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RESEARCH MEMORANDUM

COMPARISON OF THE AFRODYNAMIC CHARACTERISTICS OF
THE NACA 0010 AND 00l0-64 ATRFOIL. SECTIONS
AT HIGH SUBSONIC MACH NUMBERS

By Perry P. Polentz

A wind—tunnel investigetion has been conducted to determine the
1ift, drag, and pitching-moment characteristics of the NACA 0010 and
00106k airfoil sections at Mach numbers up to 0.91 and Reynolds
numbers between 1.0 %X 10° and 1.9 X 10%, The results are compared to
illustrate the effects of varylng the chordwise location of maximm
thickness from 30-percent to LO—percent chord on the principal high—
speed characteristics of the sections,

A virtuslly unchanged Msch number for 1ift divergence, a decrease
in lift—curve slope of approximstely 10 percent, and a reduced maximum
1ift coefficient at Mach numbers below 0,70 were associated with the
more resrward location of maximum thickness. The Mach number for drag
divergence was increased about 0.05 at 1ift coefficients up to 0.4,
but the rate of drag rise above the Mach mumber for drag divergence
was not appreciably chenged. Pltching moment was affected to a negli—
gible degree.

INTRODUCTION

The characteristics at high Mach numbers are avallable for
relatively few airfoil sections of the NACA L-digit series. The
present experimental investigetion was undertsken to obtain such dsta
for the NACA 0010 and 0010-6k sirfoll sections et Mach numbers ranging
up to 0.91l. A further purpose was to appralse the effect of varying
the position of maximum thickmess from 30—percent chord for the
NACA 0010 profile to 4O-percent chord for the NACA 001064 profile.

NOTATION
ag section lift—-curve slope, per degree
cdq section drag coefficient
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cy section 1lift coefficient
maximum section 1lift coefficient

cmc/4 section quarter—chord pitching-moment coefficient

M Mach number of free stream

Mg Mach number for drag divergence

My Mach number for 1ift divergence

g section angle of attack, degrees

APPARATUS AND TESTS

The tests were conducted in the Ames 1— by 3—1/2—foot high—speed
wind tunnel. This tunnel is a two-dimensional, closed~return type having
a rectangular test sectlon of the Indicated cross—sectional dimensions,
and 1s provided with sufficient power to obtain choked flow in the
presence of any model., 1Its contraction ratio is 16.1:1. Atmospheric
alr, maintained at barometric pressure in the settling chamber, forms
the working substance.

Lift and pitching—moment date are obtained by use of a method
similar to that described 1In reference 1 from messurements of the
reactions on the tunnel floor and ceilling of forces experlenced by the
airfoil, Drag is determined from weke—survey measurements made with a
rake of total-head tubes. By use of these methods 1t is possible %o
seal completely the gap between the sides of the tumnel and the ends of
the airfoil, and ensure that two—dimensional flow is obtalned over the
entire surface wlthout interference with force measurements,

Scale drawings of the profiles tested are reproduced in figure 1,
eand the corresponding coordinates are tabulated 1n table I, from which
it will be noted that the point of meximum thickness is located at
30-percent chord for the NACA 0010 airfoil section and at 40 percent for
the NACA 0010—64., (The significance of the alrfoll notation used is
explained in reference 2.) The chord length employed for the tests was
6 inches; the models were mounted at the center line of the tumnel and
spanned the l—foot dimension. The sirfolls were fabricated of aluminum
alloy, the deviastion from nominsl dimensions being held to 0,002-inch
maximum, All surfaces were carefully polished to a mirror—like finish.

The Mach number of the tests was veried from 0.3 ninimum to a
meximum value lylng between 0.75 and 0.91, the exact range depending
upon the angle of attack but belng sufficlent to encompass the 1ift
stall up to Mach numbers of the order of 0.8. Data were secured for
angles of attack between —2° and 12° at increments of 2°, and at —1°
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and 1°, Reynolds numbers of the investigation varied from 1.0 X 108
minimm to 1.9 X 10% maximum.

The results obtained in the wind tunnel have been corrected by the
method of reference 3 to account for the constriction in the channel
ceused by the model and by the wake. The magnitude of these corrections
increases both with Mach number and with angle of attack, but, in
general, smounts to less than 2 percent of the velues reported. This
seme reference demonstrates that no correction is possible for data
obtained at the choking Mach number, Dashed lines are used on the figures
to indicate measurements mede in the vicinity of thils Mach number which

are of doubtful validity.

RESULTS AND DISCUSSION

Lift, drag, and pltching-moment coefficlents for the NACA 0010 and
00106k airfoll sections are presented as functions of Mach number in
figures 2, 3, and 4., An indication of the accuracy of the 1lift and
pitching—moment measurements is afforded by the symmetry of the curves
at lLow l1ift coefficients, Owing to such varlables as stream angularity,
model asymmetry, and errors in setting the angle of attaeck in the wind
tunnel, discrepancies equivalent to as much &as 0.2° in angle of attack
may be observed.,

Lift as a functlon of angle of attack is shown for various Mach
numbers for the two airfoil sectioms in figure 5. Comparison of the prin--
cipal lift psrameters is provided in figures 6 snd 7. Filgure 6 discloses
that no significant difference exists for the lift—~divergence Mach
numbers of the two profiles. (ILift—divergence Mach number is arbitrarily
defined as that Mach number at which the first polnt of inflection occurs
in the 1lift coefficient versus Mach mmber curve.) Figure 7 shows 1lift—
curve slope and maximm 1ift coefficient as a function of Mach number
for the two sectlons.

The loss of lift—curve slope for the NACA 0010-64 section compared
to the NACA 0010 observed in figure T, approximately 10 percent at Mach
numbers below 0.7, cannot be attributed entirely to the differing meximum—
thickness locations of the two profiles. Reference Lk indicstes that some
of this deterioration results from the increased trailing—edge angle of
the NACA 0010-6k profile (17° 5Lt as compared with 13° 22! for the
NACA 0010). The present data do not permit a separate evaluation of the
effect of this geometric varilable, but the general conclusion is indicated
that shifting the maximm thickness to 4O—percent chord decreases the
1ift—curve slope at all Mach numbers for which data were obtained,

Figure T also demonstrates that the maximm 1ift coefficient of the
NACA 0010-64 airfoil section, compared to the NACA 0010, is appreciably
smaller to spproximately 0.7 Mach number; but that differences beyond
this value are inconsequential. Reference I, on the other hand, indicates
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that the maximm 11ft coefficlent at Mach numbers above 0,7 would be
reduced by the increase in the trailing-edge anglie. By virtue of these
facts, 1t seems evident that some Increase of maximum 1ift coefficlent,
above 0.7 Mach number, results from the resrward shift of maxIimum—

thickness locstion,

Drag—divergence Mach number (defined as the Mach number at which,
for a constent angle of attack, the slope of the curve of drag coeffi—
cient versus Mach number equals 0.10) is plotted in figure 8 as a function
of section 1lift coefficlent. The adventage of the more rearward meximum-
thickness locatlon is here clearly evident, the Mach number for drag
divergence being increased about 0.05 at 1ift coefficiente up to O.k4.
According to referemce 4, however, some of this gain accrues from the

chenge in trailing—edge angle.

Further evidence of the effect of the rearward shifit of the maximum
thickness on drag appears in figure 9, which illustrates the variation
of drag coefficient with 1ift coefficlent for the two profiles., A
point-by-point comparison between the (a) and (b) portions of this
figure at Mach numbers gbove that for drag divergence will gqulickly demon—
strate that the NACA 0010-64 profile has much smaller drag coefficients
than does the NACA 0010, but an approximately equal rate of drag rise
with increasing 1lift coefficient, Reference to figure 3 shows that the
reduction of drag stems primsxrily from the delayed drag rise of the
NACA 0010-64 section as compared to that of the NACA OOLO section.

In figure 10 1s seen the variation of pitching-moment coefficient
with 1ift coefficlent for the two airfoil sections, and the change with
Mach number of the slopes of these curves at zero 11ft is illustrated
by the plots of figure 11. The variation of the slopes displayed by
both profiles at the higher Mach numbers is undeslrably great, and 1t
wlll be observed that moving the point of maximum thickness from
30-percent chord to 40-percent chord provides little improvement.

CONCILUSIONS

A comparison of the experimental 1ift, drag, and pitching-moment
characteristlcs of the NACA 0010 and 001064 airfoil sections at Mach
numbers up to 0,91 provides the following concluslons relative to
changing the maximum-thickness position from 30-percent to ho-percent
chord:

l. The lifb—cprve slope decreased approximately 10 percent through—
out the Mach number range of the Investigetion, the Mach numbexr for 1ift
divergence was practlically unaffected, and the maximm 1ift coefficient

was reduced at Mach numbers below C.7TC.

2. The drag—-divergence Mach number incresased spproximately 0.05 at
1ift coefficients up to O.4. The rate of drag rise with increasing Mach
number above that for drag divergence was virtually unchanged,
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3. The varistion with Mach number of the slopes of the pitching—
moment versus lift—coefficient curves (measured at zero 1ift) was prac—
tically uwmaffected.

Anmes Aeronautical Isboratory,
Netional Advisory Commitiee for Aeronautics,
Moffett Field, Calif,
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TABLE I.— COORDINATES OF THE NACA ATRFOILS TESTED

[Stations and ordinates given in percent of airfoil chord]

NACA 0010 SECTION

NACA 0010-6h4 SECTION

Upper and lower surface

Upper and lower surface

Station Ordinate
0 0
1.250 1.578
2.500 2,178
5.000 2.962
T.500 3.500

10.000 3.902
15.000 4,455
20,000 4,782
25,000 4,952
30.000 5.002
ko, 000 4,837
50,000 L ke
60.000 3.803
T0.000 3.053
80,000 2,187
90.000 L.207
95.000 672
100,000 .105

Station Ordinate
o] 0
1.250 1.511
2,500 2,04k
5.000 2.722
7.500 3.178

10.000 3.533
15,000 4,056
20.000 b1l
25.000 4 666
30.000 4,856
40,000 5.000
50.000 4,856
60.000 L, 433
70.000 3.733
80.000 2.767
90.000 1.556
95.000 .856
100.000 .100

L.E, radlus,
1.10 percent c

L,E. redius,
1.10 percent c
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Figure /.- Profiles of the NACA 00/0 and 00/0-64 airfoil sections.,
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