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NATIONAL ADVISORY COMMITTEE FOR AERORAUTICS

RESEARCH MEMORANTM
WIND-TUNNEL INVESTIGATION OF HORIZONTAL TATLS.
I — UNSWEPT AND 35° SWEPT-BACK PLAN FORMS
OF ASPECT RATIO 3.

‘ By Jules B. Dods, Jr.

SUMMARY

The resulis are presented of a wind—tunnel investigation of ths
low—sepeed charascteristics of horizomtal talils of aspect ratio 3
with unswept and swept-back plan formas. Two models were tested
which had identical areas, aspect ratio, taper ratioc, and airfoil
section, differing only in the angle of sweepback and eleva.tgr area
ratios, Data are presented for Reynolds numbers of 3.0 X 10 and
4,0 x 10° with the elevator sealed and for a Reynolds number of
3.0 X 1P with the seal removed and with standard roughness applied
to the leading edge.

The major effect of sweepback, as measured from the tests of
the two models, was to increase the rate of changs of hings-momsnt
coefficlent with angle of attack, to reduce the rate of change with
elevator deflection, and to reduce the elevator effectiveness.

INTRODUCTION

An investigation of the theoretical prediction of control—
surface hinge moments by lifting-gurface theory has been undsrtaken
by the NACA. The liftling-surface theory is a further refinement
to the lifting-lilne theory to obtailn more asccurate predictioms. This
report presents the experimental results obteined on the first two.
of a series of models to determine the vaelidity of the theoretical
computations and the extent of aspect ratios over which they are
valid. The comparisons with the theoretlcal calculatlions are not
presented hereln but will awalt the resulis of tests of models of
aspect ratios &5 and 6.
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Another equally Ilmportant purpose of the investigation was to
evaluate the effects of sweepback by a comparison of the results
of tests of two models with the same area, aspect ratio, taper
ratio, and airfoll section, differing malnly In the angle of sweep—
back, : : : S

The present Investigation included the measurement of the 1ift,
hinge-moment, and pitching-moment coefflclents, and the pressure
coefficlents across the elevator nose seal of the semlspsn hori-—
zontal talls of unswept and swept—back plan forms and an agpect
ratlo of 3. The effects of Reynclds number, st;,a.nda.rd. roughness on
the leading edge, and removal of the elevator seal were also
determined.

The RACA 64LA010 airfoil section was chogen for the models. The
aft 30 percent of this section is straight sided, thus simplifying
control construction and balance. : -

MOIEIS

The two models tested in this Investigation were of aspect
ra.tig 3, taper ratio 0.5, and the 0625 chord lines were swept back
11.3" for the unswept model, and 35 for the swept—back model, asm
ghown In figure 1.

The sirfoll section was the RACA 64A010 perpendicular to the
0.70—chord line for the unswept plan form and perpendicular to the
0.25~chord. 1ine for the swepit~back plen form. The airfoil coordinates
are presented in table I. The values listed as model coordinates
were used for the models, since the true coordinates were not avall—
able at the time of model comstruction. Slight discrepancies
between the model and the true coordinates are apparent, but they
are not large enough to produce an appreciable effect upon the data.

Both models were egulpped with sealed radius—nose elevators.
For the unswept tall the elevator chord was 0.30 of the total chord
measured perpendicular to the 0.70-chord line. The elevator chord
of the swept—back tail was also 0.30 of the total chord; however,
the chord was measured perpendicular to the 0.25—chord line as
indicated in figure 1(b). In maintaining the same elevator chord
ratio along the airfoil section 1line, the area ratios were of
necessity different — 30 percent for the unswept model and 25.6
percent for the swept—back model.

I»
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The tip shape for both molsls was formed by rotating the %ip
alrfolil gection parallel to the undisturbed alr stream sbout a
line inboard of the tip & distance equal to the maximum tip
ordinate, necessitatlng a short falying of the tilp nose into the
leading edge.

Photographs showing the models mounted Iin the wind tumnel ars
given iIn figures 2 and 3. The location of the balsnce—chamber
tubes is given in table IT. '

COEFFICIENTS AND SYMBOLIS

The coefficlents and symbols as used throughout the report are
defined as follows:

Cy, 1i1f+t coefficient (L/aS)

Che elevator hinge-moment coefficient (E/qSeTs) (See appendix)
Cm pltching-moment coefficient (M/qS(M.A.C.))

Ap /q pressure coefficlent across elevator nose seal

(pressure below seal minus pressure sbove seal
divided by the dynamic pressure)

A aspsct ratio (2b2/s)

@ corrected angle of attack, degrees

b span of the semlispan models measured perpendicular to
plane of symmetry

bt gspan of the elevator measured along the hinge line, feet

E:'e root-mean—-square elevator chord aft of hirge line parallel

to the plsne of symmetry, feet

ce! root-mean—square elevator chord aft of hinge line
perpendiculsar Lo the hinge line, fest

Be elevator deflection (positive when tralling edge of
elovator ls down, measursd In a plane normal to the
hinge line), degrees

H bhinge moment, foot—pounds
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1lift, pounds
M pltching moment about the 0.25 M.A.C,, foot-pounds
Map first moment of the elevator area aft of the hinge line

about the hinge llne, cubic feet

M.A.C. mean aerodynamic chord, feet

g free—stream dynamic pressure (‘ENZ), pounds per square
foot

R Reynolds nmumber [&V(MTAC-L)—}

p deneglty of alr, slugs per cubic foot

13 absolute viscosity in polses

v velocity of air, feet per second

S area of semispan horizontal tell, sqguare feet

Se area of elevator aft of hinge line, aquare feet
In addition, the following symbols are used:

Cly = (301:/3&)56 =0 (measured through a = 0)

CLs = (3CL/d%)y = ¢ (measured through 8e = 0)

Chq = (3Cn/da)se =0 (measured through a = 0)

Chs = (3Cn/d%e)y = o (measured through Be = 0)

@b = — (CL/0r,) (elevator effectiveness parameter)

TESTS

The models were mounted on a turntable flush with the floor
of an Ames Aeronmautical Lgboratory T— by 10-foot wind tunnel.
(See figs. 2.and 3.) Tests were conducted at dynamic pressures
of %0 and 80 pounds per square foot, corresponding to Reynolds
numbers of 3.0 X 108 and 4.0 x 108, respectively. Standard leading—
edge roughness was applied in the manner described in reference 1.
Elevator hinge moments were measured by a resistance—type torsionsl
straln gage. : . :
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Al1] coefficilents and the angle of attack have been corrected
for the effects of the tummel walls. No additional tumnel—wall
corrections dne to sweepback have been epplied.

FESULTS AND DISCUSSION

The dste for the umswept tall are presented in figures 4 to 9
and those for the swept—back tail are presented in figures 10 to 15.
The variastion of 1ift, hinge-moment, and pliching-moment coefficients
wlth angle of attack are given In figures 4 and 10. Hinge-moment
coefficients are also shown as & functlon of the elevator angle for
various angles of attack in figures 5 and 11. TIn additlom, the
variation of the pressure cocefficlent across the elevator nose seal
as a function of the angle of attack is presented in figures 6 and
12.

Scele Effect

Data for both the unswept and the swept-—back models were
obtained at a Reynolds number of %.0 X 10®. The complete results
are not presented because the aerodynamic coefficlents did not vary
signiflicantly from thogse obitained at a Reynolds number of 3.0 X 107,
as illustrated in the comparisons presented in figures T and 13.
Because of the rather sudden stall of the unswept model 1t was desmed
inedviseble (from structural considerations) to stall the model at
the higher Reynolds number. A slight decrease of the maximum 1ift
coefficlent was noted for the swepit—~back plsn form with Increasing
Reynolds number at zero elevator deflection. The lift—curve slope

remained unchangsd for both values of the Reynolds number for
both talls. :

Tt is noted in figure 4({a) that a different type of stall was
measured for the unswept model at positive end negative angles of
attack, an unexpected result because the airfoll section was
symmetrical. The reason for thls difference was investlgated, and
the only apparent explsnatlion was that the tests were conducted In
a critical Reynolds number range for this alrfoll sectlon. This
contention is partially substantiated by the effect of roughness on
the stall in the positive direction as shown in figure 8.



6 NACA RM No. ATE24

Effect of Standard Roughness

The effect of standard leading-edge roughness upon the 1lift
and hinge-moment ccefficlents is shown in flgure 8 for the unswept
tail and in figure 14 for the swept-back tail. In general, little
effect was found. The maximum 1ift of the unswept tail was reduced,
but the meximum 11ft of the swept—dback tail remained the mame. The
offect on the hinge-moment coefficients of the swept—back tall was
more pronounced than the effect measured on the unswept tail. No
slgnificant change in Cp, was found for either tail,

Effect of Removing Elevator Seal

Ap would be expected for a nose—radius elevator, the change
in the 1lift and hinge-moment coefflcients caused by removal of the
olevator seal was small for low elevator deflectlione and Increased
for the higher deflectiona. Thils is shown in figures 9 and 15.

Pitching Moments

The pltching moments measured about the one—gquarter M.A.C.
indicate a stabilizing effect of asweepback. The unawept model was
slightly unstable statically while the swept—dack model was neutrally
stable. As the elevator was deflected upward (as in landings or
pull-ups) the steblility of both tails was incressed. (See figs.

k(c) and 10{c)). At the stall, the statlic longitudinal stability
of both models Increased markedly, as would be predicted by the
results of reference 2,

Effectiveness and Hinge-Moment Parsmeters

The lift—effectiveness and hinge—moment parameters Clys CLss
a8s Chy, and Chy are listed in table III for the two tails at a
Reynolds number of 3.0 X 10%. The Incremental changes due to
Reynolds number, stendard roughness, and removal of the elevator
seal as discussed in the previous sections are presented for easy
reference. As shown in this table, the change in Chy Dbetween the
unswept and the swept—back models was fram —0.0010 to -0.0013, the
change in Chgs was from -0.0087 to —0.0069, and the tall-effectiveness
parameter ag was changed from —0.7L to —0.53. The value of Cig
was reduced by 0.000Lk, but the slope of the 1ift curve remained
unchanged. Asg polnted ocut in & previous section the elevator area
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ratios differed between the two models. Although the major part of
the changes 1n the parameters can be attributed to sweepback, the
poesibility of area ratlo effects should be noted.

CORCLUSIORS

The results of tests conducted to determine the low—speed asro—
dynamic characteristics of horizontal talls of aspect retic 3.0, of
unswept and swept—back plan forms, Indicate thatg

l. No appreclable scale effect was encou.utered. with or gith—
out sweepback for Reynolds numbers fram 3.0 X 10® to 4.0 x 10

2, The effect of standard leading-edge roughness was small
with or without sweepback.

3. Removal of the elevator seal did not affect Cpy for
elther the unswept or the swept—back model,

Lk, The tall-effectiveness parameter ap was changed from
—0,.71 for the unswept model to —0.53 for the swept—back model.

5. The change In Ch, between the umswept and the swept—
back models was from —0.0010 to —0.0013, and Cnrs was changed
from —0.0087 to —0.0069.

+« Ames Aeronautical Laboratory,
National Advisory Comittee for Asronsutics,
Moffett Fleld, Calif,

APPENDIX
Conversion PFactors For Hinge—Moment Coefflcients

Because several methods are in use for the reduction of hinge
moments to coefflicient form, particularly for swept-back lifting
surfaces, converslon factors for the varlous methods are presented.
To obtaln the hinge-moment coefficlents for omne of the listed
methods, multiply the value of the hinge-moment coefficient of +this
report by the corresponding comversion factor in the followlng table:
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Onawept tall u Swept—back tall
Method of computlng a s
hinge—moment cosfficients Feet™ jConversilon Feet™ |Comversion
factor factor
Che = —E— 2.395 | 1.000 1.745 1.000
aSeCe
H
Che = —=3% 2.439 | 0.982 1.776 0.982
gbcg
Chg = ——E—— 2.439 .982 1.585 1.101
__=H
Che = EETTIY 2.k39 .982 1,585 1.101
"*———.__\N-’SA:CR&’,J:
REFERENCES

1, Abbott, Ira H., von Doenhoff, Albert E., and Stivers, Louis S., Jr.:

Summary of Airfoil Deta. NACA ACR No. L5C05, 1945,

2., Shortal, Joseph A., and Maggin, Bernard:
and Aspect Ratloc on Longltudinal Stabllity Characteristics of
Wings at Low Speeds. NACA TN NWo. 1093, 1946,

Effect of Sweepback
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TABLE I
COORDIRATES FOR THE NACA 64A010 ATRFOIL

[A11 Dimensions in Percent of Wing Chord]

Upper and lower surfaces
NACA 64A0C10 Model
Station ordinate ordinate
4] o] 0
0.50 0.804% 0.819 .
'75 0%9 '987
1.25 1.225 1.2h7
2.50 1.688 1.696
5.00 2.327 2,333
T.50 2.805 2.780
10.00 3.199 3.202
15.00 3.813 3.816
20.00 k.272 4.280
25,00 L 606 4,610
30.00 4 .837 4 ,8ho
35.00 k968 k.950
40,00 k.995 k.975
45,00 i 8ok 4.889
50.00 4 684 k.672
55.00 4,388 4.373
60.00 ko021 h.,o11
65.00 3.597 3.594
T70.00 3.1l27 3.131.
75.00 2,623 2.637
80.00 2.103 2,120
85.00 1.582 1.595
90.00 1.062 1.071
95.00 .5kl .553
100.00 .021 0
L.E. Radius 0.687*: T.,E. Radius 0.0232

1Same for model ordinates.
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TABLE

IT
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LOCATTIOR OF THE PRESSURE TUBES IN THE BALANCE

CHAMBER IN PERCENT OF THE SEMISPAN

Unewept Swept—back
Station plen form plan form
1 21.2 15.3
2 hooy 45,0
3 63.7 7.1
4 91.2 92.1
» TABLE III

EFFECT OF SCALE, STANDARD LEADING-EDGE ROUGHRESS, AND ELEVATOR
KOSE SEAL ON THE EFFECTIVERESS AND HINGE--MOMENT PARAMETERS
OF THE UNSWEPT AND SWEPT-BACK PLAN FORMS

Increment due

Increment due

Increment due to

Para—jR = 3.0 X 108| to increasing | to roughness |removing elevator
me ter | R to 4.0 x 10° jon leading edge nose seal
Unswept plan form

Chq.‘ -0.0010 0.0001 0.0002 0

Chg —-.0087 -.0001 o] -0.,0003

CLg .0370 —.0018 —.0005 ~.0039

a5 7L .02 .01 .07

Crg, .053 0 0 0
BSwept—back plan form

Chq || ~0.0013 0.0001 0 0.0001

Chs —.0069 .0003 0.0007 o}

CLg 0276 .000h —.0011 —.0026

ap —53 o .02 -.01

Clg 053 0 -.001 -.001




Unswep! Swept-back
Aspect ratio 3 3
Taper ralio o5 . 05 .
Aréa semispan  10.083f1. 10,0831,
Elevator area 3024 11" 258111,
. Ca 0.7921t, 0.676f1.
Drawing dimensions MAC, 268811 268811
In inchas
—20736— -—20.736—
I e
' 25 chord of /
airfoll section - /
' hinga line, Q70 chord / i
of airtoll section \/
D .
b ;
@ ' airfoil section
N | along his lne
MA.G‘\__ y : MAG [
90° /
. 90°
b ’
S
/3¢ N )
| | /
/0368 ~|~—/8.662 —= /2. 442—-| 12./6 3 —1—18.689 — 10620 -]
- 4.472 | 24472

(o) Unmpf.W () Swapt-back.

Figure I~ Plan forms of the horizontal ftail models of aspect rafio 3.
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Three-quarter front view. (b) Three-gquarter rear view.

Flgure 2.- The unawept tail mounted in the 7- by l0-foot
wind tunnel.
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(a) Three—quarter front view, (b) Three—quarter rear view.

Figure 3.— The 35° swept-back tail moumted in the 7— by 10-foot wind tunnel,
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Figure 15.- Comparison of the liff and hinge-moment coefficients
with and without elevator seal onthe 35° swept-back tail.
Aspect ratio 3; R, 3.0x/0°.
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