring the data for the thickness ratio of L percent whieh do

show a good correlation. The values of E—E for —%— = 0 represent

Cr, . t/e
the posltion of the center of pressure and for all values of the speed
barameter the center of preassure 1is shown to move progressively toward
the leading edge as the aspect ratioc becomes small. At transonic speeds
the stability derivative varies almost linearly with A(t/c)t/3 for
values of A(%/c)2/S 1less than sbout 1 with the center of pressure
located at the leading edge for vanlghing aspect ratio at zero angle of
attack. For values of A(t/c)l/3 greater than ebout 1 the stabllity
derivatives may be considered constent and independent of both aspect
ratio and thickness ratio.

The pitching-moment-curve slope correlation is summarized in fig-

ure 1lik. When using these curves to estimate EEE for particular wvalues®

of aspect ratlo and thickness ratio the 1ift coefficient corresponding
to a given value of E%Z can be approxima%ed_by use of the identity

CL, = (t/c)a/a[(t/c)l/sclu]ﬁg

V-
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In this equation the 1lift variation with angle of attack has been
assumed to be linear. Numerlcal values for (t/b)l/sciu can be
obtained from the summary curves of figure 11.

Dreg Due to Lift . ST

Equation (12) will be used for the correlation of the drag-due-to-
1ift coefficient ACpH. The correlation will be made for several con-

stant values of ';%&-(m in radiens), since it is not always known o
beforehand if i1t is possible to represent closely the drag due to lift R
by a parabollc variation with the angle of attack. T T

_ 2
The variastion of (t/c)l/ségg. with the speed paremeter —i —: =
& (t/c)a/3

for the various thickness ratios and aspect ratios is shown in figure 15.
The approximate limits for drag with full leasding-edge suction (elliptic -
spanwise loading) and drag with no leading-edge suction as glven by : .
equation (1l) have been evaluated using the sumery curves of figure 11 . -
for the lift-curve slope and are presented in figure 15 to show the - &
degree of leading-edge suction. At transonic speeds the drag force for . .2
the larger aspect ratios and thickness ratlos 1s actually scmewhat
higher than the value corresponding to a resultant force perpendicular .
to the plane of the wing, suggesting that some increase in separatidn A
and viscous effects.occurs with increasing angle of attack. -

The correlation of (t/C)ye'ACD for several constant values of -

M3-1 o ] =
TE7ET§7§ and E7E is presented in figure 16. The correlation curves -

for constant E%— are presentéd in the left-hand side and summarized
e

in the right-hand side of fi ﬁure 6. A poor correlation is indicated
for large values of A(t/c)1 at the largé negative values of the speed
parameter where the degree of 1eading-edge suction apperently is chang-
ing rapidly with Mach number. When the regultant force becomes normal
to the chord line the drag-due-to-1ift correlation is connected inti-
mately with the 1lift correlation. For transonic values of the speed

AC
parameter a reasonably good correlation of (t/c)Y® ;;? is indicated
and the various E%E curves mey be closely represented by a common

" curve as they should for a parsbolic variation of ACp with «.

The sonic data are presented in figure l6(c) and are compared with .
the low-aspect-ratio theory for both ACp = gi— and ACp = Cio (where
b

the 1ift coefficlent is given by CL = % An). These summery curves shpw_m
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thet the drag due to 1ift, for low-aspect ratios, is glven approximstely
by .

M=1 .
I ac®; (22)
2 0.5<A(t/c) /B<1.3

Only for very low values of 1-‘-.(“l:/c):""s does the drag due to 1ift tend

towerd the formel result of low-aspect-ratio theory, ACp = E 2B,

The drag-due-to-l1ift correletion is summarized in figure 17. Since

the correlation curves were found to be nearly independent of /c?

especially in the transonic speed range and for the moderate angles of
attack used, the presentation is made only for the ratio E%E = 1.

A comperison of the induced drag for constant 1ift coefficient may
be obtained from e consideration of the generallzed parameter

(t/c)l/s‘%gg. The variation of this parameter with '——Ef:l—— for con-
L

(t/c)2/e
stant wvalues of A(t/c)l/a is shown in figure 18 as derived from the
1ift and drag summary curves of figures 11 and 17. A consistently -
decreasing drag due to 1ift, for comstant 1ift coefficient, is indicated
for increassing aspeect ratio. It should be remembered, however, that the
correlation of data does not spply at the high subsonic Mach numbers for
values of A(t/c)2/3 greater than 1.6. For these wings, of large
aspect ratio and large thickness ratio, a reversed and erratic trend of
large induced drag results, probably from the large effects of shock-
induced flow separstion.

ADDITIONAL CONSIDERATIONS

Maximum Lift-Drag Ratio and Optimum Lift Coefficient T

The variation of the meximum 1lift-drag ratio and the corresponding
optimum 1ift coefficient with Mach number is shown in figures 19 snd 20.

The maximum l1ift-drag ratio is expressed by the familisr formula

<%> -z / — AC (23)
max [eDg + (CDp)pynl oo

provided the variation of ACp with Cy, 1s parsbolic. The value of the
the friction coefficlent CDr for the conditions under consideration
may be taken to be 0.006. From the eguivaiﬁat expression
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<]_:D:>mai< B -2"(‘2-/0) / CDe - ( )min |/ -1/3 ACp (24)
/ [(‘Wc)“ * ToloF ]“‘/"’ oL

it is spparent that the inclusion of the friction drag does not permit

a generalized expregsion for L in terms of the similarity param-

D /max . : :
eterg. A correlation of date must consider, individually, each separate
value of the thickness ratio. Although no generaslized correlation
appears possible g few remarks will be made concerning the effects of
aspect ratio and thickness ratlio at transonic speeds.-

At low speeds and large Reynolds numbers, the maximum lift-drag
ratio shows a dependence principally on the value of the aspect ratio.
Above the ecriticel Mach number, where the minimum presgsure drag becomes
large, the lift-drag ratios are found to be egsentially independent of
the aspect ratio but indicate a pronounced dependence ‘on the. thickness
ratio. This independence of asgpect ratio-at transonic speeds 1s 1llus-

trated by the sonic data in figure 21 where the variation with A(t/e)?/®

of the two expressions

Cog Aﬂﬁ' ~1/8 ( ) i ACp -1/3
. —D and min| | D (y /oy 1/
K2 NERS (670573 | ogz ¢/

I
used in equation (23) for (iﬁ 5, ic shown for several thicimess
ratios. The two variations have a compensating effect that leads to a

maximum -1ift-drag ratio essentlally independent of aspect ratio.

The optimum 1ift coefficient is represenﬁed by the following for-
mula when the drag polars are paraboliec: .

) Cpe + (CDp)
Clopt = fAcDDPmi_? N 2

CL2 e

The basic data curves of figure 20 show that the value of Cropt at
nesr-sonic speeds decreages with both decreasihg aspect ratio and
decreasing thickness ratio. ’ i

The linear variastion of the force coefficients with aspect ratio
at the sonlc speed is charscteristic of the,wings having values of
A(t/c)1/® 1less than sbout 1. The following empiricel formulas were
obtained by substituting equations (20), (21), and (22) into equa-
tions (23) and (25)
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7L\ 1 - x/2
’ -2

\ﬁk’max Cpep -
Tf + 2.3(t/c)® | M1

(26)

' Alt/e)/® <1
Clopt = A~//ﬂ/2 [gﬁi + 2.3(t/c)%} (t/e)

The friction drag coefficient may be closely approximated by 0.006 and
the calculated values from these formulas asgree closely wlth the sonic
experimental data for the aspect-ratio range of 3 to 1.

Drag-Divergence Mach Number

The drag-divergence Mach number Mpp may be defined as the Mach
number at which a definite and abrupt increage In drag coefficient
ocecurs and is usually chosen as the Mach number for which the rate of -
change of drag coefficient with Mach number reaches some arbitrary
value, say 0.1l. A new definition for drag-divergence Mach number follows
from & consideration of the similarity rule for the drag coefficient
op = (8/e)*/° D [ , a(efe)/e, 2, B

> t/e’ t/e |

Differentiating with respect to the Mach number gives

M=-1
(t/c)2s/s

M2- a

The drag-divergence Mach pumber may now be defined as the Mach number
for which '

dCp
aM
= tant 2
TOR onstan | (a1)
and this implies the functlonal relatlonship
2
1-Mpp~ _ i/8 < h
(t 0)2 a - f [A(t/c) > t C, t7c ) (28)

For two-dimensional flows it follows immediately that the relationship
between drag-divergence Mach number and thickness ratio for symmetrical

“Mnn2
wings at zero angle of attack is given by & constant value of —ELAEEL—-.
(t/c)2/s

ST
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The experimental drag-divergence Mach numbers for zero 1ift coeffi-
cient S - 0 are correlated in figure 22. For convenience ﬁhe
t;c d.C'D/dM _ .
(t/c)M = 1. According to figure 22 the
two-dimensional-flow value for Mpp 1is given spproximately by

TE;M%%7§ 1. 75 ‘as is indicated by the asymptotic nature of the curve.

evaluation has béeen made for

CONCLUDING REMARKS

The similarity rules have been used to correlate the experimental
data for a geries of 22:rectangular, symmetrical wings having :
NACA 63A0XX sections, aspect ratios from 1/2 to 6, and thicknesses from
2 to 10 percent. The data were obtalned by use. of the transonic bump
technique for a Mach number range of 0.40 to 1.10 and Reynolds number
range of 1.25 to 2.05 million.

The results of. the correlation have shown that, with the exception
of wings having large values of A(t/b)l/ at high subsgonic Mach numbers
where an erratic variation of the force and moment coefficients with
Mach number was indicated, it is possible to correlate experimental data
throughout the Mach number range using the transonic similerity param-
eters. The use of the generalized coefficients has permitted the pres-
entation of experimental data for a wide range of aspect ratios and
thickness ratios by & unlfied method throughout the Mach number range,
and the form_of presentation used has permitted a direct comparison of
the data with the known results of theory.

At the sonic Mach number a linear varliation of the force and moment
coefficients with aspect ratio was found to be a universal property for
wings having values of A(t/c)1/2 1less than sbout 1. For increasing
values of A(t/c) 1/8 greater than 1 the generalized coefficients at
the sonic speed show a rapld and asymptotic approach to constant values,
indlcating that & trensition from three-dimensional-flow characteristics
(where the force and moment coefficients vary linearily with aspect
ratio) to two-dimensional-flow characteristics (where the force and
moment coefficients are essentially independent of the aspect ratio)
occurs near the particular value of A(t/c)/3 equal to 1,

The date correlation was summarized in presentations involving only
one geometric varisble A(t/c)2/®. The summary curves may be used as
design charts for estimasting the tramsonic characteristics of rectangular
wings provided the .airfoil profile doeg not differ greatly from the
NACA 63A series. Although a correlation of experimental data was not
possible for the meximum lift-drag ratio and the optimum 1ift coefficient,

GO AL
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the summary curves for minimum pressure drag and drag due to 1ift may
be used to estimate these values.

Ames Aeronautical Lsboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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TABLE I.- VALUES OF THE GEOMETRIC PARAMETER
A(t/c)1/3® FOR THE WING MODELS TESTED

A [t/e a(t/c)r/® A /e [alt/e) /e
6' 0.10 2.78L4 2 0.0k 0.684
6 .08 2.586. 2 .02 .5h2
6 06| 2.352 1.5 | .0k .513
% | .10] 1.856 1.5 | .02 hot
L .08 1.72h 1 .10 b6l
5 | 06| 1.568 1 .08 431
b .0k 1.368 1 .06 .392
3 .0k 1.026 1 .0k .3k42
2 .10 .928 1 .02 271
2 .08 .862 .5 | .ok 171
2 .06 .78k 57 .02 .136
NAGAT

T e a—
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- TABLE IT.- NUMERICAL VALUES OF (t/c)?’2,

(t/c)®/®, mD (t/c)S/3

/e | (8/e)*° | (8/e)®/° | (t/e)5/°
0.12 0.493 0.243 0.0293
.11 479 .230 .025k4
.10 L6k .216 .0217
.09 <448 .201 .0181
.08 431 .186 .0148
. W07 12 .170 .0118
) .06 . .392 .15h .0092
.05 .368 .136 . 0068
.0k .32 - J117 .00L68
.03 .311 .097 .00292
.02 271 073 .00LLT
o
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TABLE ITI.- VALUES OF THE ANGLE OF ATTACK (IN DEGREES)
FOR VARIOUS VALUES OF THE RATIO -2 (IN RADIANS)

t/c
Angle of attack o, degrees

t/e 't_%’ 0.5 radian | 1.0 radian | 1.5 radians | 2.0 radians
0.10 2.87 5.73 8.60 - -

.08 2.29 4,58 6.87 - -

.06 1.72 3.4k 5.16 6.87

.ok - - 2.29 3.hb 1,58

.02 - - - - 1.72 2.29

WA T
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Mach number, M
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