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REH3ARCHMEMORANDUM

COMPARISON OF THEORETICAL AND EXPERIMENTAL ZERO-LIFT

DRAG-RISE CHARACTERISTICS OF WING-BODY-TAIL

COMBINATIONS NEAR THE SPEED OF SOUND

By George H. Holdaway

SUMMARY

The zero-lift drag rise at low supersonic speeds computed by
linearized theory for several wing-body-tail conibinationsis compared
with ~erimentsl data. The expertientsl data were obtained by the
free-fall technique covering a Mach number range of M = 0.8 to M = 1.14.
The procedures used in the theoretical calculations are outlined in
detail. The results indicate that the computation method is capable of
computing the drag rise at low supersonic speeds to an accuracy of about
20 percent.

● Urplications of the theory with respect to the selection of area
distributions which will give a drag reduction over a range of Mach num-
bers are examined. For cases where fuselage indentation is not feasible,

& calculations indicate that drag reductions may still be possible by
increasing the fuselage volume in front of and behind the wing.

INTRODUCTION

Recent e@erimental results (refs. 1, 2, and 3) have demonstrated
that the transonic zero-lift drag rise of wing-body combinations is
primarily a function of the magnitude and rate of change of cross-
sectional srea along the longitudin~ axis. This concept was utilized
in the referenced tests to reduce the drag rise by indenting the body
of a wing-body ccmibination. These expertientsl results maybe considered
to be a qualitative verification of the linear theory as devekped in

● references k through 8.

The purpose of this report is to examine the quantitative relation-
* ship between the theory and experimental data from free-fall tests of

seversl wing-body combinations. In addition, the @lications of the
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theory are examined with regard to modification of the area distribution
of a configuration to keep the drag rise low over a selected range of
transonic Mach nunibers.

This investigation utilized test data covering a Mach nuniberrange
of M = 0.8 to M = 1.14 and a Reynolds number range of 2,500,000 to
17,000,000, depending won the wing mean aerodynamic chord of the con-
figuration tested.

SYMBOLS

An

a

%0

‘D.

ADo

d

2

M

N

q

s

Ss

%

v

x

X,y,z

dhensionless coefficients defining the magnitude of the
harmonics of a Fourier sine series

speed of sound, ft/sec

drag at zero lift
zero-lift drag coefficient

%%

AI+)
zero-lift drag-rise coefficient, —

!&

zero-lift drag rise at transontc speeds, lb

fuselage maxhum diameter, in.

fuselage or body length, in.

vMach nuniber,~

nuniberof terms or hsrmonics used in the Fourier sine series

dynsmic pressure, ~ PV2, lb/sq ft

projection of % on a plane perpendicular to x axis, sq in.

cross-sectional areas formed by cutting the configurations
with perpendicular or oblique planes X, sq in.

wing area, sq ft -.

free-stream velocity, ft/sec

distance along the x axis measured from the midlength
position, in.

Cartesian coordinates as conventional body axes

~~
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b e angle between the z axis and the
Tlanes X with the yz plane

t v Mach angle, arc sin ~

3

intersection of the cutting

P ~SS density of air, Shgs/cu ft

St

CJll

~ transformation of the length x to radians, arc cos ~,
radisns z/2

x a series of parallel cutting planes intersecting the x sxis
at the Mach angle f.I
(At M= 1.0 these planes are perpendicular to the x axis;
i.e., psrsllel to the yz plane.)

angle between the y axis and the intersection of the cutting

planes X with the xy plane, arc tan (ml Cos e)

first derivative of the projected cross-sectional area, ~

d2Ssecond derivative of the projected cross-sectional area, _
&

THEORY

Development of the. Theory

● Contributions to the devekrpment of the theory were made by the
investigations reported in references 4 through 8. The calculated drag
rise of slender bodies of revolution and the analog between the drag-
rise equations and the induced-drag equations for a wing are presented
in reference 4. The development of equations for bodies of revolution
with minimum drag rise is presented in reference ~ which also illustrates
the application of a sine series to evaluate the theoretical drag rise.
The theory was extended to arbitrary systems in reference 6, which showed
how these arbitrary systems could be represented by equivalent bodies of
revolution. This latter theory was applied to lifting surfaces in
references 7 and 8.

The application (and limitations) of these methods to the theoreti-
cal.computation of the drag rise of wing-body ccmiiinationsis presented
in reference 9. The method-sof reference 9 were used to make the theo-
retical calculations for this report. The theory merely applies to the
wave drag; any local shock or separation effects which might occur due
to shape modification were not evaluated in the development of the theory.
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Concepts Leading to the DTag Equation *.–

The derivation of the drag equation for a wing-body-tail combination a
is based on the theory that the configuration may be represented by a
series of equivalent bodies of revolution. This theory is dependent on
a siinplifiedrelationship between source strength and cross-sectional
area. This relationship is used in planar wing and slender body of revo-

—

lution problems. .Specifically,as was pointed out in reference 9, the
—

source strength is assumed to be proportional to the normal component of
the stream velocity at the body surface. The theory also assuuws that
the configuration is of a conventional type with thin symmetrical airfoil
surfaces and a high fineness ratio body. Further exceptions and limi-

—

tations to the theory are given in reference 9.

The development of equivalent bodies of revolution will be illus-
trated by using the configuration shown in figure 1. The wing-body-tail
combination is cut by a series of planes which always intersect the longi-
tudinal axis at the Mach angle p. In other words, these planes are
tangent to Mach cones. The plane identified im figure 1 as Xl repre-
sents one plane of a series of parallel planes which cut the configuration
along the entire longitudinal axis. Each plane of this series intercepts
the yz plane in a line which forms the angle e= = @ with the z
axis. Similarly, planes Xa form the angles ez with the z axis and
the yz plane. For any one cutting plane of the series of planes
X2 . f (e2, p) the oblique cross-sectional area is projected on a plane
perpendicular to the x axis. This projected cross-sectional area is
plotted as a function of x. The resulting plot may be considered as
representing the longitudinal distribution of cross-sectional area S(x)
of an equivalent body of revolution for the series of planes
X2 s f (e2, v). For any one value of K this process is repeated for
other values of e ranging from e = O to e = 2n. However, if the con-
figuration is symmetrical with respect to the xy and xz planes, then
equivalent bodies for G from O to n ofiy need be obtained. For
bodies of revolution the area distribution is independent of e.

—

.

-.
b

.—

.

With these concepts and with the use of the simplified relationship
between source strength and cross-sectional area, the equation for the
zero-lift drag rise as a function of the r-~teof change of cross-sectional
area can be derived from equation (h6) of reference 7 and written as:

~fi’uo do do

where x1 and x2 are two different

s“(x) =

locations along the x axis, P

d2S(x) (2)
dx2

\
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This generalized equation can be simplified by solving the double
integral of the functions of x through a Fourier sine series in the
same ~nner as used in reference 5.

-1-1
=N

Jv mhc=&
S“(XI) S“(x2)2nlxl - X=[dxldxz =-——144 2 2

~n2 (3)

00 n=l

(The factor 144 appears because the body length, 2, has been defined in
inches for this report.)

Where
N

s’(x) =g=;
I

An sti n9

n=l

P=arccoB~
2/2

then

where the coefficients are a function of e, since
Of e. With this solution the simplified equation

(4)

(5)

(6)

S’(x) is a function
can mow be written as

(7)

The computing procedure followed in applying the foregoing equations
and theory to the determination of the zero-lift drag rise is presented
in the Appendix of thts report.

CONFIGURATIONS AND TESTS

Plan-view sketches of the models tested, and also the axial distri-
bution of cross-sectional area normal to the longitudinal axis, are’shown
in figure 2. The different configurations will be referred to as models
A, B, C, and D as follows:

lbdel A: aspect ratio 4 triangular wing with fusekge and tail

Model B: aspect ratio 3 straight wing with fuselage and tail
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Model C: aspect ratio 6, 450 sweptback

lbdel D: fuselage and tail (consisting
horizontal surfaces)

NACA RMA53H17

wing with fuselage and tail .

of two vertical and two .-
b

General geometric data for all the models are presented in table 1, with
greater detail given for model D in figure 3. The fuselage and tail were
the same for all models. The fuselage ordinates from the 8-inch to the
139.&-inch station are given by the equation shown in figure 3. All
cross sections of the fuselage were circular, and the nose of the fuse-
lage was faired from the ordinate at the 8-inch station down to a l-l/2-
inch-diameterboom 15 inches forward of that station. The fuselage was
not indented.

The free-fall technique employed is described in detail in refer-
ence 10. The tests covered
approximately the following

Model

A
B
c
D

a l&ch number range of 0.8 to 1.14 and had
Reynolds number variation:

M= 0.8 M = 1.1

7,500,000 16,600,000
5,750,000 ~,~o,ooo
2,600,000 5,600,000

35,800,000 77,000,000

The values of Reynolds number for madels A, B, and C are based on the
wing mean aerodynamic chords, and the values for model D are based on
the fuselage length of 210.5 inches.

The accuracy of the measurements of the drag rise divided by q

fmo
and the Mach number Is believed to be within — = *0.06 and M =&O.01.

q
Without an attempt to evaluate here the accuracy or limitations of line-
arized theory, the theoretical computations as made are estimated to be
accurate within 2 percent, except where linear-theory might indicate a
singularity in the drag curve. This accuracy of the theoretical data is
based upon approximate methods for integrating the areas and determining
the slopes of the area plots. Greater accuracies might be obtainedby
methods more exact than those outlined in the Appendix but probably are
not Justified.

RESULTS

The experimental zero-lift drag coefficients for the four models are
presented in figure 4. The drag coefficients are based on the wing areas
for models A, B, and C, and the fuselage maximum cross-sectionalarea for
model D. The incremental drag rises above the subsonic values at M = 0.8

—

—
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are presented in figure 5, together with the results of the theoretical
computations. The rather large differences in wing area make comparison
between configurations difficult; therefore, the data of figure ~ were
multiplied by the respective areas used in computing the drag coef.
ficients and the results presented in figure 6. The apparent late bag
rise for model A is attributed to possible error in fairlng the experi-

ADmental data points which had scatter equal to & = 0.06 from the mean.

DISCUSSION

Agreement Between Experiment and Theory

Comparison of the drag-rise values presented in figure 6 indicates
that, in general, the theoretical computations give a good prediction of
the experimental values. I&nitations in the theory resulted in only
qualitative agreement being obtained between theory and experiment at
Mach numbers below about 1.02. At Mach number 1.0 the experimental drag
rise is less than the theoretical value, varying from k6 to 74 percent
of theory. It may be noted that the greater the departure of the con-
figuration from that of a body of revolution the greater the difference
between theory and experiment became for M = 1.0.

For hch nuuibersgreater than 1.0, the effect of theory limitations
is diminished and the level of the drag rise is predicted quantitatively.
In general, the values above M = 1.02 me in error by.about 20 percent
with a maximum deviation of experiment from theory of 26 percent.

Application of Theory

The prior section illustrated the adequacy of the theory in estimat-
ing the zero-lift drag rise of wing-body-tail combinations. It is of
interest next to exam&e the implications of the theory with regard to
possible drag reductions through modifications of the area distribution.

Consider a design prolkm involving a configuration similsr to
model B with an engine or other components within the fuselage which
might make fuselage indentation impractical. In a caae such as this the -
drag reduction would have to be attemptedby adding volume before and
behind the wing. That such an qpproach might be successful is il3.us-
trated in figure 7(a). The solid curve is the computed drag rise for the
unmodified configuration. The lowest, straight line represents the theo-
retical drag rise for a Sears-Haack body with the same maximum cross-
sectional area as the wing-body combination. The large difference
between these two curves suggests the possibility of reducing the drag
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rise of the original configurationby modifying its area distribution
to approach, as a lhnit, the Sears-Haack distribution.

The modification curves presented in figure 7(b) represent various
fuselage revisions, obtained by adding volume to the fuselage in front
of and behind the ting. Modification 1 is similar to the type of fuse-
lage revision discussed in reference 1, in that it is based entirely on
the distribution of cross-sectional area perpendicular to the x axis.
Such a revision would be expected to reduce the drag rise at a Mach
number of 1.0, and this anticipation is realized in figure 7(a). However,
the desired equivalent body of revolution for M = 1.0 is not the desired
shape for other Mach nwibers, and a rapid rise in drag with increasing
Mach number therefore results as shown in figure 7(a). This drag rise is

independent of possible separation effects which were not evaluated in
the theory used.

s

u

Clarification of the above point is afforded by consideration of
figure 8(a). On this figure are shown the projected cross-sectional
area distributions (S) of”the original wing-fuselage-tail configuration
for various angles *m. The largest angle q=x is used for each
Mach number computation and is the complement of the Mach angle. (The
equivalent tail area for the larger angles showed only slight differences
from the y-= 8.08°, so was omitted from this figure for clarification.
The fuselage having a high fineness ratio had essentially the same area

.

distribution for the entire Mach number range.) Shown on figure 8(a) is
also a Sears-Haack body area distribution for a body with maximum cross-
sectional area equal to that of the original wing,plus body. Modifi-
cation 1, which optimizes the area distribution on the original wing-
fuselage couibinationfor a Mach nuuiberof 1.0, consists of additions to

.

the body cross-sectionalarea sufficient to fill in the difference indi-
cated by the shaded area. The fact that excess area is added for other
lk.chnumbers is indicated by the penetration of the (S) curves for

v

other values of *= into this shaded area. If it is desired to reduce
the drag at Mach nuniberssomewhat above 1.0, much less volume should be
added to the regions immediately in front of and behind the wing.

.

In arriving at such a compromise for the wing body under consider-
ation, the following approach was followed to establish the lines for
modification 2. The five area distributions (S) shown in figure 8(a)
were arbitrarily replaced by a single curve representing the arithmetic
average of the five curves. The Sears-Haack body area distribution was
modified to represent a Sears-Haack body having a maximum cross-sectional
area equal to the maximum of this averaged curve. The volume added to the
fuselage was determined from the difference between this new Seazs-Haack
body curve and the average curve as shown in figure 8(b). The *-
curves for M = 1.0 and M = 1.14 are also shown on figure 8(b) to illus-
trate the reduction in the size of the new Sears-Haack body as well as
the reduction in volume to be added immediately before and behind the
wing. The computed drag rise for this second modification (fig. y(a))

—

.

%
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* shows an improvement in comparison to the originsl unmodified configur-
ation over the entire design Mach nuniberrange of from 1.0 to 1.14.

“ Modifications 3 and 4 were derived by the method described in
reference 9 for the design of a fuselage modification optimized for a
specific Mach nuniber. Mach mmibers of 1.05 and l.lk were arbitrarily
selected and the results of the calculations are presented in figures 7(a)
and 7(b). Modification 3 produced only a slight improvement over modi-
fication 2, but it was maintained over the Mach nuder range shown.
Apparently, as the dnimum drag curve for a configuration is approached,
slight streamdse modifications to the fuselage about the optimum shape
can be made without greatly changing the drag. Further reduction of
the drag rise at the higher Mach muibers at the expense of an increase
at the lower Mach numbers could probably be effected by optimizing for
the highest operating Mach number as was done in modification 4. Due
to the limitations of the drag cmqputations near Mach nuniber1.0,
e~eriment~ investigations should be made to see if these small drag
differences for modifications 3 and 4 really do exist.

CONCLUSIONS

The results of the computations and experimentation presented in
this report indicate that for
are justified:

. 1. A computation method
predicting the zero-lift drag
variety ‘ofwing-fuselage-tail

.
20 percent.

the models tested the following conclusions

has been established which is capable of
rise at low supersonic sp’eedsfor a wide
combinations within an accuracy of about

2. In establishing the modifications to be made to a fuselage to
reduce the drag rise, the effect of various revisions should be examined
for a range of Mach nuuibers.

3= For cases where fuselage indentation is not feasible, theory
indicates that drag reductions may still be possible by increasing the
fuselage volume in front of and behind the wing.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Cslif., Aug. 17, 1953
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APPENDIX
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PROCEDURE USED FOR COMPUTING ZERO-LIFT DRAG RISE

The detailed application of the drag equation developed in the
theoretical section of this report is outlined in the following para-
graphs. The general procedures are presented with various simplifi-
cations and suggested methods based.on experience gained in making the

—

computations for this report. The simplest case is presented first in
order to better illustrate the basic steps and to shorten the presen-
tation of the more involved procedures. __

Calculation at M = 1.0 for both Symmetrical and
Unsymmetrical Confi@rations —

At M = 1.0 the cutting planes X are perpendicular to the x
axis and the projected cross-sectional areas are independent of the ‘“ — —
angle V. Therefore, the drag rise at M= 1.0 is computed in the same
manner for symmetrical or unsymmetrical configurations.

Step l.- Determine the total cross-sectional area of the wing-body-
tail combination and plot the area distribution as shown in figure 9(a).

Step 2.- Differentiate the area plot, figure 9(a), with respect to
x, and plot the results as a function of .9 as is indicated in

.

figure ~(b). The technique of reference I.1maybe used to differentiate
the area curve. w

Step 3.- Fit a Fourier sine series to the curve of figure g(b) in
order to determine the magnitude of the coefficients of the various bar-
monics. For example, from equation (6) of-the theoretical section the
coefficients An are computed as follows: .

The integrations may be accomplished by pdiichcard machine computation, .
electronic-wave-analysis equipment or by ordinary long-hand computing
methods. Eowever, early investigations in connection with the compu-
tations made for this report showed that ~large number”of terms (over 12) ~ -
would be required to fit the irregular curves normally obtained, which
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would rule out long-hand computing methods. Available electronic-wave.
s

analysis equipment gave the relative magnitude of the coefficients but
not their absolute values. The pugch card computing methods were used
for this report.d Practical considerations of over-all accuracy did not
justify calculating for more than 24 harmonics. On the other hand, com-
puting for less than 12 harmonics reduced the resultant theoretical drags
as much as 40 percent for some of the configurations investigated in
this report.

Step 4.- Compute the drag rise from equation (7)
reduces to the following coefficient form:

z n=24
n

01

2ACDO =— .
576 SW 2

%2

n=l

In using equations (6) and (7) they may be simplified
and (1/2)2, respectively, provided An is considered

inches.

Calculation for &ch Number Range, Configuration

which for M = 1.0

by deleting 2/2
as a dimension in

Symmetrical
With Respect to xy and xz Planes, Wings

and Tail Surfaces in ~ Plane Only

The first three steps in this calculation are essentially the same
. as for the M = 1.0 calculation except the coqmtations should be made

for at least four equivalent bodies of revolution rather than for just
one.

*

Step l.- Select the Mach number range to be covered by the compu-
tations and determine the cross-sectional areas of the equiva&nt bodies
of revolution for each value of e (V = constant) and plot as shown in
figure 9(a). By Judicious selection of cutting planes for the compu-
tation of the drag for the highest Mach number, the drag at lower Mach
numbers can be computed from the same cross sections. This means that
the values of *W used for the lower Mach numbers are used for the
intermediate values of ~ for the higher Mach nuuibers. For thin air-
foil surfaces, which for purposes of this computation may be assumed to
lie in the xy plane, the surfaces may be cut at angles ~ by planes
perpendicular to the xy plane. The actual obliqueness or error in the
wing cross sections disappears as the areas are projected onto the yz
plane. It should be recalled that ~ is the intercept angle of a e

. plsae with the ~
am example showing
the cross sections

P

plane. The prior statements can be frustrated by
the angles ~ms,x which might be used in determining
for computations for M = 1.30.
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M $’~x, de”g -

1.00
1.01
1.02
1.05
1.14
1.30

The equivalent bodies of revolution
angles by cutting the configuration

o
8.08

u. 38
17.75
28.70
39● 71

are determined for each of the above
by a fatily of parallel planes. Then

th= area-for each cross section is projected onto the- yz plane by multi-
plying the area by COS*H. This produces the equivalent bodies of
revolution used in the final computations, where the drag computations
for M = 1.05 will use only the equivalent bodies for the first four
angles. —

For high fineness ratio fuselages~ it is not necessary to cut the
fuselage at various angles, because the projection of the cross-sectional
areas onto the yz plane results in essentially a constant area distri-
bution with hch number as mentioned previously. For a fixed area distri-
bution, the shape of the cross section of a high fineness ratio body is
relatively unimportant if the body ends in a cylinder or a point (see
ref. 12). The zero-lift drag-rise coefficients for the Sears-Haack
bodies can be computed from equation (14), reference 5, which illustrates
that the supersonic drag is constant:

.:

.

Step 2.- Differentiate the area plots
as indicated in figure 9(b).

and plot as a function of 9 —

the curvesStep 3.- Fit a Fourier sine series to
in the same manner as for the M = 1.0 computations.

Step 4.- For the lar eat Mach number and angles
5angle~and plot Xfln as shown in figure 9(c).

be used for the intermediate Mach numbers as follows:

of the area plots —

V, compute the —
The same data can — ~

.
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M= 1.14 I M= 1.0

d~~,.J;= =hL’ d%g “radian

o l.~1 go o 1.571
8.08 1.285 70 8.08 1.092
8.08 1.857a 70 8.08 2.05Q

11.38 1.173 @ u. 38 .890
11.38 1. g69a 60 n. 38 2.g52
17.75 .946 y 17.75 0
17.75 2.196a p 17.75 3.142
28.70 0 45
28.70 3.142* 45

I M = 1.02

e,
d~g ra~i~

o 1.571
8.08 .787
8.08 2.355

11.38 0
11.38 3.142

hA#

90
70
70

2

aAngles G are taken symmetrical about 19= m/2.

Step 5.- Integrate the area under curves similar to figure 9(c) and
compute the drag-rise coefficient from the following equation derived
from equation (7):

—

Calculation for Mach Number Range, Configuration Symmetrical
With Respect to xy and xz Planes, Wings

and Tail Surfaces in Both Planes

The essential differences from the prior method is that the verti-
cal surfaces are rotated 90° into the xy plane, and if the same values
of $ used for the cutting of the horizontal surfaces are used to cut
vertical surfaces then the cross sections for the vertical surfaces will
correspond to different angles e than those used for the horizontal
surfaces. Because the areas must be couibinedto give an equivalent body
of revolution for one value of G, cross plots of the areas should be
made or the vertical surfaces should be cut at different angles than the
horizontal surfaces. A satisfactory and simple procedure is to cut the”
vertical surfaces for one or two angles more than the horizontal surfaces
to ensure a uniform variation of angles from O to ~“, and then proceed
as follows:

Step 1.. Multiply the cross-sectional areas for the vertical
surfaces by cosy.

1

Step 2.- For each fuselage station plot the areas from step 1 as a
fWCt.iOn Of ~ =.eH - ~“. Subscripts V and H refer to the verti-
cal and horizontal surfaces, respectively.
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of ~Step 3.- Read the areas
.

from step 2 that

NACA RMA53H17

correspond to the values

E!s&4”- Combine the cross-sectionalareas (already multipliedby
cos~ for the vertical and horizontal surfaces to give one equivalent

.

.

body for one angle ~ = 6.

Step 5.- Compute the drag-rise coefficients as before for the case
where all surfaces were in the

Calculation for kch Nuuiber

xy plane.

Range, Unsymmetrical Configuration

This calculation is similar to the prior method except that the
final integration must be performed from e =0 to e = 2X and the
equivalent bodies of revolution determined from negative angles of ~
as well as from positive angles. These factors lengthen the problem
but do not add to the complexity.

Time to Perform Calculations

Computations for this report, as was mentioned previously, were
made by punch card machine computations. Time to compute the drag rise
for a wing, simila& to the models tested for this report, in combination
with a high fineness ratio body from M = 1.0 to M = 1.2, was found to
require approximately 80 computer hours.

,
This value is based on experi-

ence gained in making the computations for this report and includes the
time to lay out the cross sections and integrate the areas graphically. .
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TABLE I.- DIMENSIONS OF

krea, sq ft
Mean aerodynamic
chord, ft

iing span, ft
Aspect ratio
Taper ratio
Airfoil section

Sweep of 0.25
chord

Pwist, dihedral
and incidence,

(a) Wingsl

Model A

30.07

3.656
10.97
4
0

NACA
0005-63

3treamwise
(Leading
edge) 45°

o“.

TEST MODELS

NACA R.MA53H17

Model B

21.68

2.813
8.20
3.1
0.39

,0 to 0.5c Ellipse
0.5 to 1.OC Biconvex

t/c = 3 percent

0°

0

Model C

9.02

1.272
7.36
6
0.5

NACA 64AO1O
perpendicul=
tO 0.25 chord

45°

0

(b) Fuselsge and tails for models A, B, C, and &

uselage

Fineness ratio. . . . . . . . . . . . . .= ● . ● = ● o ●
12.4

Maximum diameter, ft . . . . . . . . . . . . . . ● c ● . ● 10417
Nose boomdiameter) in. . . . . . . . . . . . . . . . . . 1*5

orizontal surfaces

Area, sqft . . . . . . . . . = . . . . . . ● . . . . . . 6*o
Aspect ratio. . . . . . . . . . . . . . . . . . ● ● . . ●

4.5
Taper ratio . . . . . . . . . . . . . . ● . . . . ● ● ● “ 0.20
Airfoil section . . . . . . . . . ...= NACA 67X26 streamwise
SweepofO.25chord . . . . . . . . . . . ● . . . . . . ●

450

ertical surfaces

Area, sqft . . . . . . . . . . . . . . ● . . . ● ● ● ● ●

Aspect ratio. . . . . . . . . . . . ● . . . = ● ● ● ● ● ●
;:?

Taper ratio . . . . . . . . . . . . ● . . . ● . c ● * ● ●
0.22

Airfoil section . . . . . NACA 65009 per@ndiculsx to 0.25 chord
SweepofO.25chord . . . . . . . . . . . . . . . . . . . 450

See figure 2.
‘See figure 3.

=?5=’

——
.
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NACA RM A53H17

Equivalent body of revolution
formed by the planes X2

/

17

18459

Figure 1.- Illustration of the cutting pl~es X and the emgles
Q and $, which are the intercepts of these planes with the
yz and xy planes, respectively.



P
co

0 20 40 60 80 100 120 140 160 18o 2CCI 220

Fuselage stations, Inches T

~
Figure 2.- Pleu views of the models tested shorn with thefi axial distributions of cross-sectionsl ~

area normsl to the longitudinal. sxis.
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Plan view—.

Angle-of-attack
vane

Equation for body ordinates

x’ =
[

139.4 Is : r = 8..5 1

StatIon
o
I

Station
-25.1

,

,4
.
4?T

62.5
—. —. —-

between x’= 8 and Station 1
148.25

#

( )]
- +2_l

2 3/4

Station
StatIon 210.5
150.5 I

Station Station

Side view
-21.7 139.4 450

.— St;ty
.

1 2*- —. — - — ——-—

Angle-of -sidesllpj
Y 48.7

vane

Note: All dimensions are in Inches.

Figure 3.- Geometry and MmenElons of model D.
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/
[

.2 /
,’Mode 1 Area, sq ft

—A 30.10
.- —

1

-----B 21.68 SW
—. c 9.02

.1 —.. D 1.58(Cross
Sectional)

o— .06 ~ -

t

.04
# --- ---d“

.02 /\ ~------

=$s=0
.8 ●9 1.0 1.1 1.2

Mach number, M

Figure 4.- Expertiental zero-lift drag coefficients, based upon wing
a?ea for models A, B, end C end upon maximum cross-sectional area
for model D.
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Figure 5.-
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eory
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,
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(b) Model B.

--- ---- ,---- --

(c) Model C.

---, ---- ---

/
yq=

21

.8 .9 LO L1 1.2

Mach number, M

(d) Model D.

Coqpsrison of e~erimental drag rises with values calculated
utilizing linearized theory.
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.8

.4

0

Q)

ii!tY4.
m

.8

.4

0

(a) Model A.

(b) Model 13,

(c) Model C.

.8
— Expertimt
-----Theory

‘.8 .9 1.0 1.1 1.2

Mach number, M

(d) Model D.

Figure 6.- Comparison of theoretical and experimental increases in drag
divided by dynamic pressure.
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Unmodified
. . - - --- Modlficatlon 1
‘-— Modification 2
‘-- Modiflcatlon 3
‘--- Modlflcatlon 4
‘—- Sears-Haack body

with same Sam.

i
\
\ /

.

Model B

.96 1.00 L04 1.08 1.12 1.16 1.20 1.24

Mach number, M

(a) ULlcul.ated drag rise, ~o.

Figure 7.- Comparisonof the computed drag rise of mcdel B with the computedvalues f& the same
configurationwith fuselages of greatervolume mcdified h various ways in an attarpt to
reduce the drag rise:

(1) EIIJ-argedbcdy indentedfor equivalentW@ area at M = 1.0
(2) Enlarged bcdy indented for the arithmeticaverage of equivalentwing areas (S) fran

M =1.0 to M=l.14

(s) ~~gedbo~wttizedfor M=l.09
(4) Enlarged.body opthnizedfor M=l.14
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Figure 7.- Concluded.
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‘ifmax M

Sears-Haack body
-‘,

Volume added

.
“ ---

//

o x) 40 f31 80 100 120 140 16o 180 200 220

Fuselage stations, inches
v

(a) Modification 1 for M = 1.0.

Figure 8.- ModtiicationB to the area distribution of”nmdel B to reduce drag by adding volume

to the fuselage ahead of and behind wing.
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Figure 8.- Concluded.
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o z
Fuselage stations, inches

(a)

l?= arc cos x , rad~ans -
s

(b)

‘n

o
tan *

77

‘=5’’i3=;s=imi!=F‘adims

Figure 9.- The three steps in the theoretical solution of
For an unsymmetrical configuration, plot C shouldbe
e =OtOe=~.

NACA-@@ey-1O-16-M.325

the drag rise.
made from


