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" RESEARCH MEMORANDUM

THE LINEAR PERTURBATION TEECRY OF AXTALLY SYMVETRIC COMPRESSIBLE FLOW
WITH APPLICATION TG THE ‘FFFECT OF cm@mssmn.m on
T PRESSURE CORFFICIENT AT THE SURFACE OF A BODY.OF REVOLUFICN

By John G. Herriot

“Four related. methods for the stud:r of compressi‘ble flow by means
of the linear perturba.tion theory are discussed in d.etail for the case
of three—iimensional flow with axial symmetry. A general method which
ingludes the others is also dlscussed briefly. As an exemple of the
epplication of these methods, it is shown that, for s very slender body
of revoluticn in & uniform stream of compressible fluld, the pressure
coefficient at the gurface of the body 1= almost independ.ent of Mach
nunber. " A more accurate result for the caee of a prolate spheroid,
which was given by Scﬁmied.en end Kawalki, is discussed, and 1t 1s pointed
ocut thdt this result may be used to ad.van'bage for most bodles of moder—
ate- 'bhic]mese., Experimental da.ta supporting theee reaul'bs are given.

mmomci-ron'
‘Bbdeuse of the high spesds of modern aircraft it is desirable to
deotermine the effects of compressibility on the loeds which may be
eXpected on the variocus parts of the airplepe. This determination is &

. problem in three—aimensional flow, tut over the wing 'at points not too *
‘clos&* to the tips or to the fuselage "the flow approe.ﬂhes closely to

two—o.imens...ona.l filow.. This fact mey be. used as a gulde in estima.ting
the &ffect of comressi‘biliw on. the pressires at the wing suxface.

“0n thb other hand, the fuselages of most alrplanes are approxima.tely
"otsdies of revolution and,; consequently, 1t is useful %o kmow the effect
of compressibili'by on the pressures g%, the sm‘fa.ce ‘of a 'body‘ of revo—"
Tutfon.. Since -the effect .of cc:npresei'billty on, the pressure . coeffic:[en{'.
et the surface of a body of revolutich is not the sams as the’effect

on the pressure coefficlent at the surface of & body in two—dimensional
flow, it follows that, at points of an airplsne which are close to both

-ﬁmmp.



the wing and the fuselege, the effect of compreesib:!.lity nmst be more
complex, being & combina.tion of the effects in two—~dimensionel flow and
in three—diwesnsional flow with axiel symmstry, Generally, at such points,
the effect of the wing on the pressure coefficient is greater than the
effect of the fuselage and, consequently, the compressibility effect
resembles more closely that for two—dimensional flow. . On the other hend,
at points of the fuselage far .frcm the wing the flow approximates to
axial flow and results approprie,té to this t,ype of flow are applica'ble.

For twc—d.imensional flow of a compressible fluid. paat an - airfoil
or other body,. the Prandtl-Glauert law (references 1, 2, and 3) states
that as the free—stream Mach number M increases, the pressure coeffi—
cient at the surface of ths body increases according to the expression

1/./1 — M2, For bodies of smsll or modsrate thickness and for Mach
numbers below the critical, this law gives, fairly satisfactory agreement
with experiment, provided the departures from potential flow are not
important. It has been sssumed by a number of authors (references 4, 5,
6, and 7) that the same lew may be applied to. three—dimensionel flow,
bu'l_; thie is incorrect, as ie ghown 'in references 8 and Q. and’ the present
report. In fact, for very slender bodies. of revolution it is shown that

the pressure coefficient at the surface of the body is neerly independént .

of the Mach number, being completely’ independent of the Mach numbér in
the limiting case of zero thickness. For the case of the peak pressure
coefficient (or velocity—increment ratio) at the surface of an ellipsoid
of revolution, reference 9 gives a more preclse result which is applicable
to many bod.ies of mod.era.te thiclmess as well as. to very slend.er 'bo 105.

There is a fundamenta.l difference 'be'tmeen “the preesure-—coefficient
variation with Mach nunber in two— and three~dimensional flow. The form
of the Prandtl-Glauvert law which is satisfa.ctory for bodies of moderate
thickness in two—dimensional fiow is independent of the thickness ratio
_of the body; whereas for extally symmetric flow the law for the pressure—
coefficlent variation depends strongly upon the thiclmess ra'bio of the

body S ,

The Pra.nd.tl—Glauert formula. for two—d;mensional ﬂow ie obtained. 'by
means of the linear perturbation theory of compressible flow in which the
departures of the fluid velocity from the uniform free—streeam velocity
are assumed small and their squares are neglected. It 1s clear that the
theory fails in the neighborhood of a stagnation point and that elsewhere
it is at best epproximate, the approximation deteriorating, in the case of
flow past a streamline body, as the thicknese and camber of the body in—
crease., There: are a muwber of ways of applying this linesr pertur‘bation .
theory to the study of problems of compressi’ble flow, but.for any perticu—.
lar problem one.imethod mey be niére convenient than the others. Three sugh
general methods are described in detall in reference .t. These methods,
as desoribed in reference lL', ere agplicable ~only - to- 'bwo—dimensional flow.
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A fourth method which is appliceble to both two— end thrse—dimensiocnal
compressible flow is presented in referencé 8. In all theses mothods the
properties of a compressible flow are dsduced by comparison with a cor—~
responding incompressible flow whose cherecteristics are known. In the
application of the fourth method to the problem of two—dimensional flow
sbout a body or three—dimensional fiow about a body of revolublon it is
necessary to teke account of the fact that the bodles in the corresspond—
ing compressible and incompressible flows sre of different sizes. On

the other hand, in method I of reference 4, which is, uwnfortunately,
applicable only to two—dimensional flow, the gize, shape, and orisntatlon
of the body are the same in the compressible and incompressible flows.
Consequently this method is more convenient for certain problems. It

is pointed out in reference k& that the other methods presented there
possesa certaln advantagesfor other problems. It mey be expected that
methods for the study of thres—dimsnsionsl coampressible flow anslogous

to those of reference U will be useful and convenient for the solution of
many problems. The present report describes three methods (methods I, II,
end ITI) snalogous to those of reference 1# for the study of axlally sym—
metric campressible flow by means of the linear perturbation theoyy.

The method of reference 8, desigmnated method IV, is edded for completeness
end its relation to the other methods 1s pointad. out. A general method
which includes the others is also discussed. In method IT the size,
shape, and orlentation of the body are the seme in the compressible end
incompressible flows, and conseqwntly, this method is more convénient
for certein problems. On the other hand, methods I end ITI may be more
convenient for other problems. Great cars must be exercised in using
methods I, II, and III as they are applica.‘ble only 'bo very slender bodles.
Mathod IV ia not 80 restrioted.. _

If method IT is applied to the problem of determining the effect of
compressibility on the pressure coefficient at the surface of a very
slender body of revelution, 1t is found that the pressure cocefficlent 1s
independent of Mach number., For very slender bodieg this result is in
egreement with that of reference 8, in which only an ellipsoid of revo—
lution 1s studled. It 1s Instructive to obtaln the seme result by each
of the othsr three methods, but, in order to do so; it is necessary to
8etermine how the pressure cosfficient at the surface of the body varies
wlth the fineness ratio of the body in incompressible flow, It is shown:
in this report that, for e very slender streamline body of revolution,
the pressure coefficient at the surface of the body 1s inversely pro—
portional to the square of the fineness ratio. This disagrees with the
result used in reference 5 but egrees with that in refersnce 8 for the’
limiting case of a very slender body. The pressure—coefficilent va.ria.—-
tion for bodles of modera.te thiolmess is alseo discussed
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The following symbols are used. 'bhroughout this report'-? | ) - : _f
P - _ ata,tio pressure ' - T L E
p o mass aensity i
v L velocity _
x,y,.z Cartesia.n c_oordina'boe b
x,r,0 oylind.rica.l coordinates B
| vx,vy,v cémponents of veloci’lv in x,y,z directions : N
"v:x . .'_perturbation velocity 1n x direction (v 7,) o =
. T-Tr. i .ra.d.ial component of voioci'by' o - | i - ) _j
&y - ..'velooity of sound in free stream -
q .dynamjc pressure (—-pva) o F"__
P pressure coefficient {(p—po)/qo] ) ’ _j
M o Mach number in free stresm (Vc/ao) _
B 1M o L =
o o velocitv po_‘_tontial } L _
¥ stream function o ) o S ) _ -
h,h' - radii of stLroam éttx;f;a'oos _ .
21 1en3th of body of revolu'bion | _ -
' ..t _ . maximum ra.d.ius of body of revolution ___=
= a - | angle of attack o . _i
g,M T -elliptic coordinatos .
20 distance betieen fool of ellipse I B

a,b semlaxes of ellipse
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e eccentricity of ellipse
Subscripts anﬂ. Superscript_s:

o  in free or undisturbed stream
1 Incompreseible or low speeé.

¢  compressible

*® at surface of body (appendix only)
THE LINEAR PERTUBBATI_ON THECRY

Consider the flow of a compressible fluid .past a solid body, the
undisturbed wveloclity of the fluld relative to sxes fixed In the body
being a mmiform velocity Vp along the axis of x, as shown In figure
1; assume that the departures of the velocity from the undisturbed
velocity V, are smell. The changes iIn pressurse wlll then be small

compared with the undisturbed pressure and will be proportional to the
changes 1n density, the ratlo being the square of the velocity of sound
in the free stream. On a linear theory In which squeres and prod.uc'bs
of small quantities are. negleoted. '.Bernoulli’s equation

f%’e+%vz_=cons_tant

for steady 1rrotational motion becomes

P = = I P = - . (l)
do 3PoV0 Y -

From equation (1) there is obtained

o vyt v
LIPS s (2)
Po 8¢ Vo

The equation of continuity becomes

) ov, IV
Yo &? *+ po(EE + ts57 /=9 - ' (3)



6 " NACA RM No. AGE19

-

If & velocity potential ¢ 1s introduced satisfying the relations

&P o op
—_ x V. o~ v """'=v
“) : | " 3x %’ oy y: az

and 1f equation (2) is used equation (3) becomes the familiar equation
% 9 3% © '

=t o oW

where
. . 2
o : : Vc.
. B = 1 _MZ = l""""
. . * ’ E.o

2

The, transformation of this equation 1nto cylindrical coordinates x, ¥,
e yielde S . s e :

- a?— 32 '1aia 1 3% o ( ')
— o e c— g f
TN IR TR >

-Tn this report the flow 1s asswmed to possese axial symmatry about the-
x-axls unlese otherwise etated. In thia case aaw/aez = O and equation
(5) reduces to

o % 1%
PYCi e i

2

B (6)

" A stresm function ¥ -mey now'be Introduced writing

H 1=
wlg

bvx=p ar,::J = — pg

From this definition the following approximate relations are obtained'

-—-l-—-a—Y=QV (1-—M2~—1)(1+—-—1)=1+|32-—x ('})
Vor 3r °o Yo
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The points for which ¥ is constant constitute & surface which may be
oalled a streem surface. The stream surface is Iin turn mede up of
streamlines. . .. ) ‘ .

If a solution for incompressible flow (f = 1} is known, solutions
for values of B less than one may be deduced in seversel waye when shock
waves are absent and the assumption of small departures from a uniform
velocity is approximately correct. )

Method T

For three—d.imension;i flow with a.i:iﬁl_symnetry let:
P =VTox + f(x,r) (9)

be & solutlon for the veloclty potential for incompressible flow
(B =1) and let

V= e® s gler) (10)

be the corresponding stream function so that the following relations
must hold true:

lfx(::,r.) = -i': gr:_(x,r__)_, fr(x,r) = ;_-i- gx(x,_z:) | fll)

It may be noted that g(-w,r) = O since the flow is undisturbed at
infinity upstream. It ie assumed that the iimit of g(x,r) as =
tends to zero 1is finite and not zero for points x of the body not

close to = stegnation point. (This assumption is c_:orrect at least for
flow about = Rankine Ovold or prolate spheroicl )

*p_ denotes the partial derivative of f£(x,r) with respect to x:

nemely, of(x,r)/dx apd f, = 3f/dr. In equation (13} f£.(x,Br) 1is
. the value of £, at (x,Pr) end not the derivative of f£(x,Br) with
vespect to r.
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Then & solution of 'equatiori (6) Por B<l is
- . - l - . ) . o
P = Vox + -‘; £(x,Br) (12)

The longitudinal end redial components of velocity ere

V=V, +'-§.f‘x(x,ﬂ_r), Vyp = £.(x,Br) _ ?13)_. :
From equations (7), (8), and (53_.) 1t follows that .

1
vtrg"l"' P £y (x, Br )-l+-——-—gr(x,Br)

and
1 Bv 1 1
vrT T, £,.(x,Br) = o gx(x,Br)
Then the stream function is ..
V=3V s Tame) (%)

If the bpdy were removed, the velocity at all points of the Field
would be 7V, and the veloclty potential and stream function would be,

respectively, V.,x eand -12=V°r2. The streem surfeces would be right

circular cylinders with axes along the x—axis. The effect of the body
1s to distort theme stream surfaces. Iet h denote the radius at =x
of a given stream surfece with the body present. If the body were
removed the radius of this stream surface would be h', so that
h-h! 1s the distortion of the stream surface caused 'by the Tresence
of the body, If r=h 'is substituted in equation (1L4) &nd 1t is
observed that V¥ hes the same value whether the. body is present or
not, there ie o‘bta.ined.

Vo= -.].‘%Voh2 + ;BL- g(x,Bh) = %;Vo(h‘)a“ :
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For velues of h eand h! which are not too small this équation yi_elds
approximately .

wont - 280 _  glx,ph) (15)
B‘V’O(h+h' ' VoBh

The distortion of the stream surfaca in the case of incompressible flow -
is obtained by setting B = 1 in equation (15). If the pointe (x,r)
in the compressitle flow amd (x,Br) in the incompressible flow are
called corresponding points, then it is meen at omce from equation (15)
that at points far from the body the distortion of the stream surface in
the compressible flow is the same as that at the corresponding point of
the incompressible flow. To find the.relgiion between the distortions
near the body (i.e., mear r z O) 1t is only necessary to set ¥ = O -
in equation (1L4).- Then, since g(x,Br) 18 nearly equal to g(x,0) at
points of a very slemder body not close to a stagnation point it follows -
that the radius of the zero stream gpurface at any- x in-the. compresaible:

flow 1s B~% times the corresponding radius at the seme x in the in—
compressible flow. It should be noted the.t the d.istor'bions near 'bhe
'bod.y d.iffer from those far frcm the ‘body S

From equation (13) it is geen that the incraa.ee in the longitudinal
veloclty at ahy point in the compressible flow is l/B times the incréasse
at the. correspondifig point in the incompressible flow, :Near the ‘body the
longitudinal veloclty is nearly independent of r and conseq_uently nedr
r = 0 the longltudinal veloci*by increase in the compressible flow is
1/B ‘times its value at the ‘Same point in “the incompressible flow,
Becsuse of equa.tion (1) the same relations are true for the pressure -
coefficlient. “Also from equation (13) the redisl velocity at any point
in the ccmpressible flow is the same as at the corresporiding point in
the mcompressi'ble flow but no general compa.risons cen be glven near -
r=0 because 'bhe ra.d.ial velocity depends upon r even for small r:

L
- .

Msthod._ I

Corresponding to the solution given by equations (9) and (lO) for
the incompressible flow

9 = Vox + £(x,8r) -
may be written in place of eguation (12) for any B < 1. The longitudinal
and radlsl componen:bs of velocity are

Ve =v + 1 (x,Br), v . Br (x,ﬁr) L
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. The_-stream ﬁmotion..is_foupd to-be . .

. C : - T T
TooooLae IR

.

B ] .

The .distortior_x_ of a. stream surface '1s ap;iroﬁ:ima.‘bely

. l_"r.-.-...‘.‘-.‘ly.. < e I,""'-.-"-"".;.

. . ie A ._h...ht-,,_. = 4 TRBES
FALe ST et T I v (h+ht) 1 : B P PR
) . LR AL P R | ot D Q,(h,-h ); P o.,h . o, N

T Lol T i i

Sy - s . N -

i~ +-It'follovs that the disfortfin of the stresm surface &t any point.
far frcom the body in the  compregsible flow is B times the dietdrtion’

of-the Btream surface at the corresponding point in the incompressible
fléw. The redius’of the zerc stream surfece at any x "1s the ssme in™
the compreesible and incotipressible flows or, in other words, the size, '~
shepe; and orientation of the beody are the same in both flows. The T
‘bressure coefficlent and the increase 'in 'the lohgitudinal velocity at e
any point 4n the compressible flow are the same as at the corresponding:
point: in the incompressible flow. Near r = O +the pressure &befficient
and the increase in the longitudinael velooity are the sams in the com~
pressible and incompressible flows. . The radisl welocity at any point
in the compressible flow is B "times. its velue at.the .corresponding .
_.point . in the incompressible flow.. S T : AR

' It mey be mentioned here that Wieselsberger (reference 10) Hses & .
mothod. to study compressible flow which is essentially:method II of +the . -
present report, although be does not attempt -to formulate any gendral
method; however, he starte from a slightly different point of view. .
Instead of assuming the velocity potential to be the same at.corre--. -
sponding points of the, compressidle end incompressible flows; as'dons
in the present report, the condition is imposed -that the body shapes
shall be the sams In both flows and it is concluded that “the velocity
potentials must be the same at corresponding roints. _

Method IIT |

'Corresponding to the solution given by equatioms (9)- -a_nd (10): for ‘ 

the incompressible flow
L TR R X 'f(x]B‘,r"‘)

sy bo writton 1 plase of equsticn (12) Tor say’ B L, b Lonbiai

and radlal components of velocity are'

P

R N

LB

L
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."7; = ?o x(x/ﬁ:r): = I (x/B,r)

The stream function is found to be = -~

¥ = %Vorz + pg(x/p,r)

The distortion of a stream surface is approximately -

opg(x/B,h) pe(x/8,n)

B=~h' e — o = —
R AT R A

It follows that the distortion of the stream surface mear x = X .
and any r in the compressible flow is P +times the distortion of

the stream surface near x = x;_/B and. the seme r in the incompressible -

flow. The radius of the zero stream aurfa.ce at enpy x in the compressi—
ble flow ie _ﬁﬁ' times the corresponding radius at x/B in the incom— -
preasible flow. The pressure coefficient and the Incresse in the longi—
tudinal veloclty at x = x3 snd any r 1in the compressible flow esre
1/8 times their values at x = x3/B and the same r in the Iincom—
‘pressible flow. The redial velocity at X = x; and any r in the
compressible flow is the same as at x = x;_/B and the seme r in the
incompressible flov. :

“Method IV

A fourth method, which ig called an extension of the Prandtl rule,
ig given in refqrence 8. It is expresseé. in the following concise form:

The streamline pattern of a compressible flow to be calculated can
be compared with the streamline pettern of an incompressible flow which
results from the contraction of the y— and z—axes including the pro—

file contour by the factor B = /1 —M® (x-exis in the .direction of
the free stream)., In the ccmmressible flow the pressure coefficient
as well a8 the Increase ln the longitudinel velecity are greater 1n the

ratio 1/8° = 1/(1-M2) end the stresmline slopes greater in ths ratio

"1/ = 1/J 1— M2 <than those at the correspond.ing points of the equiva-—
lent Incompressible flow.

- This method is a.pplica.‘ble to ‘both two—_end . three—dimensional flow.
The proof given in reference 8 differs from the proofs of methods I, ITI,
and TIIgiven in the present report, but for the case of axislly symmeiric
flow the methods of the present report mey also be used. In this cease

—— o — — =
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1
@ =VX + — £(x,8r)
ﬁ2

is written in place of equation (12). The longitudinal and radial
components of velccity are o L

Vg =V, o+ _El.-z—'-fi(x,ﬁr), Vp= % £2(x,Br)

The stream function is.'found: to be. :

¥ = -Jzzvorzilb_f ;};g(x,sf)_ = s;:’rz—_[-;:\fo(ﬁr)z + s(x,.Br)]

From this 1t 1s seen that the pointe in the incompressible. flow which
correspond. to the points of a .single stream surface in the compressible
. flow, themselves lie on a single stream surfacé in the incomprossible
. flow. In other woirds, if the compressible—~flow field is transformed
by multlplying the r—coordinate of each point by 8, then streeam
"surfages in this field are mappod-into stream surfaces in the
incompreasible—Llow fleld. Thus, the two fields are entirely gimilar
and. no approximation ie Involved in comparing the shapes of the bodies
or radii of the streem surfaces in the two flows; whereas in methods I,
+IZ, and IIT the comparison of the body shapes d.epends on an approxi-—
mation and beoomes exact only in the limiting case of a body of zero
thickness, Thus, method IV may be expected to be the most accurate
of the four methods, especailly for bodlies of moderate thickness. Of
course, the thickness of the. body is still limited by the assumptions
of the linear perturbation theory. In this commection it may be
polnted out that for many problems: one of the other methods may be
preferable from the standpoint of conven.isnca ; but oare must be
exercised in their use.

Gene:'cr'a.'l Methédl o

It 1s now posalble to glve a genoral method which includes the
preceding methods a8 apecial cases.

Corresponding to the solutien 3iven by eq_ua.tions (9) and (10) for
the incompressible flow a potentia.l funotion

¢ = Vox + rMf(hax,hgr) (i6)

o

- lThe genera;i method as Qpﬁiined,'i_n this séction is due to -
Mr. Dean R. Chapman of the Ames feronautical Laboratoiy. :
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is desired. The constants A1, Aa,As must be chosen so that equation
ElG) satisfies equation (6). If equation (16) is subatituted in equation
6) and 1t is recalled that equation: (9) setisfies equation (6) with

‘B =1, 1% is eesily found that

BAz = Ag | (17)

is = necessary and suffioclent condition that squation (16) be & wolution
of equation (6). The longitudinel and radial componenpts of velocity are

Vg = Vo + k2 fx(A2XAar), Ve = Ads fr(hax,Aar) (18)

The stream fumction may be found as in method, 'f. TFrom eqﬁaticns_ (7n,.
(8), (ll), and (17) it fellows tha.t '

l &[; i 1327\1 2 | AAs -
Vor g =1 % ?0 (REI,RSI‘) = l + 7\2 A &.(7\21,7\31')
and
ﬁ-;r' == l f (7\2:,?\31‘ ) = ;—o ;'(7‘2_1.:7\3?)‘.

Then the stream function 15

T i

¥ = ]‘V‘or *—g(?\ax,?\sr) i _ - (179)_

Since any two of the three- constanta 7§1, ?\2, a.nd. 7\3 can’ be chosen
arbitrarily, there is a double 1n:rinity of methods‘l i

In general, in transforming from the compressi‘ble-—flow field .to the
Incompressible—flow field, stream surfaces sre not mapperl inte stream
surfacea. If, howsver, it ls desired that stream surfaces masp into
stream surfaces, as in methed IV, then an additional gondition must be
imposed on the A. ZEquation (193 may be rewritten

Ay [ o A&’ -_ ]
= —;" - }\ 2 r e ’ h 3
¥ ,\a[]a'vo(.ar)w-l-s( 2?»7\31‘)‘
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In order that streem suri‘e.ces ma.p into stream surfages 11:. is necessary
and sufficient tha.t

If equat.ion (17) ia used., 1t 13 seen tha.t equation (20) cen be repla.ced.
by

‘There 1g thus 8 single 1nf1n1ty of method.s satisfying ‘both equations
(17) anda (21). . .

If in addition 1t l1s deaired. to have the x~coordinate the same in
both flows, it is necessary to chooBd Ap = 1 ‘and there 18 then only
one- method egtisfying both equations’ (17) end (21).  From these egua~—
tions it follows that Ay = 1/B2 and Az = 8. This 1s the same as
method IV which has already been dipgcussed. It is easily seen that for
methods I, II,. and. IxI equa.tion (17) is sa.tisfied. but equation (21) is
not. -

It should be pointed out that great Care ahbuld be exercised vhen
uping methods for which equation (21) is not satisfied. For such methods
the comparison of body shapes is valid only for very slender bodies.
Methods for which equation (21) is satiefied are not so restricted. It
will be useful to discues in more detail the general properties of meth~
ods for which both equations (17) and (21) are satiefied. From eque—
tions (18) and (21) it is seen that the pressure coefficient and the
increase in the longitudinal velocity at any point in the ‘compressible
fiow are 1/p2 +times their valuee at the corresponding point in the
incompresasible flow, The thickmess ratio of the body in the compressible
flow i8 Aa/Ay; = 1/ timee the thickness ratjo of the body in the in-—
comprossible flow. Alsc the streaemline slopes in the compressible flow
are greater in the ratio M)A, = 1/B then those at the corresponding
pointa of the 1ncompressible flow, - ‘

It may be noted that, if the genaral ana.lysis is a.pplied. o two—
dimensional flow, equa.tions (17) and. (21) are una.ltered.; however, the
. stream function ig given by . , )

o

C Y = Yoy + Phag(haX,As¥)

[
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instead of by equation (19). It is easily seen that ths methods of
reference 4 satisfy equation (17) but mot equation (21) and hence stream
surfaces in the compressible flow do not map. in‘bo stream surfaces in the
corresponiing mcompressi'ble flow. _

I

VARTATION OF THE PRESSURE CCEFFICTENT WITH THE
FIKENESS RATIO IN INCOMPRESSIBLE FLOW

It has been shown that in methods I, III, and IV the fineness ratio
of the body 1e not the same in the compressible and incompressible flows,
Consequently, in order to study the effect of compressibility on the
Pressure coefficient at the surface of a body of revolution by any of
these mothods, it is necessary to determine how the pressure coefficient
at the surface of the body dependas on the fineness ratioc of the ‘body in
the case of incompressible flow. ’ '

Suppose the velocity potentia.l and stream fungtion for the flow
gbout a slender streamline body of revolution placsd in a. unifom stream
of inccmpressible 1luid. are, respectively,

cp =:‘V°x-l;:;."(-x;r) e T | (22)
: ﬂr = —]évoz;?-+g(x,r) - : - (23)

Ioes, Tk R -

so that the foll_cn:ring.,_ r_eJ_.a._tions_ nust h@ld true _

i 4 (x,r) -' &_L.(x,r}, f (x,r) = — = gx(x,r)

R oL - R - - - -

As before it may be ncted. that, (~oc,r) = 0, and sgain 1t will be~
assumed thet the limit &fF r? as tend.s to zerd is finite and
not zero for points x of the 'bcdy not close to a stagnation point.
Then the veloclty potential and stream funchkion for the floy about a
second body obtained from the- firet by nrultiplying the la.tera.l dimen—
sions ‘by 7 ere a.pproxmately Lo, TS

o = V% + n°f(x,x) - _(au)

i 2 2
¥ = Vor +n s(x;r) (25)
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This is easily seen by comsidering the streem functfons of ‘the two flows,
.nobing that ¥ = O on the bodies, and that g(x,r) is approximately
.equal to. g(x,o) since r - is amall s e, -

If P, end P> dencote the preesure coefficients for the same x
at the surfaces of the respective bodies whose radii are r; and nr;,
1t follows from’ equations (1), (22}, and (2%) that

------

Q(V'x)l ' Qfx(x,rl)
3 = = = -
o V:‘? o 'V'o_
e Sy aag Ty
L by
. s Mo Ve

i T i g

v - - s R

Henoce these equations give the approximate relation

..Eg (le)a/vb ; naf;(x,nrl) i 'a: . %(eé)
131 (V'z)lfvb | fx(x,r1)

C e [P PP R . . - N S~

This approximation 1s valid for a very slender body since ¢lose to such a
body the longitudinal velocity increase fy(x,r) 18 nearly independent of

r. It is true that for a prolate spherocid fx{x,r) becomes logaritimi—
. cally infinite but 1t s still true that the limit of f£y(x,mr)/fr(x,r)

ie unity as r tende to zero; this is sufficlent to prove equation (26)
for the limiting case of zero thicknass. _ -

On the other hand “the relation of'equation (26) may not be the
mosgt satisfactory one for bodies of moderate thickness, Approximate ex—
Pressions for the pressure coefficient and velocity increase at the sur—
face of -a prolate spheroid are given in ths appendix " Let the subscript
1 ‘vrefer 'to g prolate spheroid of thickhness ratio &/l and the subscript
2 refor to a body of thicknéss retio nt/l. If terms of order (ﬁ/l)a
and higher are neglected in equation (A6) there 1s obtained.

(Pmax) » [(V x)max]a/v "{nt/l)ang(ntII)z B '2 i log ﬁa.} 27)
e = & ———————
(Pm)l [ (v x)ma_x]l/vc —(t/z)a los(t/l)e log(‘b/l)a_,

]

v -
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If terms of order (17/2)’a are-retained bt ’terms’ of higher order are neg-
lected in equation (A6) there is obtaimed _

(Prax), [(V'x)max]g/vo - gcnt/nzlcu;(m:/ii2 ?(1;163'2;)'(nt/7;)_2-_-

(Prax), ‘L(v )m J VALY —-é(.t_'/_t)alés(f_:/})e *(lflog?)(_#Z})'g' .

I log n? . L . (28)
- 1og(t/z)2 + 2 (1—1032) . ) :
"In epplying these relations to the study of compreesible flow by means of
method IV it will be necessary to take..n eguel to B. .Corresponding to
& Mach fumber of 0.8, B 1is 0.6. With n = 0.6 the approximations glven
in equations (27) and (28), a8 well as_the irue values of the left members
for a prolate spheroid, ere plotted as’'a function of 't/ in Pigure 2.
In addition this ratio is plotted in figure 2 for the NACA 111 seriles
(reference 11) of bodies as well as for & series of bodies given in ref-—
erence 12. Unfortunately these series of bodies are not related to one
snother so that ohe body may be cbteined from ancther’ of the series by
mltiplication of -the vadil by a fixed factor. Howevey the.distortion’
is not great. Straight lines correspeonding to n ='0.6 and n2 = 0.36
are added to figure 2 for. comparison, It appesrs.that-for small valuss of
t/ 1 equation (28) gives the best approximation’ for the prolats spheroid;
whereas for large values of. /1 -equation (27) is better, but neither is
of much value for values of /1 1in excess of 0.30. The approximation
given by eguation (28) appears to be most satisPactory for general use
but 1ts application should be restricted to bodles whose thickness ratios
are less than 0,30. It should be noted that as .t/1 . tends toc zero the
right members of equations (27 ) a.nd. (28) 'both red.uce to n? in sgreemsnt
with equation (26). 1 : .

VARTATION OF PRESS'CERE CQEFFICIENT WITH MACH
NUMBER IN CDMPRESSIBLE FEOW _ -

Coneider a slender strea.mline ’body of revolution of length 2! and
maximum rediuvs + . in a wmiform stream of compressible fluid. Suppose
that the undisturbed fluid flqws in the direction of the positive x—-axie
and thet the hody .is placed .with its axis along .the x-axis and its center

4
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at the origin as ehoﬁx in figure 1, "Deio'-io Yy '?c : t&e{_n'reéswe coeffi~
clent at any point - x- of the surfa.ce ‘of thg 'body. Let Pi be the pres-—

sure coaefficient a.'b the sa.me point of the surfa.ce of' the .game body under
the assumption that the f‘luid. is incompreasi‘ble.

Method II 1s the most ccmven.ient method to uge, for the aize, shape,
and orientation of the body are wunchanged in the corregponding incompressi-—
ble flow. It follows at once that P, = Py or, in other words, that the

rressure coefficlent is independent of the Mach number,

" In us'ing any of the other methods, it is necessary to take account
of the change in the shape of -the body in pessing from the campressible
flow to the correspond.ing incompressible flov. Since methods I and IIT

are valid only for very slender bodies the. a.ppropriate presstme—coefficient

-variation with thicknegs is given by equation (26), When method I is used,
the corresponding body in the incompressible flow 1s of length. 21 .apd

PN

meximin redins 8% “so that Pg = (1/8)(BP1) = Pi. Agiin, if method ITI

18 used, the body in the inccmpressible flow is of length 21/ and maxi—
mum re.dius tB"ﬁ_' go that the thigknesp ratio is decreased in the ratio

B%. It follows that Pg = (1/R)(BPy) = ;. Finally when method IV is

used the body in the incompressible flow is of length 2! and maximum

radius’ t8 so that‘ Po = (1/[32)(BEP1) = Pj_.

_ Method.s I I1, a.ncl III are. vqlid on.}y for very slend.er 'bod.:les fiot
only bécause some distortion is introduced in the comparison of the body

. shapes but also because the slight. vnriatien of the pressure coefficient

with d.istance from the axis of the body is neglected-when this. distance
is small, " This variation with dlstance mmst be considered in order “to -
avoid irconsistent results if the closer approximations of equations
(27) and (28) are-used in conjunction with methods I, II, and III.
Since this 1s :lnconvenient to do and singe method IV 1s not gubject

to these limitations, 1t is preferable to use the latter method when
the closer approximations given by equationa (27) and (28) are used,

: If equation (27) is used together with mpthod. IV it 1s easily found
that S s e e m ' ]

 Cmax)g [(V'x)iﬁax_lc/vo iy o8P

. s " [P e T S @)

whereas, if equution (28) is.uged, t.here 13 ohta.ined .
' (é D0 (v A T g -
. { ml (30)

(Pmax)i [(v Xpax 1/v T Log(t/1)% + 2(1-1cg2)

Il
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Bquation (29) ia.the result of. referenqe 8 aucl_equa.tion (30) is the
asymptotic first approximtion of refqrence 9. The result qf equa.tion ‘
(30) is shown graphically.in figure 3. 3 _ _ L
Figure 2 shows that eq_uation (30) is likely to 'be most ‘suiteble
Tor general use although for thicker prola.te spheroids equation (29)
would appear o be 'better.‘ Heither of these equetions should be used
for bodies whose thickness. ratios exceed. 0,30, For thicker bodies the
more exact results of reference § may be used, For vexy slender bodies:
the right members of both equations (29) end (30) reduce to unity in
agreement with the result previously obteined. In the application of
equation (30} to bodies other then prolets spheroids, t/i may be
chosen as the actual thickness ratio of the body or as the thicknsss
ratlio:of the spherold having the same peak pressure ccefficlent as the
bedy, or tfl may be chosen in Some other eppropriate manner. - Thlie un—

certainty in.the chojce of. /1 will not materia.lly affact the resul‘bs
cbtained from equation (30). . . .. L

. 'References 8 a.nd. 9.8 udy onJ.y thq maximnn Velocity increment, ‘but
if equatiochs (A9) and.(410) of the’ “appéndix are used, apnd terms of order: -
(t/1)2 are reta,insd, then 1t is essily shown 'bha.t a.'E ’cJ:e surface of & -
s‘_pheroid. . : _ : : =

e s
3

: '-(V'z)c/Vo i ﬁ legB -. N L :
e 14 (31)_.
S (V’x)ifv - 103(1-,/)) w 2{[1-—(::/7.) }-1032}
- _.__..= l - - . - ‘(32)
.Pi . 103(1-1/1)2 + (x/l)ahl—(xlz)al +2-21032 ST

Tt should be noted. that in con‘l:ra.st to eq_ua.tion (26) P /P:L and

[{vx), /Vo]} E(V'x) 1/\?0] ‘are slightly different beceuse terms of hig'her.

order have been retained. Of courde squations (31) and (32) are valid
only over the central portion of the spherold and are Invelid nesr the
stagnation points., When x = O equations (31) and (32) reduce to .
equation (30). Generally it will be sufficiently asc.ura.te to use eque—
tion (30) in pla.ce of equa.tions (31) and (32) : .

'ES?mATION a}:t_" cRch_I_. m&mm&s

The critica.l Mach mnn‘ber of a.ny body ca.n be determined from i'bs
low-speed peak presme coefficlent provided. %he variation of peak
 pressiwe cosfficiert with Mash hrmber -is’known..w If equation. (30) is "
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used to estimate this variation for a body of revolution and if in thie
equation t/l 1s chosen as the thickness ratio of the prolate spheroid
having the same peak presdure-coefficient as the body under considera—
tion, then the solid curve of figure k is obteined, If the law for very
slender bodies is used, namely, that the pressure coefficient is inde-
pendent of Mach nnmber, ‘the dashed curve of figure 4 is obtained. The
curves appliceble to two—dimensicnal flow obtained from the Prandtl-—
Glauert and Karmaaneien (reference 5) lewe are ehown for comparieon.

<

EXPERIMENTAL RESULTS AND DISCUSSION

1-.:.—..’- B . - - - - -\- =

In order to determine whether the results of the preeent paper are
in agreement with’ experiment, a considerable’ aimount of experimental pres—
sure dete was gtudied. The fuselages of many alrplenes are approximately
bodies of revolution but most data have been taken with the wing on the -
Tuselage. At stations neéar the wing .the pressure coefficlent is more
influenced by the presence of the wing then it ie by the fuselage. Con—
sequently, date on the fuselege without the wing or on the fuselage far
frem the wirg are needed

Preeeure data fer a fuselage without a wing or Sther protﬂberancee
were avallable for only one alrplane which, in this repert, ie designated
as airplare A. These data were tsken in the Ares l6—foot high—-apeed wind
tunnel and ooryected for tunnel-wall effects, the corrsadtion to the Mach
number being 1n the neighborhecod of S percent. This fuselsge is & body
of revolutien. Back of the maximum section, the regular fuselage wase
replaced by a conical shape as ehown in figure 5. The length of the model
‘tested was 13%5.0 inches and the meximum thickness was 37.56 inches, gilving
a fineness ratio of 3. 595 " The locatione of the preesure orifices are
also shown In figure 5. The mcdel was suppo¥ted in the tunnel by means
of two strits connected to it about 459 on either side of the bottom
verticel center line of the fuselage. Bince the date frcm the lower
orifices might be influenced by these strute, the variation of pressure
coefficient with Mach number is shown in figure 6 only for the orifices
on or nesr the top of the model. The data of orifices T-2 and T+ mey
be influenced by the presence of two holes in the fuselage near tke nose
which were to simulete gun ports. For purposes of compariscn & +/B
curve is added.in esch case. For orifices T-7, IR-T, T 8, and TR-3 &
_curve showing the theoretical varilation of the peak pressureé coefficient
as given by equation (30) is mdded, This curve is seen to lie very clode
to the 1/8 curve &ppropriate to two—dimenslonal flow. It can be seen
that for the orifices -T+7, TR—7, T8, and TR-8 the experimertal pressure
- gcoefflclents rise slightly with Mach number but less than predicted theo—
retically by equation (30). At the other orifices the pressure coeffi-
cient rises lese rapidly and evsen'falls at some of the orifices, chang—
ing eign in one or two cases., This ip not predicted by the linear theory
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at all. A more accurate and detailed calculation carried out in reference
“13 for a particula.r body ) hcwavor, reveals such 'beha.vior on soms parte of
the ‘body- -~ . . - .

The other a.va.ila.'ble d.a.ta wore for a J.uselage with wing I'b wes con-
sldered that pressure data for orlfices near the nose of a long Puselage
would be little affected by the Erasenoe of the wing. Near the wing, the
effect of -the wing woula. be predomina.nt. . i B

Figure T Bhows the: fomard. portion of the Lu.selage of a.irplane B
together. with the position of the wing.  The fuselags 1s nearly & body
of revolution, but the upper svrface 1g compliceted by the presencs of
the pilot's wind.shiela. whereas the lower surface differs from theé Yegu-
lar  shape only by having e flat pombardier's window very nser the nose.
The locations of five pressure orifices on the lower surface of the -
fuselage on its ver-bica.l centér line are also shown. These orifices -
are all to-the: rear of the 'bOm'ba.rdier 8 window on that portion of the
fuselage .which a.:pnroximtes most closely to & body of revolution. Figure
8 shows the variation of pressure coefficient with Mach nurber at these
five orifices. Thebe data were teken in the Ames 16-Foot high-speed- wind
tunnel and were not corrected for tunnel-wall effec'bs. It 1s seen thdat.
‘at those orifices farthest from the nose the pressure coefficient is re-
marka.‘bly constant a.s 'E.he Mach nmber 15 cha.nged.-

Figure 9 shows' 'bhe fuselags s wing, and canopy of & l/‘j-scale modol
of airplans C together with the locations of some of the pressure orifices.
The forwsard portion of this- fusela.gs 1s approxima.'bely a bedy of revolution,
the nose duct -having been replaced by & plug. Figure 10 shows the varia-
tion of the pressure coefficient with Mach number at & number of drifices,
the date having been teken for the wing and baslc fuselage bdut wlth the
oonopy removed. ' A number of orifices .are not showm in figuwre 9 as it is :
drawn wlth the canopy on. -But the poaition of each orifice for whlch
data are glven in figure 10 1a described by glving itas distence. In inches
from the nose of the fuselage with plug. These data were cobtalned in.the
Langley 8-foot high=spesd wind tunnel. It is- seen that, at those orifices
which are well forward of the wing, the.pressure coefficient is nearly =
constant or Increases 'sldwly wilth increasing Mach number, 1is curve re=
maining below the 1/B ocurve; but near the wing the increase of. the pres-
sure coeffliclent ls mich moxe raplid and at several orifices the increase
is more rapid then I/B. At such orifices the effect of the wing lg:
gregter than that of the fusela.go Moreover the flow over the wing j.s
more neerly two-dimensional and so the 1/B law would be expected do:
hold. The critical Mach number of the wing is 0.68 and this may a.ccount
for the drops in some of‘ the curves above M = 0.70.

I'b we.s consid.ered tha.t in ‘the cases of airplanes B end G the bodles
tested did not resemble pure bodies of revolution sufficiently closely
to warrant a compa.rison of the test results with the thooretica.l results
of equation {30},



2 ’ " NACA RM No. AGHLS

The Kollsman pitot-static tube ¥.S.S.C. No. 88-7-2950 is shown in
Tigure 11. This tube is a body of revolution, and a short distance back
of the nose its cross section remalns coristant for a considerable distance,
the dismeter of this conetant portion being seven—eighth inch. The static
orifices are located near the center of this length of constant cross sec—
tion and ere 5-1/16 inches from the nose. Figure 12 shows the variation
of pressure coefficient with Mach number at the static orifices of this
pitot—static tube. These data were obtained in the calibration of this
instrument in the Ames 1~ by 3§—foot high—speed wind tunnel and corrected
for the effect of tunnsl blockage. The tunnel choked at a Mach number
of 0.952 and at Mach numbers close to this value the tunnel corrections
are unrelisble. For thils reason the sharp drop in the curve occurring
at Mach numbers over 0.9 should be disregerded. For purposes of com—
perison a 1/B curve was added to figure 12 as well as a stralght lire
to indicate the theory of the present report for very slender bodies.

In addition, e ourve has been added showing the variation of peak pres—
sure coefficlent as predicted by equation (30) for a body of fineness
ratio 20, this being the fineness ratio which appears appropriate to
the model tested. It 1s.peen that the pressure coefficlent is nearly
constant increasing only very slowly with Increasing Mach number. Thse
increase is very small and is not fa.r from the.t predicted. by equation
(30) but is far below 1/8. o _

'I‘he pressure dietributicn on the fueelage of a mid.wing airplane
" hes been studied by Deleno, (SBee reference 1lhk.) It was found that the
peek negative pressures on the fuselage occurred near the wing and were
mors dependent on the wing than on the fuselage. The variation of these
peak pressures was in good agreemsnt with the 1/B law, but at other
points on the fuselage the preeeure—coefficient varistion does not
.~ follow this law, These concluisions are in agreement with the data shown
. in figure 10. . It appeers that near the wing where the peak pressures
. ocour, thoe flow is nearly two—dimensiona.l and the 1/B law gives a good
ploture of the actual variation of the pressure coefficient. But at
points farther from the wing the flow is more nearly three—dimenslonel
and at such points which are not toc close to a stagnation point the
pressure coefficient should be constent at least for very slender bodles
according to the theory developed in this report. For scmewhat thicker
bodies the pressure coefficient may rige. slowly with increasing Mach
. number and equation (30) gives a formula for this increase. The ex—
perimental data of Delano show séveral different types of pressure—
coefficient vaeriationi., The typs may depend on the proximity of the
wing and may result from wing and f‘usela.ge preesuree following different
lawe of variation.

It is a.eeumed by ‘Robinson and Wright (reference 6) that the variation
of the peak pressiure coefficient with Mach number can best be represented
by the 1/B law for three—dimensionasl flow as well &s for two—~dimensional
flow. In view of the foregoing discussion this would appear tc be Justi—
fied, provided the peak pressure coefficient occurs near the wing, and
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this 1is usually the case-at least for 2 wing and fuselage combination.
Ko attempt is made in reference 6 %o predict the pressxme—coafficient
va.ria.tion a.-b points other than where the peak cccurs. g

It a.p'pears that, for those 'bod.ies ‘which a.pp::oxima’be closely 'bq
bodlés of revolutlon and for pointe not too close to a stagnation point,
the pressure coefficient is nearly constant or increases slowly with
Mach number, It canmfiot be sajd that the pressure coefficient is exactly
constant in all cases, as proved in this report for a very slender body
of revolution. Nevertheless equetion {30) appears to overestimate “the
a.c'lmal increase for the true 'bod.ies of revolution tested.

~

f '..cémvsmss

1. Four related methods and a general method fer the study of three—
dimensionel exially symmetric compressible flow by means of the linear
perturbation theory are presented. In each case the properties of the
ccompressible flow are obtained frcm those of & corresponding incompressi—
ble flow. Each of the methods possesses ceriain advanteges over the
others. For example, in method IT the body shepe, size, and orientation
are the same in the corresponding incompressible flow as in the com—
pressible flow; wherees in method IV the streamline flelds are entirely
gimiiar, the incompressible fileld being cobtained by a contrsotion of the
compreseible fleld in the radial direction. Methods I, II, and IIT are
limited to very slender bodies; whereas method IV may be applied to bodies
of mcderate thickness.

2. By meens of each of these four methods, it is found that the pres—
surs ccefficient at the surface of a very slender streamline body of revo—
lution placed in & uniform stream of ccmpressible fluld ie nearly indeperd-—-
ent of the Mech number, being entirely independent of the Mach number in
the limiting cese of zerc thickness. This result is invaelid near a steg-
natlon point and 1ts spplicetion is therefore usually limited to the
central portion of the body. For a prolate spheroid the variation of the
peak pressure coefficient with Mach nunber is givern by the formule

{Pmax), - 1og(1—M)
(Pmax) 1og(t/1)° + 2(1-log2)

"and this result may be used for bodies of moderate thickness {thickness
ratio less then 0.30). For very slender bodies the second term ie neg-
ligible while for a thickness ratio of 0.2 the increasse in the pressure
ceefficlient is about half that for a two—-dimensional body.
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-3, Experimental cla.ta for bod.ies of revolution without winge or other
protuberancos show nearly. cons’tant or slowly rising pressure coefficient
as the Mach number increases. -The rise 1is 'usu_e.lly less than thet pre-—
dicted by equation (30). Experimental data for bodiee of revolution
* with -wings show nearly constent or slowly rising pressure coefficient
~ far from the wing but rapidly risirg pressure coefficlent near the wing,

" the rise agreeing with that pred.icted. for two—d.imensiona.l bodles,

h On the fuselage of an a.irpla.ne nea.r the wing the presaure coeffi—
oient is influenced more by the wing than by the fuselage end, at such
points, the pressure—-coeffioient varlation 1s best represent by the

1L/ T = M2 law appropriate to two—dimensional flow. Since the peak
pressure coefficient usuelly ooourg near the wing, the veriatlon of peak
preasure coefficient for a wing-—fuselage ceiibination is best represented

by the 1/J/1 = law. On the other hand, at points on the fuselage
' far from the. wing and not close to & stagna,tion roint the pressure
cosfficient is nearly constant. In order to obtain an estimate of the
.rise in the pressure ccefficient, tle result for ths peek pressure coeffi—
clent given by eguation (30) may be used.

Ames Aorona.utical La.'boratory, . : e ) - L L
Nationel Advieory Committee for: Aeronautics ’ o . , B
‘Moffett. Field, Ca.lii'., l-_ias 13, 1946. _ S o

-l
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APPENDIX
PROLATE SPEEROID — INCOMPRESSTBLE FLOW

Consider a prolate sphercid lmmersged in a 'm:.iform str:é_am of Incom—
pressible fluid whose velocity at & large distance from the body is Vg

in the direction of the positive x—axis. Suppose the sphercid to be
located with its center at the origin and its major axles along the x—axis.
Let ¢ denocte the distance of elther focus from center of spheroid and
£, 1 denote the elliptic coordinates for a meridian section, so that the
following relations between the coordinates are satisfled: ’

x =c cosh & cos 'q

- ¥ =c ginh € sin

Also let | “
& = ¢ cosh £* = semimajor axis of ellipse forming meridisn section

b = ¢ sinh £¥% = semiminér axis of ellipse forming meridian éection_

e =,/1 — ('b/e.)2 - = -}-'--——_; = eccentricity of'ellipse- forming meridian
. e cosh & : section

e -

where £* 15 the value of £ on the ellipse forming meridian section.
Then the velocity potentisl for this flow is given in &ection 105 of
Lanb's Hydrodynemics (reference 15) .in the form

2Voc {1
Tie 2o coB T Ecoehi _log

~e 1-e®

@ =V~

cc;sh E + l } (a1)

cosh £ ~ 1,

If the equations which give x and r in terms of t and n ere
differentiated partially wilth respect to x and r, it is found that

bﬁ;_an sinh & cos 7

3 or c(cosh®t ~ cos?® 1)

13 an cosh £ sin 7

or ax c(cosh®t ~ cos® )
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The velocity compoment in the direction of the x-axis is given by

v, _ 22 X%
R TH "

When equation (AL) is used, it is easily found that

v _ Ve { coshg + 1 2 cosh ¢ } .(A2)h'
x* Yo oy ite _ 2 _ gcosh&--l _cosizﬁ—cosz-;l_ :
1-e 1l-e?
Similerly, the radial velocity coqné’onent is given by
at .
e RE R S
and 1t 1s easily found that
2Vo 8in 1 cos 1 .
vr = (A3)

- 1ve 20\ 2r _ .2 )
(log-i-:; 1_92/(00511 3 cos 1 )sinh £

At the surface of the spheroid equatioﬁs (A2) end (A3) reduce to

l+e 2o -
v ¥ log - 5 5 .
__I_ el - 1-e 1-e2 coa2 1 _ - (A"F)
o log 1+e 2e ’
l-e 1;-95
V. 2a6¥ sin 1 cos 7

 (a5)

=r T+~ 2o
\'f log —— — 1-e? cos? ) b
° (7 € i l—eé): K

k]

-



' NA&A RM No, A6HLQ

; i
: —Elog 2+ 2c502 1
-

= log2 - csc? 7

unless 7 = 0 or =.

27
It follows that
1im V¥V -1

b/a—>0 (v/a)> :L::g('b/g.)2

.- log(l+e) — log(l-e) — ——pg——z—
= - 1im ) ' 1- cos 1

e—> 1 (1-02) log(1-e2)[1og(1+e) — log(i~e)] — 26 log(l—-e=)

1 %e }

=~ linm LY Tog(ie) 1°3(l+°) 1-e2 cos? 4

e—>1 2o + { (1—32)[1032(1+e)- Yog (1—3)]-29103(17«)}

: los( i-e) -
L
2

unless 7.=0 or mw. Also

1im  Vx*/Vo =1 + :]g'('b/a)a log(b/a)2
b/a-->0 (v/2)2

14  2e 1, o 2y, Lte 2

= lim l :L-e 1—92 e Tl (l—e )log(l—e )logl -o lcg(l—e )

e->1 (1.—32)[103(14-9) - log(}-e)l —

(1-0)Tog{1-0)+5(1-02)10g(1-52) 208> ~ (1+e)Log(Lve)+ —o

= 1im 2 1-o 1-e2 cos® g

e—>1 (1~e2)[1cg(i+e) — log(l~e)] ~ 26

If terms of higher order ther (b/e)® are neg—

lected it follows that, except for n =0 or =,
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Z 20 e (- ot a s ()
- =1 -\ log a.)-(czeu:z n — log 2) " .(AG)_

In the same way it follows that T - : "
: 3

lim AAL lim 2 sin n cos N

b/a—>0 =

bla o>1 (l-»e cos n){(lr-e )[log(l+e) -—103(1—9)] 2e

2sin n co__é_s n .
= = —CO
=2s1n® q RN

unless 7 = O- or- 'x, Thus if-'_be:_t"ms of higher order than (b/a) are
neglected, there 4ip. cbtained, excbpt for 4 =0 or =,

V¥ Vo = = (b/a) cot n (A7)

If 1t is remembered that the pressure coefficlent at the surface
of the spheroid is given by

P* = 1 =~ (V)2 — (V5/V,)2
and if texrms of higher order than (b/a)® Arga'_i_xe__é;lé'qted 1t follows that

e LR T -t
- - oo PR

P* a (5/3)2 log(b/a)2 + _(_cot? N+ 2—2 103 2)(v/a)2 (a8}

unless 7 =0 or w.

For some purposes 1t is cbn;'enieﬁt tc'z“'gi've ‘expressions for _V */V
end P* in terms of x instead of 7 Iin which case equations (AG) ard

(A8) become
-1-t ( ) 108 ( ) <l-(x/a.)2 ~leg 2)<a> :(a9)

(O () (g e Q) w0

-
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Figure 11.- Kollsman pitot-static tube F.8.8.C. No. 83-T-2950.
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