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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THE EFFECTS OF OPERATING PROPELLERS ON THE LONGITUDINAL
CHARACTERTSTICS AT HIGH SUBSONIC SPEEDS OF A FOUR-
ENGINE TRACTOR ATRPLANE CONFIGURATION HAVING
A WING WITH 4OC OF SWEEPBACK AND AN

ASPECT RATIO OF 10

By Fred B. Sutton and Fred A. Demele
SUMMARY

An investigation has been conducted at high subsonlc speeds to
determine the effects of operating propellers on the longltudinel chear-
acteristics of & four-engine tractor alirplaene configuration having a koo
swept wing with an aspect ratio of 10. Wind-tunnel tests were conducted
through ranges of angles of attack and propeller thrust coefficients at
Mach numbers from 0.60 to 0.90 at Reynolds numbers of 1,000,000 and
2,000,000. The effects of varylng propeller blade angle, tail incidence,
and vertical height of the horizontal tail were iInvestigated.

The over-all effecits aof operating propellers on the longitudinal
characteristics were not large when compared to the effects of propeller
operation at low speed. Compared to the model with the propellers off,
operation of the propellers at constant thrust coefficlents generally
decreased the static longitudinal stebility. Increasing the propeller
thrust coefficient at & constant Mach number increased both the static
longitudinal stability and the trimmed 1ift coefficient. Operation of
the propeliers at constant thrust coefficient Increased the wing 1ift-
curve slope but had little effect on the variation of lift-curve slope
with Mach number. Operation of the propellers had little effect on the
Meach number for longitudinal force divergence at a constant 1ift coeffi-
cient buft resulted in a decrease in the rate of change of longitudinal
force coefficlent with Mach number at supercritical speeds. This effect
increased with increasing propeller thrust coefficlient and with increas-
Ing 1ift coefficient.

A method of predicting the effects of propeller normal force on the

pltching-moment characteristics of the configuration is presented. Com-
paerisons with measured effects indicate that the accuracy of the method

is good.
g § -
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Railsing the horizontal tall had little effect on the longitudinal
stability with the propellers removed but was destebilizing with the
propellers operating. - '

For en assumed alirplane, operating at the power requlred for level
flight at an altitude of 40,000 feet, calculations indicate only a
small change in the stable variation of tail incidence for trim with
Mach number compared to the propellers-off condltion.

INTRODUCTION

The potentialities of turblne-propeller propulsion systems are well
recognized, perticularly with regerd to the take-off and range capabilll-
tles of multiengine airplanes. The combination of a turbine-~propeller
propulsion system and sn airframe configuration utilizing a sweptback
wing of high aspect ratio should meke possible the achievement of long-
range flight at relatively high subsonic speeds. This propulsive system
could utilize supersonic propellers with high disc loadlings. It is not
believed that the effects of these propellers on the longitudinal char-
acteristics of swept wings can be adequately predicted, either by exlst-
ing theoretlical methods or by avallable experimental data.

An investigation has been mede in the Ames 12-foot pressure wind
tunnel to determine the longitudinal characteristics of a representative
multiengline alrplsne configuration with sweptback wings of high aspect
ratio. The investigation was made with and without operating supersonic
propellers. The power-off longitudinal characteristics of several com-
binations of the components of thls configuration have been presented
in references 1 to 4¥. The characteristics of the propeller are reported
in reference 5. The results of a low-speed investigation to determine
the effects of operating propellers on the longitudinal charscteristlcs
are presented in reference 6. The present report is concerned with the
effects of operating propellers on the longitudinal characteristics of
the configuration at high subsonic speeds., Tests were conducted over a
Mech number range of 0.60 to 0.90 at Reynolds mmbers of 1,000,000 and
2,000,000, If the model is assumed to be 1/12 scale, the power condl-
tions simulated et most test Mach numbers varied from windmilling to
5000 horsepower per engine at an altitude of 40,000 feet or to 20,000
bhorsepower per engine at sea level.
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NOTATTION

upflow angle, average angle of local flow at the 0.7 propeller
radius and at the horlzontal center line of the propeller
plane, measured with respect to the thrust axis in a plane
persllel to the plane of symmetry

mean-line designatlon, fraction of chord over which the design
load 1is uniform

normal accelerstion

wing semispan perpendicular to the piane of symmetry
propeller blade width

1ift coefficlent, %

tail 1ift coefficient, -Eails—-—l-i—f—t
9ot

piltching-moment coefficlent referred to the center of gravity,
pitching moment

gsc
(See fig. 1(a).)

propelier normal-force coefficient, —g—s-

power coefficient .
’? pn®D°

thrust coefficient per propeller, H
pnZpt
longitudinal force coefficlent, —JES-

b ; Q

local wing chord parallel to the plane of symmetry

local wing chord normal to the reference sweep line

(See table I.)
mj_ i — - gy
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wing mean serodynamic chord, ?D =
5

c dy

wing-sectlon design 1ift coefficlent

center-of -gravity location
(See fig. 1(a).)

accelerstion due to gravity
propeller diameter .
maximum thickness of propeller blade section

horsepower per engine

incidence of the horizontal taill with respect to the wing-
root chord

propeller advance ratio, g%

tail length, distance between the guarter points of the mean
aerodynamic chords of the wing and of the horizontal tail
measured parallel to the plane of symmetry
free-stream Mach number
normsl force per propeller
propeller rotationsl speed
]
nomal acceleration factor, %f

shaft power per motor

free-stream dynamic pressure, % pYZ

Reynolds mumber, based on the wing mean aerodynamic chord
propeller-tip radius

propeller-blade-gection radius
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area of semispan wlng
aree of semispan tail

thrust per propeller parallel to the stream

thrust coefficient per propellier, ———
pV3D?

wing section maximﬁ&.thickness
free-stream velocity
welght of assumed full-scale alrplane

longitudinal force, parallel to stream and positive in a
dragwise directlion

lateral dlstance from the plane of symmetry

angle of aittack of the wing chord at the plene of symmeiry
referred to hereln as the wing-root chord

angle of attack of the tall
propeller blade angle measured at 0,70 tip radius
propeller-blade-sectlion angle

effective downwash angle
J

propeller or propulsive efficiency, o
P

masgs denslty of alr

angle of local wing chord relative to the wilng-root chord,
positive for washin, measured in planes parsalliel to the

plene of symmetry

tail efficiency factor (ratio of the lift-curve slope of the
horizontal tall when mounted on the fuselage in the flow
field of the wing to the lift-curve slope of the isolated
horizontal tail)

tail effectiveness parameter, measured for & glven angle of
attack

-
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Subscripts

av average

w wing

t tall

MCDEL AND APPARATUS

The semispan model represented the right-hand side of & hypotheti-
cal four-engine alrplane. Figures 1(a) through 1(d) and table I present
dimensions and details of the model. Figure 2 shows the model mounted
in the wind tunnel. The selection of the geometric properties and the
detalls of the construction of the wing, nacelles, fences, tail, and
fuselage have been discussed in references 1, 2, and 3. The three-
bladed supersonic propeller, designated NACA 1.167-(0)(03)-058 and
having right-hand rotation, was specifically designed for the subject
investigation and 1s described ln detall in reference 5. Figure 3
presents the propeller plan-form and blade-form curves.

The power to drive the propellers was supplied by a variable-speed
induction motor in each nacelle. FEach motor had a normal rating of
75 horsepower at 18,000 revolutions per minute. The propellers were
driven through gears at & rotationsl speed 1.5 tlimes that of the motors.
The shaft power delivered to the propellers was determined by measuring
the 1input power to the motors and applying corrections for the motor
and gearbox losses. Motor rotational speed was measured by means of an
electronic tachometer on each motor.

TESTS

Test Conditions

The longitudinal characteristics of the model were investigated
over a Mach number range of 0.60 to 0.90 at Reynolds numbers of 1,000,000
and 2,000,000. At each Mach number, tests were made with propeller blade
angles of 41° and 51° through an angle-of-attack range of 29 to 10°. At
each angle of attack, the propeller rotational speed was varied from
windmilling to the maximum obtainable, being limited by either maximum
motor speed or maximum motor power. Messurements of the static pressures
on the wind-tunnel walls during the tests at a Mach number of 0.90
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indicated the possibllity of partisl choking of the wind tunmel. It is
believed that the force and moment data shown at this Mach number are
partially affected by this phenomenon.

Tests were made at tail heights of O b/2 and 0.10 b/é gbove the
fuselage center line. Tail incidences of -2°, -4°, and -6° were inves-
tigated at the O b/2 tail position.

Propeller Calibration

The propeller was calibrated on a speclally constructed calibration
nacelle which allowed the characteristics of the propeller, in the pres-
ence of the spimner and the nacelle forebody to be ascertained. Refer-
ence 5 presents the details of the calibration procedure and the results
of the calibration. Propeller normsl-force charscteristics were deter-
mined as part of the propeller calibretion and are presented herein,

REDUCTION OF DATA

Thrust Coefficlent

The model thrust coefficient, Te, used hereiln is the average for
the two propellers, and 1s obtained from the results of the propeller
calibration (ref. 5). Advance ratios were computed for each of the
propellers, and the corresponding thrust coefficlents were cbtained
from the calibration results at & comparable Msch number, Reynolds
number, average propeller upflow angle (ref. 7), and propeller blade
angle. Typlcal variations of thrust coefficient wlth advance ratio for
one propeller (ref. 5) are shown in figure L.

Ad justment to the sdvance ratios of the propellers operating on
the model was necessary since propeller blade angles could be duplicated
only to within #0.15° between the propeller calibration and the present
test. In addition, it is probable that differences in the effective
propeller blade angles between the model snd the celibration nacelle
existed becduse of slightly dissimilar radial distribution of upflow in
the plane of the propeller (ref. T). The adjustment used was based on
the observed differences in windmliling advance ratios between propeller
operation on the model and on the calibration nacelle at comparable
geometrlic propeller blade angles end test conditions. It was assumed
that thrust as well as power was approximately equal at the wilndmlilling
advance ratios for the two operations and that the small blade-angle
difference did not affect the rate of change of thrust coefficient with
advance ratio. Advance ratios measured for the propellers operating on
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the model were adjusted by the difference between the windmilling
advance ratios measured for the propeller operating on the model and
on the calibration nacelle. Thrust coefficients for the powered model
wvere then obtained from the callbration results at these adjusted
advance ratlos. These effects were generally small arnd changed the
propeller thrust coefficlent by only 0.002 at the higher Mach numbers
and the larger thrust coefficients.

Force and Moment Data

The basic data cbtained at various thrust coefficients at constant
angle of attack were reduced to conventional form and are presented as
1ift coefficlent as & function of angle of attack, and longitudinal
force coefflcient and pitching-moment coefficlent as functions of 11ft
coefficient. These variliations with angle of attack and 11ft coefficient
were obtained by cross plotting the basic data for a lift-coefficient
and thrust-coefficient relationship corresponding to an agssumed full-
scale power condition (fig. 5) and for constant thrust coefficient.

Corrections

The data have been corrected for constriction effects due to the
presence of the tunnel walls, for tumnel-wall interference originating
from 1ift on the wing, and for longitudinal force tares caused by aero-~
dynemic forces on the exposed portlion of the turntable upon which the
model was mounted.

The effects of wlnd-tunnel-wall comstraint on the propeller slip-
streams were evaluated by the method of references 8 and 9 and were
found to be negligihle. The dynamlc pressure was corrected for con-
striction effects due to the presence of the tunnel walls by the method
of reference 10. These correctlions and the corresponding corrections
to the Mach number are listed in the following table:

Corrected | Uncorrected| %Corrected
Mach number | Mach number qUncorrected
0.60 0.598 1.006
- T0 695 ’ 1.00G
.80 793 1.011
.83 .821 1.013
.86 .848 1.01k%

.90 .883 1.022

S
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Corrections for the effects of tunnel-wall interference originating
from the 1ift on the wing were calculated by the method of reference ll.
The corrections to the angie of attack and to the longitudinal force
coefficient showed insignificant variations with Mach number. The cor-
rectlons added to the data were as follows:

s

0-38 CL

Ky = 0.0059 €12

The correction to the pitching-mome nt coefflicient had significant varia-

i e erd bl Monlh, mnarmhaw Mamn PATlT Avsloes namrraadd mme crmarn oA $mn +£Too
ULULD WOl SGACH LIS e AUT LULIUW LM - LLULED WELT alucTu W uvue

pitching-moment coefficienta:

O
MAm = K1 CLigyy opp [(Kg Clinii off Ao:) Si:-::l (Tail on)

The values of K; snd K, for each Mach number were calculsted by the
method of reference 11 and are glven in the following table:

M Kz Ko

0.60§ 0,0048 ] 0.77
L0 009T7{ .79
80t 00691 .81
83| .0073| .82
86| .0078% .83
.90 .0087:i .85

The correction constants for the tunnel-wall interference effects were
computed for propeller-off conditions since the effects of propeller
slipstream on wing 1lift and tail effectiveness were small over the Mach
number range of the investigation. However, the 1lift coefficients used
to determine the actual corrections were total values reflecting &1l
the propeller effects. Resulis of the propeller celibration lndicated
the effects of propeller direct forces to be negligible.

Since the turntable upon which the model was mounted was directly
connected to the balance system, a tare correction to longitudinal
force was necessary. Thils correction was determined by multiplying the
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longitudinal force on the turntable, as determined from tests with the
model removed from the wind tumnel, by the fraction of the turntable
ares not covered by the model fuselage. The following corrections
were subtracted from the measured longltudinal force coefficients:

¥ |CXepre
0.60 {0.0025
.70 | .0026
.80 | .0028
.86 | .0030°
.90 | .o0032

No attempt has been made to evaluate tares due to interference between
the model and the turntable or to compensate for the tunnel-floor bound-
ary layer which, at the turntable, had a displacement thilckness of one-
half inch.

RESULTS AND DISCUSSION

An Index to the basic date 1s presented in table ITI. The basic
data are tabulated in tables III through XI, and the coefflcients of
lift, longitudinal force, and pitching moment are plotted in conven-
tional form for comstant values of thrust coefficient in figures 6 to 1k,
Figures 15 through 31 present, for selected conditions, the effects of
DPropeller operation, Mach number, teil height, Reynolds number, and
propeller blade angle on the longitudinal characteristics of the model.

Effects of Operating Propellers on the
Longitudinal Characterlstics

The longitudinsl characteristics of the model, with and without
operating propellers, are presented in figures 6 through 4. In general,
the effects of the operating propellers were not large compared to the
propeller effects at low speed shown in reference 6. Compared to the
model without propellers, operation of the propellers at constant thrust
coefficients generally increased the lift-curve slopes and decreased the
static longitudinal stability. The term "static longltudinal stebility,"
&s used herein, refers to the slopes of the curves of pitching-moment
coeffliclent as a function of 1Lift coefficlent. Decreases in stabllity
are indicated by reductions In the negative slopez of the curves. Gen-
erally, the trim 1ift coefficlients increased with lncreasing thrust
coefficient but at any constant thrust coefficient they decreased wlth
increasing Mach nmmber. There was no large effect of operating propel-
lers on the variation ¢f longiltudinal force coefficient with 1ift
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coefficient at 1ift coefficients less than about 0.40 or 0.50. It is
believed that the erratic variations shown in some of the longitudinal
force data at a Mach number of 0.90 are due, at least in part, to the
choking phenomenon previocusly mentioned.

The varlations of the longltudinal characteristics with Mach number
are presented in figures 15, 16, and 17. These variations are shown at
1ift coefficients of 0.20 and 0.40 for the model with the propellers off
and with the propellers operating at several constant values of thrust
coefficient.

Operation of the propellers increased the lift-curve slopes (fig. 15)
but, In general, had only small effects on the variation of lift-curve
slope with Mach number. At a 1ift coefficient of 0.%0, operating the
propellers gt s thrust coefficient of 0.03 increased the Mach number for
1ift divergence from approximately 0.83 to approximately 0.86.

Figure 16 shows the variation with Mach number of the increment af
longitudinal force coefficlient above its value at a Mach number of 0,70
for several different values of propeller thrust coefficlent and with
propellers removed. It was anticipated that the Mach number of longitu-
dinal force divergence would be decreased as & result of the increased
velocity behind the operating propellers. However, this effect did not
ocecur, and the Mach number for drag divergence was little affected by
operation of the propellers. At supercritical speeds, the drag rise
with Increasing Mach number was reduced considergbly with increase in
propeller thrust coefficient. This reduction was due, in part, to
increases In the wing lift-curve slope with the propellers operating.
Thus, the same 1ift coefficient can be obtalned at = lower angle of
attack and this fact tended to reduce the shock-induced losses over the
outer portion of the wing span. It is also thought that some of the
effect stemmed from increases in the effective Reynolds numbers of the
wing sections immersed in the propeller sgllipstreams. It is doubiful
that a favorsble Reynolds number phenomenon would prevell at full-scale
Reynolds numbers.

The effects of Mach number on the slopes of the pilitching-moment
curves are presented in figure 17 at 1lift coefficilents of 0.20 and 0.10
for the model with the propellers off and with the propelliers operating
at several constant values of thrust coefficlent. The effects of Mach
number were generally grester with the propellers operating than with
the propellers off. In general, the static longitudinal st=blliity
decreased slightly with Mach number when the tall was on and increased
slightly when the tail was off up to a Mach number of spproximately 0.82.
At higher speeds, changes ln stability due to Mach mumber were inconsist-
ent and more pronounced.
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Effects of the Operating Propellers on the
Longitudinal Stability

The factors which determine the static longitudinal stability of a
propeller-drlven alrplane are the stablllty with the propellers removed,
the direct propeller forces normal to and along the thrust axis, end the
effects of the propeller slipstream on the flow on the wing and at the
horizontal tail. Figures 18 and 19 show for several Mach numbers these
varlous effects of the operating propellers on talil-on and tail-off
statlc lorngitudinal stabiiity at zero thrust, at & comparatively high
constant thrust coefficient, and at the condltions of constant horse-
power shown In flgure 5. The data presented were obtalned by adding
pitching-moment increments, referred to the center of gravity, due to
propeller thrust and normal force (from the propeller calilbration deta)
to the propellers-off pltching-moment data. This total was then sub-
tracted from the power-on pitching moments to ascertaln approximately
the slipstream effects. For both constant thrust and constant power,
the various effects of the operating propellers on the pitching-moment
characteristics of the model were small., For the center-of-gravity
position shown on figure l(a), normal force and thrust of the propellers
were generally destebllizing, The effects of the propeller slipstream
on the wing were generally destebilizing while thelr effects on the tall
were generally stabillizing.

Figure 20 presents, for a Mach number of 0.80 and & constant thrust
coefficlent of 0.0k, a comparison of the predicted and measured varia-
tions with angle of attack of the incremental piltching-moment coefficient
due to propeller normel force. The measured varlatlons of increments of
pitching-moment coefficient with angle of. attack due to propeller thrust
and propeller slipstream on the wing and tail are also shown. The effect
of propeller normal Fforce on the pilichling moment was calculated by the
method presented in the Appendix. The predlicted pltching-moment incre-
ments due to the propeller normal force are In good agreement wilth the
measured effects. The small discrepancy at the lower angles of attack
is believed due to 1lift stemming from the asymmetry of the nacelle fore-
body. The theoretical computatlions did not account for any 1i1ft contri-
butlon due to the nacelle forebody.

The effects of propeller slipstream on the pitching-moment charac-
teristics of the wing and tsil could not be predicted to any acceptable
degree of accuracy with existing methods. It 1s believed that the com-
bination of the effects of wing sweepback, of viscous separation, of
propeller slipstream rotation, and of wing-nacelle interference makes
the estimation of slipstream effects on the pitching-moment character-
istlics of the wing and tall virtually imposslible for the present model.

Figure 21 shows the variation with Mach number of the various
effects of the operating propellers on the pitching-moment-curve

R
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slopes A(de/HCL). The date are presented for a representative 1lift
coefficient Por level flight (Cr, = 0.40) and for constant thrust coef-
ficient and comnstant similated horsepower. The effects of slipstream
on the horizontal tall were assumed to be the differences between tail-
on and tail-off slipstream effects. The effect of propeller normal
force varied with Mach number at constant horsepower because of the
relationship of thrust coefficient and 1ift coefficlent used in calcu-
lating the conditions (fig. 5). The variations of the effects of the
propeller slipstream wlth Mach number were small, generally amounting
to a change in pitching-moment-curve slope of less than *0.05.

Effects of the Operating Propellers on the Stability Contribution
of the Horizontal Tail

The horizontal-tall contribution to stabllity is & function of the
downwesh factor 1 - (3¢/da), the tail-efficiemcy factor ni(ai/a),

(41, /de)
and the ratio % isolated tall  (gjculations were made using
(aCr/ax)igy1 opp
the method of reference 12 to evaluate the effective downwash character-
istics and the tail efficiency factor with and without operating propel-

lers. The force datse presented in figures 6 through 9 and the isolated
tail-force data presented in reference 3 were used for the computations

of effectlive downwash angle €, nt(qt/q), and the ratio
acr , /da
(8Cr /dat); 1 o teq tat1

(aCr/da),osq opp
bers in figures 22, 23, and 24 as Punctions of angle of atback. It was
assumed for the computation of downwash angle € and tail-efficiency
factor nt(qt/Q) that the Msch number at the tall was the same as the
free-stream Mach number. The effect of the propellers on downwash
smounted to a change in downwash angle of 0.5° or less. At high angles
of attack the effect of the operating propellers on the factors qt(qt/ﬁ)
(401, /A%E), . 1 etea tata
and = was slzable, however, these effects are
(4Cr/dx)eas ope
compensating and thelr over-gll effect on tall effectiveness was small.

and the results are shown for several Mach numn-

The variations with Mach number of the tall-effectiveness parameter,
BCm/Bit, the isolated teil lift-curve slope, and the various factors
affecting the stability contribution of the tail are shown in figures 25,
26, and 27 for & representative level flight, high-speed altitude (a=4%).
The effects of Mach muiber on chjait were small with and without the

O
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operating propellers. For the selected condition, operation of the pro-
pellers had little effect on the variations of the factors 1 - (d¢/da),

(aCr,, /day)
Lt/ "7t 1s0lated tall ity Mach mmber.

(dCp/da) posq opr

ﬂt(qt/Q): and

The effects of horizontal-tall helght or the pitching-moment-curve
slopes of the model with and without operating propellers are shown in
figure 28 for several Mach numbers. Raising the horizontel tail
increased the static longitudinal stsbility slightly with the propellers
off at Mach mmbers less than 0.90, but was destabillizing over the Mach
number range of the investigation with the propellers operating.

Propulsive Characteristics

Figure 29 presents for an upflow angle of approximately O° and a
Mach number of 0.80, & comparison of the characteristics of the isclated
propeller (ref. 5) with the propulsive characteristics of the model.
Also shown 1s a comparison of the varlations with Mach number of the
efficiency of the isolated propeller and the propulsive efficiency of
the model at a constant thrust coefficient of 0.0k.

The propulsive characteristics include the 1lift due to the propel-
ler slipstream (ref. 13) and the effects of the operating propellers on
longltudinal force characteristics previously discussed. The propeller
is credited with these effects by calculating the effective thrust coef-
ficlents and propulslve efficiencles of the model as follows:

_ 2 -
CTerrective = = (8/40%) 7% (CXPI‘OPS on ~ “props otz const. Cr,
* Trops on

and propulsive efficiency

) Clerrective 9

Cp

Figure 29 indicates that the effective thrust coefficients for
the conditions selected for the comparison were greater than the
thrust coefflcients measured for the isolated propeller, and that the
corresponding propulsive efficlencles, consequently, exceeded the effi-
ciencies indicated for the isolated propeller. Generslly, the propul-
sive efficiency increased with increassing Mach number while the effi-
clency of the isolated propellers decreased sliightly. This effect is
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belleved to be associated with the decrease In the rate of change of
longltudinal force coefficient with Mach number indicated in figure 16.

In computing propulsive efficiencies, no distinetlon was made
between the effects of propeller slipstream and the effects of propeller
direct forces. However, for the range of Mach numbers and propeller
thrust coefficlents of the subject investigation, the effects of propel-
ler direct forces on lift were negligible.

Longitudlinal Characteristics of an Assumed Airplane

Figure 30 presents a summation of the longltudinal charscteristilcs,
a8 cslculated from the results of the subject investigation, of an
assumed alrplane operating with the power required for level flight at
an altitude of 40,000 feet. These characteristics are presented as
Ffunctlions of Mach number or normel-acceleration factor. The lift coef-
ficlents shown are computed values based on 2 wing loading of 65 pounds
per square foot and the assumed airplane altitude.

The effects of propeller operation at the power for level flight on
the static longitudinal stability of the airplane were small (fig. 28).
Compared to propellers—off stabillty a maximum decrease in pltching-
moment-curve slope of 0.0k was indicated at a Mach number of 0.70. Only
& small change was indicated in the gtable variation of tall incidence
for trlm with Mach number between the conditions of propellers off and
propellers operating at the power required for level flight. At constant
Mach number, the variation of tail incidence for trim with normal accel-
eration was not greatly affected by the operation of the propellers at
the power required for level flight.

Effects of Reynolds Number and Propeller Blade Angle

Lift-curve slopes, pliching-moment-curve slopes, and longitudinal
force coefficients for the model at a 1ift coefficient of 0.140, with
and without operating propellers, are presented in figure 31 for
Reynolds numbers of 1,000,000 snd 2,000,000 at Mach mumbers of 0.70, 0.80,
and 0.90. These slopes and coefficlents are also presented for propelier
blade angles of 41 and 51° at Mach numbers of 0.70 and 0.80. The
effects of varying Reynolds munber and propeller blade- angle on the 1ift-
curve slopes and pltching-moment-curve slopes were negligible at Mach
mumbers of 0.70 and 0.80. Apprecisble Reynolds number effects were evi-
dent on these slopes at a Mach number of 0.90. However, it is believed
that the date for this Mach number were affected by the partial choking

previously mentloned.
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Longitudinal force coefficients were only slightly affected by
changes of Reynolds number and of propeller blade angle at & Mach num-
ber of 0.70 and 0.80. At a Mach number of 0.90, increasing the Reynoldse
number frem 1,000,000 te 2,000,000 resulted in sizable decreases in
longitudlnal force coefficient.

CONCLUSIONS CoT

An investigation has been made of the effects of operating propel-
lers upon the longltudinal characteristics of & four-engine tractor
airplane configuration employing a wing with 40° of sweepback and an
aspect ratio of 10. The Mach number range of the investigation was 0.60
to 0.90. The following conclusions were indicsted:

1. The over-all effects of operating propellers on the longitu-
dinal characterlstics at high subsonic speeds were not large when com-
pared to the effects of operating propellers at low speeds. The pro- -
pellers operating at constant thrust coefficlents generally resulted in
a reduction in the longitudinal stability. Increasing the propeller
thrust coefficlent while maintaining a constant Mach number inecreased . -
both the longitudinal stability and the trimmed 1ift coefficient.

2. Operation of the propellers at constant thrust coefficlent
increased the wing lift-curve slope but had little effect on the varia-
tion of lift-curve slope with Mach number.

3. Operation of the propellers had little effect on the Mach num-
ber for longitudlnael force divergence at a constant 1lift coefficient )
but resulted in a decrease in the rate of change of longitudinal force _;
coefficlent wilth Mach number at supercritical speeds. This effect
increased with increasing propeller thrust coefficlent and with increas-
ing 1ift coefficient.

4. It was possible to predict the effects of propeller normal
force on the longitudinal stability of the model with good accuracy.
However, the propeller slipstream effects on the wing and horizontal
tall could not be predicted with existing methods to any ascceptable
degree of accuracy.

5. Raising the horizontal tail had little effect on the longitu- -
dinal stabillty with the propellers removed but was destabilizing with
the propellers operating.

6. For an assumed airplane, operating at the power required for -
level flight at an altitude of 40,000 feet, calculations indicate only

i — '
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a small change in the stable variation of tall incidence for trim with

either Mach number or normsl acceleration compared to the propeliers-
off condition.

Ames Aeronautical Leboratory
National Advisory Commlttee for Aeronsautics
Moffett Field, Calif., Oct. 23, 1953

I! ! e —— i e .
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APPENDTX

CALCULATION OF PROPELLER NORMAL FORCE

Isolation of propeller effects on the longitudinal stabllity of an
alrplane requires either a knowledge of the normal-~force characteristics
of the propeller or a sultable method of calculating those characteris-
tics. The method used hereln for predlicting propeller normel force is
rresented iIn this Appendix In addition to experimental normal-force data
obtalned with the callbration nacelle reported 1ln reference 5.

Presented in figure 32 is propeller normal-force coefficient as
a function of upflow angle at 0.7 propeller radlus for the
NACA 1.167-(0)(03)-058 three-blade propeller used in this investigation.
Shovn 1n flgure 33 for & representative blade angle and Mach number at
an upflow angle of 5° is a comparison of the experimental and theoretical
variation of normal-Fforce-curve slope with thrust coeffilclent. It may
be noted that the agreement between the theoretlcal and experimental
slopes is good, the theoretical values being approximately 95 percent

of the experimental normal-force-curve slopes.

The method used In calculating propeller normal force, which was
proposed by Messrs. Vernon L. Rogallo and John L. McCloud III of the
Ames Aeronautical Laboratory, is based on the relationship of the pro-
peller normal force to the oscillating torgue-producing components of
force on the blades as they operate 1ln the nonuniform flow fileld. This
can be expressed as follows:

ll- Xxl,0
Cy = ;JE ot (Cfl cos wfll(
where
Cy normal~force coefficient, el
qnD®

D propeller dilameter, ft

J advance ratio, v
nD

¢y, amplitude of 1 X P variation of torque-force coefficient
N normal force, measured perpendicular to thrust axis, 1b

X radisl location of blade section, =—

RI
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Xg spinner radius, fraction of tip radius
Wwf, bphase angle of 1 X P variation of torgue force
If it is assumed that there are no odd-order variations of torque force

gbove the fundamental, the product (Cfl cos b.)fl) cen be found by the
following relationship: o

(cp, cos w £3) =1/2 (cf9=so° B cfn=2—ro°>
x

where

Q angular position sbout the thrust sxis, measured counterclockwise
from the upper vertical position as seen from the front, deg

The torque force coefficient can be calculated by its relationship to
the thrust coefficlent, that 1s,

¢ = ¢t tan (P + 7)

The formula for compubting the thrust coefficlent is the same as given
in reference 1llt, except that ¥ 1is replaced by *A and is as follows:

- 1
xS P M _Cot - tany <1~_=V sin A
X

where

A upflow angle, angle of local flow at 0.7 propeller radius and at
the horizontsal center line of the propeller, measured with
respect to the thrust axis in a plane parallel to the plane of
symetry, deg

thrust

pn=2p*

¢t section thrust coefficient,

K Goldstein ecorrectlion factor for finite number of blades
r radius to blade sectlon, £t

Rt propeller radlus, £t

—.
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of

%

v

R,

propeller induced angle of inflow, deg

tan~1 < blade-gection drag
blade-sectlon 1ift

@ + ai, deg

V4
tan~1

local velocity, £t/sec

NACA RM A53J23

and where both + and - signs are indicated, the + is for Q = 90°, and

-0

the - is for & = 270.
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TABLE I.- GEOMETRIC FROPERTIES OF THE MODEL

Wing

Reference sweep line: Tocus of the gquarter-chord points of
sections inclined LO° to the plane of symmetry

Aspect ratio (Pull-span Wing)e o ¢ « ¢ « o ¢« e ¢ o ¢ o« « » o « 10.0
Taper ra-bio - - . L J * L] - - - - * L ] * - - [ ] L] - * - L - L] ] [ 0."!'
SweepbaCk * L J o L 4 * -« .. L ) > * [ ] - [ L L] L * - - - - - Ll [ ] * L J 1!‘00
mst - * . L [ 3 - * L 4 . - L L ] . - * L] * L] L] [ ] L ] L 4 L] L 2 L J L] L] L ] -50

Reference sections (norma.l to reference sweep line)

Aree (semispan model)e « « « o « o « o o @

Mean serodynamic chord . « o« « ¢ ¢ « « o o

Incidence (measured in the plane of symmetry)

Fences at y/b/2 = 0.33, 0.50, 0.70, and 0.85
(See Pig. 1(d) Por fence details.)

¢« a e o
- L ] . *
. = L

Nacelles
Fl'on'talarea(e&ch).-..-..-.........

In'board............-.-.-.-..
Ou‘bboard....................-

Propellers

Dimter - [ 3 - -« L] -* L] * - - * . - L] -
Hunber of Dlades « « « « ¢ ¢ « o ¢ o .
Propeller-activity factor (per blade). . . .
Propeller-biade thickmess~chord ratio (0.70 radius).
Bolidity (per D1ad®) o « « o v ¢« v « o o o « « o «

- - -
- -

s ¢ 8
* &

Horizontal Tall

Reference sweep line: Locus of quarter-chord points
inclined 40° to the plane of symmetry

A.B‘_pect ratio (f‘ull—s'p&n tail) -« & e & & o @

Tam ratio - * - - - L L] - - L 4 » L] - - - L - - - -
Sﬂeepba-Ck ®© ® 6 © ¢ ¢ ¢ 4 e o ¢ e e ¢ @ 5 & u O o @
Reference section (normal to reference sweep line) .
Tail leng‘bh, I-b ® 8 & 6 & ¢ 6 ¢ 6 = v e & b & ° o €

ROOL v ¢ ¢ ¢ ¢ o « « ¢« « « « NACA 001k, a=0.8 (modified) c;i=o.1p
TIP + o o ¢ o a s oo « o+ o NACA OOL1, @=0.8 (modified) Cy,=0.k

Inclination (measured with respect to wing root chord)

Blade 5€ctiOnS ¢ « o« ¢« « « ¢ o « « » » o Symmetrical NACA 16 series

.« « 6.94k £E2
.« e o 1.251 Pt
1-100030

.« « 0.208 £t2

s e o o ‘6.50
s & e o —7‘00

. - - 10167 ft
¢« & o & o o 3
« o o @ 18802"
¢ & ¢ o o 0.03
e o e @ 0.0%

of sectlons

e« &« e o 4« 1“'0 5
- -« - - * 0 .l"
a * - L] - l['oc
« « NACA 0Q10
¢ @ e 3 . 256

3

é
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TABILE I.- GEOMETRIC PROPERTIES OF THE MODEL - Concluded

Horizontal Tail {Continued)

m‘ea (semispan me]-) - - L] - - L] - L] L] L ] - L J L ] L4 - - * l'%? ftz
m&erod-yn-uiOChordooo.o --oa-.oa'000-833ﬁ
Tail volume, Zt/c (St/Sy) ¢ ¢ ¢ ¢ a o e ¢ o o e o ¢ o o o o o 0.65
Tail heights (measured vertically from the fuselage

center line 4o the hinge axis of the horizontal tail

(see £ige 1(B)) o o ¢ ¢ ¢« ¢ ¢ « ¢ e o ¢« s « s o o s » 0, 0,10 B/2

L] L *

Fuselage
F_'menessratiocioooc-conoacacotooicto1206
Frontal area (semispan moGel) « ¢ « o « o « o o o « o o o 0.273 £2
Fusgelage coordinates:

Distance from

nose, in. Rediug, In.
o] 0
1.27 1.04
2.5"" 1057
5.08 2.35
10.16 3.36
20.31 hohk
30.1|-'T ll'.%
39.4% 5.00
mcoo 5-00
60.00 5.00
T70.00 5.00
76.00 h.o6
82.00 %.83
88.00 k.61
ok .00 h.ot
100.00 3.7T
106.00 3.03
126.00 o]
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- TARLE II.- INDEX OF TABLES AND FIGURES REPRESENTING

THE BASIC LONGITUDINAL DATA

Tall 1gs Bs R, M,

Teble | Figare | , iont |deg | deg | million range
IIT 6 03;- 2 | =5 1 0.70 o 0.90
v 7 0 % - | s 1 0.70 o 0.90
v 8 0 323 6 | 51 1 0.70 o 0.90
vii | 10 [0.102 |-k |5 1 {0.70 to 0.90
vizzr| 1 0 :-g- T 2 0.70 to 0.90
- X 12 |teil ofP| - | B1 2 0.70 to 0.90
X 13 o% | o 0.60 to 0.80
XI ip3 tail off| -- | k1 2 0.60 to 0.80
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{a) M = 0.70, 0.80, 0.83

A WING WITH 0° OF SWEEFBACK AND AN ASPECT RATIO OF 10; TATL HEIGHT = O b/2, i = -29,

B = 510’ R = 1,000,000

TAEBLE ITI.- LORGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTCR ATRPLANE CONFIGURATION HAVIRG
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A WING WITH LoP
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TABLE VI.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTCR ATRPLANE CORFIGURATION HAVING
A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TATL OFF, B = 51°, R = 1,000,000
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Airfoll sections, fuselage coordinates, and volues
of pertinent geomelric paromefers are given in
I_ .

fable
-.l 1379 |« (See fig. /d))
Propelier diomefer 14.00
[h Nacelles
- (See 1ig. 1(el) m»
I 29,38 ¢ 538
353 _[l ;
17.68 j 2120
- —— 3 /( = 1
—— 3944 Mel-2020+ | \-Moment center ;l/ I:I g 596
. ).,é'* 40°
1————7‘000 -t
G‘AF-—\ 233 — . {See

I o S ros 0
- —F avle

126.00

(a) Dimensions.

Figure l.~ Geometry of the model.
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Figure 1l.- Concluded.
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Figure 2.- Photograph of the model 1n the wind tunnel.
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Figure 5.- Typical variations of Llift coefficient with thrust coefficlent for assumed full-seale
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