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RESEARCH MEMORANDUM

COMPARISON OF THEORETTCAL AND EXPERIMENTAL ZERO-LIFT
DRAG-RTSE CHARACTERISTICS OF WING-BODY-TATL
COMBINATIONS NEAR THE SPEED OF SOUND

By George H. Holdawsay
SUMMARY

The zero-1ift drag rise at low supersonic speeds computed by
linearized theory for several wing-body-tasll combinations is compared
with experimental data. The experimental data were obtained by the
free-fall technique covering a Mach number range of M = 0.8 to M = 1.1k,
The procedures used in the theoretical calculations are outlined in
detail. The results indicate that the computation method is capable of
computing the drag rise at low supersonic speeds to en accuracy of agboutb
20 percent.

Implications of the theory with respect to the selection of ares
distributions which will give a drag reduction over & range of Mach num-
bers are examined. For cases where fuselage indentation 1s not feasible,
calculations indicate that drag reductions may still be possible by
increasing the fuselage volume in front of and behind the wing.

INTRODUCTION

Recent experimental results (refs. 1, 2, and 3) have demonstrated
that the transonic zero-lift drag rise of wing-body combinations is
primarily a function of the magnitude and rate of change of cross-
sectional area along the longitudinal axis. This concept was utilized
in the referenced tests to reduce the drag rise by indenting the body
of & wing-body combination. These experimental results may be considered
to be a qualitative verification of the linear theory as developed in
references 4 through 8.

The purpose of this report is $0 examine the quantitative relation-
ship between the theory and experimental data from free-fall tests of
several wing-body combinations. In addition, the implications of the
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theory are exsmined with regard to modification of the aeres distribution
of a configuration to keep the drag rise low over a selected range of
transonic Mach numbers.

This investigation utilized test data covering a Mach number range
of M = 0.8 to M = 1.1k and & Reynolds number range of 2,500,000 to
17,000,000, depending upon the wing mean serodynamic chord of the con-
figurstion tested.

Xs¥s2

SYMBOLS

dimensionless coefficients defining the magnitude of the
harmonics of a Fourier sine series

speed of sound, ft/sec
drag at zero 1ift

zero-1ift drag coefficlent
g 2 oSy

zero-1ift drag-rise coefficient, 992

aSw
zero-1ift drag rise at transonic speeds, 1b
fuselage maximum diameter, in.
fuselage or body length, in.

Mech number, %

number of terms or harmonics used in the Fourier sine series
1 2
dynemic pressure, 5 pv<s, 1'b/sq ft
projection of SS on a plane perpendicular to x axis, sgq in.

cross-sectional areas formed by cutting the configurstions
with perpendicular or obligue planes X, sq in.

wing area, sq ft
free-stream velocity, £t/sec

distance along the x axis measured from the midlength
position, in.

Cartesian coordinates as conventionsl body axes
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e angle between the =z axis and the intersection of the cutting
planes X with the yz plane

o Mach angle, arc sini-];

p mass density of air, slugs/cu £t

¢ transformation of the length x +to radiasns, arc cos —353
radians Z/2

X a series of parallel cutting planes intersecting the x axis

at the Mach angle H
(At M = 1.0 these planes are perpendicular to the x axis;
i.e., parallel to the yz plane.)

14 angle between the ¥y axis and the intersection of the cutting
planes X with the xy plane, arc tan M2-1 cos 6
St first derivative of the prolected cross-sectionsl area, %ﬁ
2
st second derivetive of the projected cross-sectional area, %;%
THEORY

Development of the Theory

Contributions to the develcpment of the theory were made by the
investigations reported in references U4 through 8. The calculated drag
rise of slender bodies of revolution and the analogy between the drsg-
rise equations and the induced-drag equations for a wing are presented
in reference 4. The development of equations for bodies of revolution
with minimum drag rise is presented in reference 5 which also illustrates
the application of a sine series to evaluate the theoreticel drag rise.
The theory was extended to arbitrary systems in reference 6, which showed
how these arbitrary systems could be represented by eguivalent bodies of
revolution. This latter theory was spplied to 1ifting surfaces in
references T and 8.

The gpplication (and limitations) of these methods to the theoreti-
cal computation of the drag rise of wing-body combinations is presented
in reference 9. The methods of reference 9 were used to mske the theo-
retical celculations for this report. The theory merely spplies to the
wave drag; any local shock or separstion effects which might occur due
to shape modification were not evaluated in the development of the theory.

~wOONPIDEGIS].
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Concepts Leading to the Drag Equation

The derivation of the drag equation for a wing-body-tail combination
is baged on the theory that the configuration may be represented by a
series of equivalent bodles of revolution. This theory is dependent on
a simplified relationship between source strength and cross-sectional
area. This relationghip is used in planar wing and slender body of revo-
lution problems. Specifically, as was pointed out in reference 9, the
source strength is assumed to be proportional to the normal component of
the stream velocity at the body surface. The theory also assumes that
the configuration is of a conventional type with thin symmetrical airfoil
surfaces and a high fineness ratio body. Further exceptions and limi-
tations to the theory are given in reference 9.

The development of equivalent bodies of revolution will be illus- _
trated by using the configuration shown in figure 1. The wing-body-tail
coumbination is cut by a series of plenes which always intersect the longi-
tudinal axis at the Mach angle p. In other words, these planes are
tangent to Mach cones. The plane identified in figure 1 as X; repre-
sents one plane of a geries of parallel planes which cut the configuration
along the entire longitudinal axis. Each plane of this series intercepts
the yz plane in a line which forms the angle 6; = 0° with the =z
axis. Similarly, planes X5 form the angles 6, with the 2z axis and
the yz plane, TFor any orne cutting plane of the series of planes
¥ =°f (92, u) the oblique cross-sectional area is projected on a plane
perpendicular to the x axis. Thise projected cross-sectional ares is
plotted as a function of x. The resulting plot may be considered as
representing the longitudinal distribution of cross-sectionsl area S(x)
of an equivalent body of revolution for the series of planes
Xo = £ (65, p). For any one value of u this process is repeated for
other values of € ranging from 6 = O to 8 = 2n. However, if the con-
figuration is symmetrical with respect to the xy and xz planes, then
equivalent bodies for 6 from O to m only need be obtained. For
bodies of revolution the area distribution is independent of 8.

With these concepts and with the use of the simplified relstionship
between source strength and cross-sectional ares, the equation for the
zero-~-1ift drag rise as a function of the rate of change of cross-sectional
areas can be derived from equation (46) of reference 7 and written as:

pV2 2n Al 1
ADy = — &= b/q &/q S"(x1) S"(x2)in|xy - xp|dx1dx2460 (1)
8x% Yo o Yo

where x; and x, are two different locations slong the x axis,

s"(x) = §f§%§l- (2)
ax

R
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This generalized equation can be simplified by solving the double
integral of the functions of x through a Fourier sine series in the
same manner as used in reference 5.

fzfz S"(x1) S8"(x)in|x1 - xp[dx1dxs ="'j__)+lﬂ'ﬂ2—2'<§z->2§f wq” (3)
o] o] n=31

(The factor 144 appears because the body length, 1, has been defined in
inches for this report.)

Where
N
1A
s'(x) =§ =3 Z Ap sin nQ (&)
n=1
and
Q = = _
arc cos /= (5)
then -
x
An=§§/‘9&)ﬂnnwm (6)
T 1,

where the coefficients are a function of 6, since S'(x) is a function
of 8. With this solution the simplified equation cen mow be written as

N G A A 2
Ao =TT 5 (2) 8[ Zmn a0 (7)

The computing procedure followed in applying the foregoling equations
and theory to the determination of the zero-lift drag rise is presented
in the Appendix of this report.

CONFIGURATIONS AND TESTS

Plan-view sketches of the models tested, and also the axial dlstri-
bution of cross-sectional area normal to the longitudinal axis, are shown
in figure 2. The different configurations will be referred to as models
A, B, C, and D as follows:

Model A: aspect ratio 4 triangular wing with fuselage and tail

Model B: aspect ratio 3 straight wing with fuselage and tail

CONRERE -
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Model C: aspect ratio 6, 45° sweptback wing with fuselsge and tail

Model D: fuselage and tail (consisting of two vertical esnd two
horizontal surfaces)

General geoumetric data for all the models are presented in table I, with
greater detall given for model D in figure 3. The fuselage and tail were
the same for all models. The fuselage ordinates from the 8-inch to the
139.4-inch station are given by the equation shown in figure 3. All
cross sections of the fuselage were circular, and the nose of the fuse-
lage was faired from the ordinate at the 8-inch station dowvn to a 1-1/2-
inch~diameter boom 15 inches forward of that station. The fuselage was
not indented.

The free-fall technique employed is described in detall in refer-
ence 10. The tests covered a Mach nunber range of 0.8 to 1.1k and had
approximately the following Reynolds number veariation:

Model M = 0.8 M=1.1
A 7,500,000 16,600,000
B 5,750,000 12,400,000
o 2,600,000 5,600,000
D 35,800,000 77,000,000

The values of Reynolds number for models A, B, and C are based on the
wing mean aerodynamic chords, and the values for umodel D are based on
the fuselage length of 210.5 inches.

The accuracy of the measurements of the drag rise divided by ¢

and the Mach number 1e believed to be within 929 = %0.06 and M = +0.01.
Without an attewpt to evaluate here the accuracy or limitations of line-
arized theory, the theoretical computations as made are estimated to be
accurate within 2 percent, except where linear theory might indicate a
singularity in the drag curve. This accuracy of the theoretical data is
based upon approximate methods for integrating the areas and determining
the slopes of the area plote. Greater accuracies might be obtained by
methods more exact than those outlined in the Appendix but probably are
not justified.

RESULTS
The experimental zero-lift drag coefficients for the four wmodels are
presented in figure 4. The drag coefficients are based on the wing areas

for models A, B, and C, and the fuselege maximum cross-sectional srea for
model D. The incremental drag rises above the subsonic values at M = 0.8

-
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are presented in figure 5, together with the results of the theoretical
computations. The rather large differences in wing area mske comparison
between configurations difficult; therefore, the data of figure 5 were
multiplied by the respective areaes used in computing the drag coef-
ficients and the results presented in figure 6. The apparent late drag
rise for model A is attributed to possible error in fairing the experi-

mental data points which had scatter equal to égg = 0.06 from the mean.

DISCUSSION

Agreement Between Experiment and Theory

Comparison of the drag-rise values presented in figure 6 indicates
that, in general, the theoretical computations give a good prediction of
the experimental values. Limitations in the theory resulted in only
qualitative agreement being obtained between theory and experiment at
Mach numbers below about 1.02. At Mach number 1.0 the experimental drag
rise is less than the theoretical value, varying from 46 to Th percent
of theory. It may be noted that the greater the departure of the con-
figuration from that of a body of revolution the grester the difference
between theory and experiment became for M = 1.0.

For Mach numbers greater than 1.0, the effect of theory limitations
is diminighed and the level of the drag rise is predicted gquantitatively.
In general, the values sbove M = 1.02 are in error by .sbout 20 percent
with a maximum deviation of experiment from theory of 26 percent.

Application of Theory

The prior section illustrated the adequacy of the theory in estimat-
ing the zero-lift drag rise of wing-body-tail coumbinations. It is of
interest next to examine the implications of the theory with regard to
possible drag reductions through modifications of the ares distribution.

Consider a design problem involving a configuration similar to
model B with an engine or other components within the fuselage which
might make fuselage Indentation impractical. In a case such as this the
drag reduction would have to be attempted by adding volume before and
behind the wing. That such an approsach might be successful is illus~
trated in figure T(a). The solid curve is the computed drag rise for the
unmodified configurstion. The lowest, straight line represents the theo-
retical drag rise for a Sears-Haack body with the same maximum cross-
sectional area as the wing-body combination. The large difference
between these two curves suggests the possibility of reducing the drag

Y
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rise of the originsl configuration by modifying ite area distribution
to approach, as & limit, the Sears-Haack distribution.

The modification curves presented in figure T(d) represent various
fuselage revisions, obtained by adding volume to the fuselage in front
of and behind the wing. Modification 1 is similar to the type of fuse-
lage revision discussed in reference 1, in that it is based entirely on
the distributlon of cross-sectional ares perpendicular to the x axis,
Such a revision would be expected to reduce the drag rise at a Mach
number of 1.0, and this anticipation is realized in figure T(a). However,
the deslred equivalent body of revolution for M = 1.0 is not the desired
shape for other Mach numbers, and a rapid rise in drag with increasing
Mach number therefore results as shown in figure T(a). This drag rise is
independent of possible separation effects which were not evaluated in
the theory used.

Clarification of the ebove point is afforded by consideration of
figure 8(a). On this figure are shown the projected cross-sectional
ares distributions (S) of the original wing-fuselage-tail configuration
for various angles Vpax. The largest angle Vmax is used for each
Mach number cowputation end is the complement of the Mach angle. (The
equivalent tail erea for the larger angles showed only slight differences
from the VYmex = 8.08°, so was omitted from this figure for clarification.
The fuselage having a high fineness ratio hed essentially the same area
distribution for the entire Mach number range.) Shown on figure 8(s) is
also & Sears-Hasaeck body area distribution for a body with meximum cross-
sectional ares equal to that of the original wing plus body. Modifi-
cation 1, which optimizes the area disgtribution on the original wing-
fuselage coubination for a Mach number of 1.0, consists of additions to
the body cross-sectional area sufficient to £ill in the difference indi-
cated by the shaded area. The fact that excess area is sdded for other
Mach nunmbers is indicated by the penetration of the (S) curves for
other values of V¥mgx into this shaded area. If it is desired to reduce
the drag at Mach numbers somevhat above 1.0, much less volume should be
added to the regions immediately in front of and behind the wing.

In arriving et such a compromise for the wing body under consider-
ation, the following approach was followed to establish the lines for
modification 2. The five area distributions (S) shown in figure 8(a)
were arbitrarily replaced by & single curve representing the arithmetic
average of the five curves. The Sears-Haack body area distribution was
modified to represent a Sears-Haack body having & maximum cross-sectionsl
area equal to the maximum of this averaged curve. The volume added to the
fuselage was determined from the difference between thils new Sears-Haack
body curve and the average curve as shown in figure 8(b). The Vpgx
curves for M = 1.0 and M = 1.14 are also shown on figure 8(b) to illus-
trate the reduction in the size of the new Sears-~Haack body as well as
the reduction in volume to be added immediately before and behind the
wing. The computed drag rise for this second modification (fig. T(a))

- T
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shows an improvement in comparison to the originsl unmodified configur-
ation over the entire design Mach number range of from 1.0 to 1l.1k.

Modifications 3 and L4 were derived by the method described in
reference 9 for the design of a fuselage modification optimized for a
specific Mach number. Mach numbers of 1.05 and 1.1k were arbitrarily
selected and the results of the calculatlions are presented in figures T(a)
and 7(b). Modificatlon 3 produced only a slight improvement over modi-
fication 2, but it was maintained over the Mach number range shown.
Apparently, as the minimum drag curve for a configuration is gpproeched,
slight streamwise modifications to the fuselage sbout the optimum shape
cen be made without greatly chenging the drag. Further reduction of
the drag rise at the higher Mach numbers at the expense of an increase
at the lower Mach numbers could probably be effected by optimizing for
the highest operating Mach number as was done in modification 4. Due
to the limitations of the drag computations near Msch number 1. 0,
experimental investigations should be made to see if these small drag
differences for modifications 3 and 4 really do exist.

CONCLUSIONS

The results of the computations and experimentation presented in
this report indicate that for the wmodels tested the following conclusions
are justified: .

1. A computation method has been established which is capable of
predicting the zero-lift drag rise at low supersonic speeds for a wide
variety of wing-fuselage-tail combinations within an accuracy of sbout
20 percent.

2. In establishing the modifications to be made to a fuselage to
reduce the drag rise, the effect of various revisions should be examined
for a range of Mach numbers.

3. For cases where fuselage indentation is not feasible, theory
indicates that drag reductions may still be possible by increasing the
fuselage volume in front of and behind the wing.

Ames Aeronautical Laborstory
Netional Advisory Coumittee for Aeronautics
Moffett Field, Calif., Aug. 17, 1953

R
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APPENDIX
PROCEDURE USED FOR COMPUTING ZERO-LIFT DRAG RISE

The detalled application of the drag equation developed in the
theoretical section of this report is outlined in the following para-
graphe. The general procedures are presented with various simplifi-
cations and suggested methods based on experience gained in meking the
computatione for this report. The simplest case is presented first in
order to better illustrate the basic gteps and to shorten the presen-
tation of the more involved procedures. '

Calculation at M = 1.0 for both Symmetrical and
Unsyummetrical Configurations

At M =1.0 the cutting planes X are perpendicular to the x
axig and the projected cross-sectional areas are independent of the
angle ®., Therefore, the drag rise at M = 1.0 is computed in the same
menner for symmetricsl or unsymmetrical configurations.

Step l.- Determine the total cross-sectional area of the wing-body-
tall combinstion and plot the area distribution as shown in figure 9(a).

Step 2.- Differentiate the area plot, figure 9(a), with respect to
x, and plot the results as a function of 9 as ie indicated in
figure 9(b). The technique of reference 1l may be used to differentiate
the ares curve.

Step 3.- Pit & Fourier sine series to the curve of figure 9(b) in
order to determine the magnitude of the coefficlents of the varlous har-
wonics. For exasmple, from equation (6) of the theoretical section the
coefficients Ap are computed ag follows: -

=-)+—1f — sin 4@ o

hid
=2 788 sin o G40, ete. ]
nZ 0 d-x —_ . " . A

The integrations may be accouplished by punch card machine computation,
electronic-wave-analysis equipment or by ordinery long-hand computing
methods. However, early investigations in connection with the compu-
tations made for this report showed that a large number of terms (over 12)
would be required to fit the irregular curves normslly obtained, which
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would rule out long-hand computing methods. Available electronic-wave-
enalysis equipment gave the relative magnitude of the coefficients but
not their absolute values. The punch card computing methods were used
for this report. Practical considerations of over-all accuracy did not
Justify calculating for more than 24 harmonics. On the other hand, com-
puting for less than 12 harmonics reduced the resultant theoretical drags
&s much as 40 percent for some of the configurations investigated in
this report.

Step 4.- Compute the drag rise frou equation (7) which for M = 1.0
reduces to the following coefficient form:

2 n==24
b8 1 2
AC = — 2 nA
Do 576 sw<2> Z
=1

In using equations (6) and (7) they may be simplified by deleting 2/1
and (1/2)2, respectively, provided A, 1s considered as & dimension in
inches.

Calculation for Mach Number Range, Configurstion Symmetrical
With Respect to xy and xz Planes, Wings
and Tail Surfaces in xy Plane Only

The first three steps in this calculation are essentially the same
ag for the M = 1.0 calculation except the computations should be made
for at least four equivalent bodies of revolution rather than for Jjust
one.

Step l.- Select the Mach number range to be covered by the compu-
tations and determine the cross-sectional areas of the equivalent bodiesg
of revolution for each value of 8 (p = constant) and plot as shown in
figure 9(a). By Judicious selection of cutting planes for the compu-
tation of the drag for the highest Mach number, the drag at lower Mach
numbers can be computed from the same cross sections. This means that
the values of V¥pgx used for the lower Mach nuumbers are used for the
intermediate values of ¥ for the higher Mach numbers. For thin air-
foll surfaces, which for purposes of this computation may be assumed to
lie in the xy plane, the surfaces may be cut at angles V¥ by planes
perpendicular to the xy plane. The actual obliqueness or error in the
wing cross sections disappears as the areas are projected onto the y=
plane. It should be recalled that V is the intercept angle of a 6
plane with the xy plane. The prior statements can be illustrated by
an example showing the angles VYmax which might be used in determining
the cross sections for computations for M = 1.30.
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vmax = arc 'tanq/ﬁ -l

M ¥ max, deg

1.00 0

1.01 8.08
1.02 11.38
1.05 17.75
1.1k 28.70
1.30 39.71

The equivalent bodies of revolution are determined for each of the above
angles by cutting the configuration by a family of parallel planes. Then
the area for each cross section is projected onto the yz plane by nulti-
plying the area by cosV¥mgx. Thls produces the equivalent bodies of
revolution used in the final computations, where the drag computations

for M = 1.05 will use only the equivalent bodies for the first four

angles.

For high fineness ratio fuselages, 1t is not necessary to cut the
fuselage &t various angles, because the projection of the cross-sectional
areas onto the yz plane results in essentlally a constant area distri-
bution with Mach number as mentioned previously. For a fixed area distri-
bution, the shape of the cross section of a high fineness ratio body is
relatively unimportant if the body ends in a cylinder or a point (see
ref. 12). The zero-lift drag-rise coefficients for the Sears-Haack
bodies can be coumputed from equation (1%), reference 5, which illustrates
that the supersonic drag is constant:

2
n, -3 (8)

Step 2.- Differentiate the area plots and plot as a function of @
as indicated in figure 9(b).

Step 3.- Fit a Fourier sine series to the curves of the area plots
in the same wanner as for the M = 1.0 coumputations.

Step 4.- For the largest Mach nuuber and angles ¥, compute the
angles 6 and plot ZnAp© as shown in figure 9(c). The same data can
be used for the intermediate Mach numbers as follows:
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M=1.14 M=1.05 M=1.02

¥, F ) 2] W 6 2| ¥ Z 2
deg |{radian|PPin | d€g |radian|ZDAR| 468 |radien [2PA0
0 1.571 | 90 1.571] 90 | © 1.571| 90

0
8.08{1.285 | 70 | 8.08| 1.092| 70 | 8.08] .787| 70
8.08{1.8578| 70 | 8.08| 2.050| 70 | 8.08| 2.355| 70

11.38|1.173 | 60 |11.38{ .890| 60 (11.38{ O 60
11.38{1.969% 60 {11.38]2.252| 60 |11.38] 3.1k2] 6o
17.75) 946 | s0 {17.75{ O 50

17.75(2.1968 50 |17.75| 3.142{ 50-

28.70[0 45

28.70]3.1428| k5 |
8Angles 6 are taken symmetrical about 6 = x/2.

Step 5.- Integrate the area under curves similar to figure 9(c) end
compute the drag-rise coefficient from the following equation derived
from equation (7):

X n=24

A =_l_(z 7 A2 a8
Po T 576 5, \2/ 4, n

n=3i

Calculation for Mach Number Range, Configuration Symmetrical
With Respect to xy and xz Planes, Wings
and Tall Surfaces in Both Planes

The essentlal differences from the prior method is that the verti-
cal surfaces are rotated 90° into the xy plane, and if the same values
of ¥ wused for the cutting of the horizontal surfaces are used to cut
vertical surfaces then the cross sections for the vertical surfaces will
correspond to different angles € than those used for the horizontal
surfaces. Because the areas must be coumbined to give an equivalent body
of revolution for one value of 6, cross plots of the areas should be
made or the vertical surfaces should be cut at different angles than the
horizontal surfaces. A satisfactory snd simple procedure is to cut the’
vertical surfaces for one or two angles more than the horizontal surfaces
to ensure a uniform variation of angles from O to 90°, and then proceed
as follows:

Step l.- Multiply the cross-sectional areas for the vertical
surfaces by cosV.

Step 2.- For each fuselasge statlon plot the areas from step 1 as a

function of 6y =.6g - 90°. Subscripts V and H refer to the verti-
cal and horizontal surfaces, respectively.

—_—
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Step 3.- Read the areas from step 2 that correspond to the values
of 6.

Step 4.~ Combine the cross-sectional areas (slready multiplied by
cos¥) for the vertical end horizontal surfaces to give one equivalent
body for one angle 6y = 6.

Step 5.- Compute the drag-rise coefficients as before for the case
where all surfaces were in the xy plane.

Calculation for Mach Number Range, Unsymmetrical Configuration

This calculation is similar to the prior method except that the
final integration must be performed from 6 =0 to 6 = 2x and the
equivalent bodies of revolution determined from negative angles of ¥
as well as from positive angles. These factors lengthen the problem
but do not add to the complexity.

Time to Perform Calculstions

Computations for this report, as was mentioned previously, were
made by punch card machine computations. Time to compute the drag rise
for a wing, similar to the models tested for this report, in coubination
with a high fineness ratio body from M = 1.0 to M = 1.2, was found to
require approxiwmately 80 computer hours. This value is based on experi-
ence gained in wmeking the computetlions for this report and includes the
time to lay out the cross sections and integrate the areas graphically.
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TABIE I.- DIMENSIONS OF TEST MODELS

(a) Wings?t
Model A Model B Model C
Area, sBq ft 30.07 21.68 9.02
Megan aerodynsmic
chord, ft 3.656 2.813 1.272
Wing span, ft 10.97 8.20 7.36
Aspect ratio Y 3.1 6
Taper ratio 0 0.39 0.5
Airfoil section NACA 0 to 0.5c Ellipse | NACA 64A010
0005-63 }0.5 to 1l.0c Biconvex|perpendicular
streamwise t/c = 3 percent |[to 0.25 chord
Sweep of 0.25 (Leading
chord edge) 450 0° 150
Twist, dihedral
and 1ncidence, deg 0. 0 0

(b) Fuselage and tails for models A, B, C, end D%

Fuselage
Fineness T8EI0 « « + « « o o o o o o« o o o« o o s o = o & » 12,4
Meximum diameter, Tt « « « o « = « o o« o o o o o o o o o« LT
Nose boom diameter, in. .« « o o ¢« ¢ o ¢ o o o o 4 o o 0 1.5

Horizontal surfaces

Ares, 8 £t v o ¢ ¢ o o 4 o 4 6 4 s e e 4 e e e e e e 6.0

Appect T8EI0 « + ¢ 4 4 ¢« e e 4 e 4 s 4 e e e s e e e s k.5
Taper ratlo .« o« ¢ ¢ o« v o ¢ o ¢ s o ¢« 0§ s e e e e e e s 0.20
Airfoil section . « « + o o« « « o « » . « NACA 65006 streamwise

SVreep Of 0-25 ChOI‘d » . . . ] - . . . . « . . - - N e o - L|'5o
Vertical surfaces

Area, 8@ f1 .« ¢ « ¢ ¢« o v o s o s 4 e e e e e s 0w e e 3.3
Aspect ratio .« ¢« ¢ v 4 f 4 4 e e e e s e e s e 4 e e e 5.1
Taper ratio « « o« v ¢ ¢ ¢ o o e 4 e e s e s e s e e 0. 0.22
Airfoil section . . . . . NACA 65009 perpendicular to 0.25 chord
Sweep of 0.25 ChOFA =« « + « o « & o & o = o « o s+ o o o = 459

15ee figure 2.

2gee figure 3.
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Equilvalent body of revolution
formed by the planes Xp

18459

Figure 1.~ Illustration of the cutting plamnes X and the angles
® and ¥, which are the intercepts of these planes with the
¥z and xy planes, respectively.
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Figure 3.- Geometry end dimensions of model D.
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Figure 5.- Comparison of experimentsal drag rises with values calculated
utilizing linearized theory.
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Figure 6.- Comparison of theoretical and experimental increases in drsag
dlvided by dynamic pressure.
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Figure 8.~ Modifications to the area distribution of 'mpdel B to reduce drag by adding volume
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