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IMMERSED IN A TURBULENT BOUNDARY LAYER AT
MACH NUMBERS OF 1.3, 1.5, AND 2.0

By Ronald G. Huff and Arthur R. Anderson

SUMMARY

An experimentel investigetion of nine full-scaele suxillary alr In-
lets immersed in a turbulent boundery layer was conducted at Mach num-
bers of 1.3, 1.5, eand 2.0. Rectangular Inlets with a turning engle of

10° and rectangular and clrcular inlets without turning were tested.
Also included were external-compression and slmple-scoop inlets.

Inlet pressure recovery and mess-flow ratios for various smounts of
immersion in the boundary layer were campared wilith theoretical predic-
tlons. Recoverles varied from gbout 95 percent of theoreticel in the
free stream to 80 percent with the inlets fully immersed, while the cor-
responding maess flows were ususlly gbove 95 percent of theoretical. A
simple calculaetion baesed on a stream-filement method proved to be en
adequeate sgpproximation to more exact theoretlcel solutions.

Turning the flow 10° before diffusion resulted in pressure-recovery
losses of 0.03 and 0.07. ZIxternel compression did not lmprove the pres-
sure recovery at critlcel operation over that of a normal-shock inlet.
Total-pressure distortions at the diffuser exit with critical inlet op-
eration were usuelly under 5 percent.

INTRODUCTION

Auxiliary slr intekes find epplication 1n supplying secondary elr
for eJector nozzles as well as alr for accessory equipment. In elther
application it is necessary that the air handling characteristics of
the inlets be matched to the requlrements of the components they supply.
References 1 and 2, for exsmple, 1llustrate the 1nlet-ejector metching
problem. It 1s shown in reference 1 that drag reductions mey frequently .
be realized by lmmersing the esuxiliary inlet in the boundary layer.

.
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Previous research has ylelded some informstion ofi the performance no-
of auxiliary inlets in a turbulent boundary- layer. The performance of oot
rectengular inlets with turning (refs. 2 and 3) and circular inlets with-
out turning (ref. 4) has been reported. In addition, the performance of
boundery-layer removel systems under meln elr inlets is often a source -
of esuxiliary-inlet data. A systemetic investigation was deemed neces- 'ﬁ
sary, however, to determine more fully the effect ‘of flow turming, in- o
let shepe, and external compression on auxiliary-inlet performance in a = -
turbulent boundery leyer. The results of such an'inveetigation con~ o
ducted in the 8- by 6-foot supersonic wind tunnel of the NACA Lewis lab- . _
oratory are reported herein. - ' ﬁ-ff -

SYMBOLS - - =

The followlng symbols are used in this report:

A area .
a width of rectangular inlet (fig. 1) _ ST
b height of rectangular inlet . N LT = -5§
D diffuser-exit inside diemeter . : -
d diemeter of cirecular Inlet
I distance messured from edge of boundary layer to point om 1n- @ =  _
let 1lip closest to generating surface:!: . R
I distence messured from edge of boundary leyer to centroid of ’ T
inlet (positive within boundary layer.(fig. 1)) S
L length of conicel portion of diffuser =
1] length of inlet constant-area sectlon . ,ﬁ ;: e
M Mach number L ' : -
m/mo . ratio of mess flow in duct to mass flow pas!ing through equal _
aree in free stream -
P total pressure 12 = C e e e
22 distortion parameter, difference between highest and lowest
Pav total pressure divided by average total pressure -
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T total temperature

Up veloclty in free stream

u velocity in boundsry lsyer

W weight flow, (1b/sec)/sq ft

Wo corrected weight flow, w V—E_%./ﬁ_é Ay, (1b/sec)/sq £t

Y normal distance measured from boundary—layer generating
surface

B conlical diffuser included angle

o) boundary-layer thickness

e Tlow turning angle

Subscripts:

o free-stream conditions

1,2,3,4 inlet stations (fig. 1)

APPARATUS AND PROCEDURE

This experiment essentially extends the work of reference 4 to in-
clude nine additionel 1nlet conflgurations of varylng shape and turning
angle. Test Mach numbers were 1.3, 1.5, and 2.0, and lmmersion ratlos
I/B were 1.0, 0.46, and free stream. The free-stream Reynolds number
per foot varied fram 5.25x106 to 4.30x10%® over the Mach number range.
In all other respects, the gpparstus and procedure were essentially the
same as in the investigation of reference 4.

Normel-shock rectangular, circular, and scoop inlets were tested.
Figure 1 deplcts these inlets end gives dimensions and station numbers.
Flgure 2 presents photographs of representative lnlets for comparison.
All Inlets were sharp lipped (normal-shock 1ip engle is 8°) and, with
the exception of configuration IX, each lnlet incorporasted a constant-
area sectlion spproximaetely 3 Inlet dismeters long in order +to malntain
meximum pressure recovery (ref. 4). The normal-shock inlets, config-
urations I, IT, V, and VI (figs. 1 and 2(b) and (e)), incorporated in-
ternal :E'low turning of 10° in the constant-area section between sta-
tions 1 and 2.
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Configurations VII and VIII (figs. 2(c) and (d)) were external-
compression inlets with wedge half-angles of 10°. These inlets were de-
ed to operate adjacent to the boundary-layer generhting surface

(I = 1.0) and at a Mach number of 2.0. These inlets and configura-
tions IITI and IV did not include flow turning. - Copfiguretion VIII dif- =~ ~
fered from VII in that the wedge of configuration VIII was cut off at R
the point in the boundery layer where the oblique shoék detached from == | .
the wedge. ; = LT

The scoop inlet (configurstion IX) pictured in figures 1 and 2(a)
was designed to represent the simplest inlet that tould be fabricated _
by stemping. It wes meant to opereste adjacént to the generaeting sur-

face with a height approximately equal to that of the boundary layer. SR

The diffuser dimensions and angles for 'the inlets tested are tabu-
lated in figure 1. Figure 2(f) pictures a diffuser-inlet combination S
with no turning installed for testing. oo

METHOD OF CALCULATION "

A 1/9 power boundary-leyer profile was used fpr all theoretical

calculations. This equation, _ - e

g-@°

is plotted in figure 3. Comparison of the theoretical_ profile wlth the
experimentally surveyed profile (fig. 3) Justifies.its use. This pro-
file i1s similar to thet used in reference 4.and, therefore, permlts com-
parison of data from reference 4 with the ddte in this report. The .
theoretical pressure recoveries and mass-flow rati¢s at critical oper-
ation can be calculated for normal-shock inlets using the method des-
cribed in reference 5. This method involves a simplifying assumption
that total temperature is constent through the boundery layer. An estl-
mete of the resulting error showed the theoreticelimes® flows to be 1.5
percent too low for the worst case (small rectangular inlet adjacent to .
the surface at My = 2.0). i

e o

For critical cperation at design Mach number, ;the mass-flow ratlos
for the externel-ccmpression inlets (configurationb VII end VIII) are
the same as those for the normal-shock inlet of thé sefie shape and area.
In calculations of the theoreticel pressure recoveries for the external-
compression inlets, an area-weighted asveragd of thé locel oblique-shock
plus normel-shock recovery was used. The above theorles were used in
conmputing the values glven in tabhle I. o )

!ifr!! | '||‘
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An approximate calculation of critlcal mass flow and pressure re-
covery was made for the normal-shock inlets using the stream-filament
method of reference 1. For this calculation, a 1/9 power profile was
substituted for the 1/7 power profile used in reference 1, and no 4if-
fuser totel-pressure loss was assumed.

DISCUSSION OF RESULTS

Inlet maps with varying immersion ratios are presented 1n figure 4
for all configurations tested. Criltlcel pressure recoveries and mass
flows from these data are listed 1n table I for each combination of Mach
number and immersion ratio.

In figure 5, the critical pressure recovery and mass-flow ratio of
each inlet are plotted as functions of the centroidal Immersion ratlo
I/B. Also plotted for comparison are velues of pressure recovery and
mass flow calculated by the methods of references 1 and 5. 'As the 1n-
lets were immersed in the boundary lsyer, thelr recoveries and mass
flows decreased 1n the manner described by the theory. For most con-
figuretions, the streem-fllament method ylelded velues wlthin 3 percent
of the more exact calculstion (ref. 5).

The experimental values fell below those calculeted by an amount
that increased with increased immersion end varied only slightly with
streem Mach number (fig. 6). Pressure recovery varled from 95 to 80
percent of theoretical, and mass flow varled from 100 to 85 percent of
theoretical as the inlets were immersed from the free stream to the
boundary-layer generating surface. Larger errors were cobserved with the
simple scoop (configuration IX). This inlet exhibited relatively low
recovery because of 1ts sbrupt turning end poor internal diffusion. It
exhibited relatively low mass flow st low Mach mumbers (My = 1.3) as a
possible result of choking. The low mass-flow ratios exhibited (figs.
5(d) to (£)) by the external-compression inlets (configurations VII and
VIII) do not necessarily indicate large deviation from theory, since no
attempt was made to predict the obligue-shock splllage expected from
such inlets at off-design speede and Ilmmersion retios.

To illustrate the effect of turning the flow, the pressure-
recovery - mass-flow plots of figure 7 gre presented. Superimposing
the plot for rectangular inlets with 10 +turning on that for no turning
shows that the pressure recovery was decreased by only 0.03 at
1/8 = 1.0. Practically no effect is shown with the inlet operating in the
free stream (figs. 7(a) and (b)). Comparison of configurations I and II
(circular inlets, figs. 7(c) and (d)) to like configurations in refer-
ence 4 (figs. 7(c) and (g) of ref. 4) shows a 0.07 total-pressure loss
for the small circular inlet (configuration I) et I/8 = 0.46 and




NACA RM ES56J18

Mg = 2.0 and 1.5. A loss of epproximately 0.02 ig noted for the large
circuler inlet (configuration II) for like conditions.

The externel-compression inlets (configurations VII and VIII) in-
vestigated showed little improvement over the simple ﬂormal shock inlet
when both were fully immersed in the boundsry layer (I/8 = Figure
8 superimposes the two external-compresslon-inlet? performance meps on
that of the normel-shock inlet.at I/8 = 1.0 and| My = 2.0. Critical
bressure recoveries remained the seme for &ll three inlets, while the
criticel mass flow decreased 0.07 for configuration VII. The mass f1GW
for configuration VIII (short wedge) was 0.03 higher than that of the
full-length wedge (configuration VII). This was to be expected because
of the removal of the wedge at the shock detachment point in the bound-
ary layer (see fig. 1, configuration VIII). L =

Distortion values for all configurations are.presented ln figure
8. The approximate average distortion at critical operation was 5 per-
cent. A maximum distortion. of 23 percent is shown for the scoop inleﬁ
(configuration IX) : -

Although the date are not shown, pressure fluctuations at the dif-
fuser exit were aspproximetely 3 percent of free-stream total pressure.
The maximum fluctuation was 7 percent for ébnfiguration VII (external™
compression). . - . o .o

SUMMARY OF RESULTS
The internal performence of a series of circﬂlar and rectangular
auxiliary air inlets was obtalned at varying immersion heights in'a
turbulent boundery leyer. The configurations were tested at Mach numr
bers of 1.3, 1.5, end 2.0. Results were as follows

l. Experimental values of pressure reccvery YariEd from 95 to 80

percent of theoretical, while mass flow varled from IDO to 95 percent

of theoreticael as the inlets were immersed.in the: boﬁﬁdary leyer.

2. A simple celculation utilizing the centrold of the inlet area
(stream-filement method) gave a good approximation of theoretical pres-
sure recovery and mass flow. . = .

3. Turning of the flow through en angle of 10° within the rectan-

gulaer inlets decreased the inlet pressure recovery by & maximm of 0.03.

In the cese of the circular inlets, a decrease of . 0 G7‘was noted for

the small inlet. - s
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4, In the cases tested, the use of external compression gave neg-

ligible improvement in inlet performsnce with the inlet fully immersed
in the boundary layer.

5. Average distortion of the flow at criticel operation for all in-

lets tested was spproximately 5 percent.

Lewls Flight Propulslion Laboratory

Natlonal Advisory Commlittee for Aeronautics
Cleveland, Ohio, October 24, 1956
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TANE I. - JHLIY TOTAL-PRESSTRE RECOVERTEE AND MAAS-FIOW BATTOS AY CHITICAL OFERATTON

Contign-| Free- Esmersicn ratio, If8
ration | stresm
Mach Froe stromm 0.48 1.00
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redovery
; [matio, [recovery, [ratdo, jrecovary, |[ratio, frecovery, |[rmtlo, renovery, |ratio, ecovery, |retio,
Bs/ffo Bs/Po | nfm Ps/Py | mfmg | Bs/Fo Fa/Fo Ps/Ro | mfmg
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Io 2.0 -0.14 0.72 1.00 0.68 1.00 0.32 0.86 0.93 0.62 0.54 0.98 0.40 0.62 0.33 0.62
1.5 —— 93 1.00 ——— ——— .32 .86 .98 «T9 N ] .08 .88 .09 A1 .86
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1.3 .20 — —— 95 .04 .18 — —— .88 .18 15 — — N .61
vIII 2.0 — ——— — —— — 0.18 — —— 0.88 0.80 0.73 0.52 0.70 0.40 0.6
1.6 | ===-= J— ———— —— —— .18 — — N N :] .T5 —— —— .58 .52
1.3 —— —— — _— — .18 — — .66 a1 .S — — &4 84
= 2.0 —— —_ — ———— — -—— — - — —— 0.61 0.51 0.7 0.51 0.76
1.6 ——— — — — — —— — ——— —_— — .BL .68 ] .53 .7
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(a) Configurstion IX; sooop.
PO .
(o) Configuration IT; large, oircular, curved. (£) Installation dstail; no turning. O-dz22 -
Figure .3. - Nodel installation and representative inlets. “"
.-
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Boundary-layer-velocity ratio, u/U,

11

1/9
meee & - (3]

(o) Experiment; free-stream
Mach number My, 2.0

o Experiment; free-stream
Mach number Mo, 1.5

-

Lj___:_e:?e-

i -

.2

- 4 - 6 L ] 8
Distsnce ratio, y/8

1.0

Figure 3. - Boundary-layer profiles ahead of inlet (inlet not

present).
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