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LOW-PRESSURE PERFCRMANCE OF EXPERDENTAL P R E V m I Z D E  TlTBuwlR 

COMBUSTOR U S m  AJ?PROXIMATEs;y STOICHIOMETRIC ADMISSION 

OF FLTELAIR MIXTURE INTO PRRURY ZOME 

By Robert R. Eibbard,  Allen J. Metzler,  and W i l f r e d  E. Scul l  

An experimental tubular combustor, i n  which approximately  stoichio- 
metric  prevaporized  fuel-air  mixtures were introduced  into the combustor 
primary zone, was developed  and tested t o  determine  whether  hrprwed 
performance  could be obtained w i t h  this type of fuel-air admission. The 
f u e l  was vaporized on the outer  surface of the primary-zone liner and 
tntroduced  into the primary zone wlth suf f ic ien t  air t o  form these mix- 
tures. The combustor was tes ted  with MIL-F-5624B grade JP-4 fuel under 
conditions simulating f l ight  a t  high altitude. Its performance was 
compared w i t h  that obtained with a current  production tubular comblrstor 
of the same diameter. 

A t  100 feet per second.reference  velocity, the experimental  cmbus- 
t o r  gave maximum combustion eff ic iencies  of 95 and 88 percent a t  
cmbustor-inlet  pressures of 15 and 8 inches  of mercury absolute, re- 
spectively. This  combustor, when tested at these and other  conditions 
of inlet pressure and reference  velocity,  yielded  efficiencies higher 
than  those  obtained w i t h  a production m o d e l .  The experimental combustor 
Etleo gave indications of having a low tendency t o  form carbon. However, 
operation was limited i n  that flame w o u l d  f lash back in to  the vaporizing 
area under conditions of low air velocities  or  high  combustor-inlet 
pressures. 

A general  research program is currently i n  progress at the EIACA 
Lewis laboratory  to  determine  design  cri teria  for improving  performance 
of turbojet  combustors. As a par t  of t h i s  program, research was con- 
ducted to  investigate  prevaporized  stoichiometric  fuel-air  admission in 
a tubular combustor operating at low inlet air pressures  and at higher 
air-flow rates than those  used i n  current  production corribustors. 



2 NACA RM E54F25a . 
The operating  region of a turboget combustor i s  so over-all  fuel- 

lean that burning would be impossible if the   fue l  and all the air were 
premixed p r io r   t o   i gn i t i on .  Burning is possible only because a flam- 
mable f u e l - a i r   r a t i o  is maintained i n  a sheltered  primary zone. In 
current  practice,   fuel is introduced  into the primary zone as e i ther  a 
liquid  spray  (atomizing combustors) or as a very  r ich  fuel-air  mixture 
Iprevaporizing combustor). The necessary  quantity of air  t o  provide 
flammable mixtures is admitted  separately, and the  fuel and air m i x  
w i t h i n  the combustor zone. With current  production combustors, opera- 
t i o n  is possible at pressures of 1/2 atmosphere or less, and at l inear  
veloci t ies  of the  order of 100 feet per second; however, combustion 
eff ic iencies   substant ia l ly   less   than 100 percent are obtained under 
these  conditions. There I s  also a tendency of the combustor t o  form 
objectionable  carbon  deposits and smoke a t  high  pressures with some 
types of fue ls .  

Since  such  fundamental cornbustion properties as minimum pressure 
limits for  flammability, flame velocity, and  quenching distance are 
optimized at fuel-air   ra t ios   near  m s l igh t ly   r ich  of stoichiometric 
for low-molecular-weight  hydrocarbon-air  systems (refs. 1 t o  31, it 
appeared that combustor performance also might be optimized Ff approxi- 
mately stoichiometric  quantities of f u e l  and air were mixed and then 
introduced  into the combustion zone. Improvement might a lso  be realized 
i n  the coking  and smoking tendencies of the combustion chamber since 
carbon  deposits and smoke can be formed only in  fuel-rich  regions 
( r e f .  4 ) ,  and the  elimination of these  should  in  turn  eliminate combustor 
carbon and smoke, irrespective of fuel   qual i ty .  

The use of approximately  stoichiometric  fuel-air  admission  presented 
the problems of (1) maintaining a nearly  constant  fuel-sir   ratio  input 
t o   t h e  primary zone over the wide range of aver-all fue l -a i r   ra t ios  & 

required  for  engine  operation, ( 2 )  vaporizhg  the  fuel  without  excessive 
metal surface areas or metal temperatures, (3) maintaining a steady, 
nonsurging  supply of vaporized fuel, and ( 4 )  avoiding a possible fouling 
of the vaporizer  surface. Ih sp i te  of these   d i f f icu l t ies ,  th is  inves- 
t iga t ion  was conducted t o  determine whether an experimental combustor 
having  approximately  stoichiometric  fuel-air  admission  could be designed 
which would provide improved performance character is t ics  a t  high-altitude 
operating condAtions. The investigation was made i n  a direct-connect 
duct wi th  a 9.5-inch-diameter  tubular combustor. MIL-F-5624B grade Jp-4 
f u e l  was used, and the operating  conditions  investigated were representa- 
t i v e  of severe  conditions i n  current  engines. 

This report  describes  the development and performance of the experi- 
menta  combustor. Data are   presented  that   i l lust rate   the  effect  of com- 
bustor  liner  design on the  outlet-temperature profile and the   effect  of 
air mass flow t o   t h e  combustion zone on combustion efficiency. A f i n a l  
combustor configuration was tes ted at five  conditions sixnulatin@; severe 
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altitude  conditions,  and  the  results  were  comgared with those  obtained 
with a production  combustor of the  same  diameter.  The  results  presented 
herein m e  primarily  concerned  wiith  combustion  efficiencies  at low pres- 
sures,  and on ly  an indication  of  the  carbon-forming  characteristics  of 
the  combustor  is  given. 

Instdlation 

A diagram of the  test  facility  is shown in figure 1. Combustor- 
inlet  and  -outlet  ducts (6-in. diam.) were  connected  to the laboratory 
air  supply  and  altitude-exhaust  facilities.  'Air-flow  rates  and  combustor 
pressures  were  regulated  by  remotely  controlled  valves  located  upstream 
and downstream  of  the  combustor.  The  inlet  air was preheated by a steam- 
fed  exchanger.  The  connections  between  the  ducts  and  cortibustor  were  made 
through  conical  inlet  and  outlet  diffusers 1g and 5 inches long, 
respectively. 

Instrumentation 

&I u A i r  was  metered  through  square-edged  orifices  installed  upstream 
of the  regulating  valves  (fig. 1) according to A.S.M.E. specifications. 
Fuel-flow  rates  were  measured  by  calibrated  rotameters.  Combustor-inlet 
total  pressures  and  temperatures  were  measured  by  pressure  probes  and 

outlet  total  pressures and temperatures  were  measured by pressure  probes 
and  bare-wire  chromel-alumel  thermocouples  at  stations 2 and 3, resgec- 

duct  positions  indicated in  figure 2. The W e t  thermocouples  and all 
pressure  probes  were  stationary.  The  seven  outlet  thermocouple  probe6 
at  station 3 were  moved  radially  by means of a chain-driven  mechanism 
(ref. 5 to  positions  representing  centers of four equd. anndar areas 
(fig. 2 2 c)). Sketches of the  pressure  probes  and  thermocouples  are 
presented in figure 3. The  thermocouples  were  connected to a self- 
balancing,  direct-read5ng  potentiometer.  The  outlet  thermocouples  were 
connected in a parallel  circuit  to  give an instantaneous  average  tempera- 
ture  at  each of the four fixed  radial  positfons.  The  pressure  probes 
were  connected  to  absolute  manometers. 

P bare-wire  chromel-alumel  thermocouples  at  station 1 (fig. I); combustor- 

w tively  (fig. 1). Temperatures  and  total  pressures  were  measured at the 

Combust  or 

The  principal  features of the  tubular  combustor w e d  for  this 
investigation m e  shown diagramatically in figure 4. The  cylindrical 
housing  had an inside dbmeter of % inches and was 2% Inches long. 

1 1 
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The distance from the downstream end of the  starting nozzle t o   t h e  plane - 

I 

of the  out le t  thermocouples was 3 3  inches. The throat and thro t t l ing  1 

device shown in   f igure  4 controlled the r a t i o  of primary t o  secondary 
air. A small portion of the primary a i r  entered  the  upstream end of the 
primary through a s w i r l  plate, but most of the primary a i r  passed along 
the outside of the flame tube where it mixed with vaporizing fuel pr ior  
t o  entering the primary  combustion zone. The secondary air passed 
through the outer  annulus  and  entered the conibustor through an inter-  
changeable punched sleeve. Four secondary  sleeve  configurations were 
tested. The results of these t e s t a  are  described  in  the RESUW AND 
DISCUSSION. 

A sp l i t   fue l - feed  system was used., as sham i n  figure 4. An atom- 
* izing  nozzle (30° hollow cone nozzle  rated a t  3 gal/hr a t  100 lb/sq in, 

pressure  differential) ,   required  for  start ing,  was installed in the 
upstream end of the primerry flame tube. The remainder of the f u e l  w a ~  
vaporized along the  outer w a l l s  of the primary  and required a multiple 
feed t o  t h i s  surface  to  as6ure even circumferential   distribution of the 
fue l .  A simple oruice- type manifold was impractical for this purpose, 
s ince  the small orifices  required would be susceptible  to  clogging. 
Therefore, the capillary-type m i f o l d  shown i n  figure 4 was made, con- 
s i s t i ng  of th i r teen  7.0-fOOt lengths of 0.032-inch-inside-diameter 
stainless  tubing  si lver-soldered on equal angular s p a c h g s   t o  a manlfold 
.headex made from an 8-inch-diameter r ing of 3/16-inch-inside-diaeter 
tubing. The discharge ends of the   cap i l la r ies  were clamped t o  the outer 
upstream  end of the primary  with  equal c i r c d 6 r e n t i a l  spacing.  After 
the  fuel   lef t   the   capi l lar ies ,   the   c i rcumferent ia l   d is t r ibut ion of the 
fuel w a s  controlled by 13 fences, each 1/4 inch  high and 5 inchee long 
running longitudinally dawn the outer w a l l s  of the primary. The fue l  
was f u r t h e r  confined and kept in  close  contact  with.the primary  outer 
walls by a cyl indrical  s h r d  f i t t e d  over the fences. These fences and 
the shroud are  shown i n  figure 4.  Two alternate  fuel-inJectlon systems 
were used briefly during this  Fnvestigation. A capillary  feed system 
with 18- inch  lengths of 0.040- inch- inside-diameter  capillary was used 
t o  meet the higher  fuel-flow  requirements  for one test   condition, and 
fo r  the few t e a t s  on atomized fuel  alone, a &gallon-per-hour  (rated 
at 100 lb/sq in .  d i f fe ren t ia l )  80' nozzle w a s  used i n  place of the  
smaller-capacity  starting  nozzle. 

1 

d 
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A conventional aircraft spark  plug with extended  electrodes WRS 
used for   igni t ion.  Also, two sight  glasses were installed i n   t h e  
combustor housing t o  permit  limited views of both  the  primary and 
secondary  regions of the combustor. 
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The f u e l  used i n  this   invest igat ion was "F-5624B grade Jp-4 
supplied  from  the  laboratory  distribution system. Representative  in- 
spection data f o r   t h i s   f u e l  are. presented i n  tab le  I. 

T e s t  Conditions 

Since it was  desirable tha t   the  combustor be tested i n   t h e  s&me 
environment that would  be  encountered in an engine  during flight at high 
altitudes,  the  following  conditions of combustor-inlet  pressures, ten- 
peratures, and a b  flows w e r e  selected as standard test conditions. 
Equivalent f l i g h t  altitudes and  engine speeds f o r  a 5.2-pressure-ratio 
engine  operating a t  0.6 Mach number f l igh t  speed are also listed f o r  
these  conditions: 

Condi- 
t ion 

A 
B 
c 
D 
E 

Combustor- inlet conditions 

'Fressure, 

% ab s 

Tempera- A i r  flow, 
-in. & ture lb/(sec)  (sq f t )  

Equivalent  flight  conditions 

Altitude, 
percent ft 

Rotor  speed, 

ra ted 

56,000 
70,000 
80,000 
56,000 
56,000 

Conditions A, B, and C represent  combustor-inlet  conditions  for a 
given  engine  operating at constant  rotor  speed a t  varying a l t i tudes .  
Conditions A, D, and E represent  conditions of varying  specific air flows 
that would result from the use of a given combustor with compressors  of 
varying air-handling capacities. Fressure r a t i o  and a l t i t ude  a r e  held 
constant in the  lat ter case. 

Limitations i n -  a l t i t ude  exhaust and i n l e t  air preheating  capacities 
in  the tes t  fac l l i ty   requi red  some compromise in operating  pressures and 
temperatures. The folJ"  conditions were those a c t m y  at ta ined 
during this investigation: 

Condi- 
in .  Eg abe t i o n  
Pressure, 

A 15 
B 8 
c 

15.3 t o  17.5 E 
15 D 
6 

Air flow, 
lb/(sec)(sq f t )  

~ 

2.78 
1.49 
.93 

2.14 
3.62 

Temperature, 4 
240 t o  250 
215 t o  230 
210 to 220 
240 to 255 

255 
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Runs were a lso  made under the following conaitions t o  (1) simulate 
m i l d  operating  conditions and ( 2 )  test the  carbon-forming  tendencies of 
the combustor: 

A i r  flow, 1 TempeTtGe, 1 
in.  Hg abs lb/( sec)( sq f t )  

Test Procedure 

Combustor temperature-rise data were obtained for a range of fuel- 
a i r  r a t io s  at the  test conditions listed. Combustor pressure-loss  data 
were a l s o  determined i n  some t e a t  runs. 

Combustion efficiency,  defined as the  percentage  ratio of ac tua l   t o  
theoretical   increase  in  enthalpy of gases  flowing  through  the combustor, 
was computed  by the method of reference 6. The average  combustor-outlet 
temperature was wed  to   ca lcu la te   the   en tha lpy  of gas at  the combustor 
ou t le t .  !Thermocouple indications were not corrected  for  velocity  or 
radiation  effects.  Some indication of the accuracy of the combustion 
efficiencies  calculated in this  way may be found in the following com- 
parison of these  efficiencies  with  those  determined by exhaust-gas  analy- 
sis. Three exhaust-gas samples were taken from thfs  test  f a c i l i t y ,  and 
the combustion efficiency w a s  determined by the method of reference 7.  

Sample Efficiency,  percent, 
calculated from 

Enthalpy Gas analysis 
change 

1 

85 a3 3 
94 94 2 
96 94 

While the  absolute  accuracy of neither method i s  known, the agreement 
between the  two independent methods suggests that the combustion effi- 
ciency data presented  herein are reasoqablygpod. . . - - . " - . 

. " _" 

Combustor reference  velocit ies were computed from the air-flow rate 
per unit combustor cross-sectional.  area and the  combustor-inlet a h  den- 
s i t y .  Combustor total-pressure losses are expressed as the dimension- 
l e s s   r a t io s  of (1) combustor total-pressure loss t o  a reference  velocity 
pressure  based upon combustor reference  velocity and i n l e t  air density, 
and ( 2 )  combustor total-pressure loss t o  combustor-inlet total   pressure.  
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RFSULTS AND DISCUSSION 

Combustor  Development 

In the  following  discussion,  the  evolution of the  final combustor 
configuration is described wfth respect   to  (1) secondary  sleeve  devel- 
opment, ( 2 )  primary a b  control, and (3) p r m y - z o n e  mixture   intrduc-  
t ion.  This is followed by the presentation and discussion of the  per- 
formance data for the  final combustor configuration. 

Secondary sleeve  configurations. - The f i r s t  phase i n  the develop- 
ment of the experimental combustor w a s  t o  obtain a sat isfactory  out le t -  
temperature  profile  through  control of the secondary air admission. The 
four  secondary  sleeve  configurations  diagramed i n   f i g u r e  5 were tes ted  
at condition A a t  an  average  outlet  temperature of about 1200' F, using 
the primary zone configuration and s p l i t  fuel-feed system shown in  fig- 
ure 4. Average c i r c d e r e n t i a l   o u t l e t  temperatures at each of four ra- 
dial  positions were measured. These temperatures a re  shown i n  figure 6 
as a function of radial   posi t ion  in   the  duct  f o r  each of the  secondary 
sleeves  tested.  Configuration M - l  used  holes  and l o w e r s  and gave a 
very hot core with center  duct temperatures averaging  over 1000° F hot ter  
than  the  average  near  the wall. Configuration M-2 was the  same as M - 1  
except tha t .addi t iona l  holes were punched upstream,  and the downstream 
ring of holes was opened up t o  form s lo ts .  These changes  produced no 
appreciable improvement in  outlet-temperature  profile.  Configuration 
M-3 had substant ia l ly  the same' open area as M - l  but  used  4-inch slots 
in  place of holes and  gave a much better outlet-temperature  profile  than 
did M-1. Configuration M - 4  used a s l igh t ly   d i f fe ren t   a r ray  of s l o t s  and 
produced a satisfactory temperature  profile. In general,  the  use of 
slots gave s u b s t a n t i d l y  improved temperature profiles,  probably  because 
the s l o t s  provided  deeper  penetration of t he  secondary a i r .  Configura- 
t i o n  M-4 was used as the secondaxy sleeve for the remainder of t h i s  
investigation. 

Primary air control. - As shown in f igure 4, t h e   r a t i o  of primary 
t o  secondary a i r  could  be  controlled a t  the upstream end of the conibus- 
t o r  housing by means of a remotely  controlled  plunger moving axially. 
Although the  f ract ion of the   to ta l   a i r   en te r ing  the primary zone w a s  
not known as a  function of throt t le   posi t fon,   the   effects  of changing 
primary air flow on conibustion efficiencies  could be qual i ta t ive ly  de- 
termined.  Figure 7 shows the  effect  of varying prlmary air flow at 
cons tan t   t o t a l   a i r  flow on combustion efficiencies  obtained  at  condition 
A w i t h  vaxying over-all  fuel-air ratios. With law primary air flows, 
m a x i m u m  eff ic iencies  were obtained at low over-all  Fuel-air  ratios and 
efficiencies  decreased  rapidly with increasing fuel-air r a t io .  With 
high primary air flows, better results were obtained with r i c h  than with 
lean  over-al l  fuel-& ratios. Intermeaiate  primary air flow gave 
intermediate  results. 
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The ef fec ts  of primary a b  flow on combustion efficiency can be 
explained as follows:  Restricting the primary air both  increases  the 
prima;ry-zone f u e l - a i r   r a t i o  and  reduces the linear veloci ty   in  this 
region, a condition conducive t o  best performance a t  very  lean  over-all 
fue l -a i r   ra t ios .  However, w i t h  increasing  fuel flow, the primary zone 
soon becomes overrich and. efficiepcies  decrease  rapidly.  Conversely, 
increasing  the  primary  air  flow  increases the l inear   veloci ty  and, at 
low fuel rates, may result i n  an over-lean  primary. However, as over- 
a l l  fuel-air r a t i o  is increased,  the primary-zone fue l -a i r   ra t io   in -  
creases t o  more nearly optimum conditions  for combustion. 
shown in   f igure  7 i l l u s t r a t e   t he  compromises that must be 
adequate  perfmmance in a fixed-geometry combustor over a 
over-all fuel-air ra t ios .  

Subsequent  changes i n  the vaporizer outlet moved the 

!&e results . %  
made t o  obtain 
wide range of 

rl 
rn 

principal 
throt t l ing  point  from the plunger-throat  region t o  the vaporizer-outlet 
region.  Therefore, the plunger-throat  primary a i r   cont ro l  became of 
minor importance and, f o r  the data presented  hereinafter, the plunger 
was l e f t   i n  the fully withdrawn posit ion exposing the maximum throat 
area. 

Introduction of the   fue l -a i r  mixture into the primary zone. - The 
out le t   sect ion of the vaporizer  (fig. 4 )  was i n i t i a l l y  punched with two 
rows of 7/8-inch-diameter  holes for  fuel-air  mixture admiseion into  the 
pr-y zone. However, preliminary  visual  observation  indicated a pos- 
sible lack of circulation of the  incoming mixture into  the primary zone; 
therefore,  the  holes were subsequently replaced with 13 direct ional  
tubes, 314 inch long with 5/8-Fnch in6id.e diameters, which were inclined 
upstream at an angle of 71' from the burner  axis. "his change resulted 
i n  improved efficiency and was adopted f o r  the f i n d  combustor configura- 
t i o n  shown in   f igures  8 and 9. &nerd  arrangement of most of the  com- " 

bustor components i s  presented  in figure 8, and pertinent dimensions a re  
shown in   f igure  9. All data presented hereinafter-were obtained with 
the combustor configuration  described  in  these figures. 

.. 

Combustfon Efficiency of Final  Configuration 

Performance data obtained  with the final combustor configurations 
are  presented i n  tab le  II, where combustor-inlet  conditions,  fuel  flows, 
fue l -a f r   ra t ios ,   in le t  and outlet  temperatures, and combustion efficien- 
c ies  are listed. Preliminary  testing of this  configuration showed that 
combustor s t a b i l i t y  and eff ic iencies  were generally improved by the  use 
of some atomized f u e l  from the pilot  nozzle. Most of the data shown i n  
table I1 w e r e  obtained  using  varying amounts of pilot nozzle and vapor- 
i z e d  fuel flows, and these  quant i t ies   are   l is ted  in  the tab le .  
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Effect of par t i t fon  of fuel between pilot   nozzle and vaporizer. - 
Combustion efficiency  obtained 4t any given test condition  and fuel-air 
r a t i o  w a s  influenced- by the pa r t i t i on  of fuel flow between the p i l o t  
nozzle  and the vaporizer. This ef fec t  is shown f o r  test  conditions B 
and C i n  figure 10, where combustion eff ic iencies  are p lo t ted  Gainst 
the pilot   fuel  f low  expressed as the percentage of t o t a l   fue l   i n j ec t ed  
f o r   m r o w  ranges of over-all fuel-air ra t ios .  It is apparent  from this 
figure that at low over-all fuel-air ra t ios ,  increased percentages of 
p i l o t  fuel result i n  increased  efficiencies. However, at high  over-all 
fue l -a i r   ra t ios ,  the  converse is  true.  These e f fec ts  may be due t o   f u e l  
staging as described in   re fe rence  5. It is believed that i n   t h i s  com- 
bustor these variations =e at l e a s t   i n   p m t  due t o  (1) loss i n  effi- 
ciency  because of maldistribution of vaporized  fuel at low vaporizer 
flow rates, and (2 )  improvements in efffciency w i t h  increased  percent- 
ages of vaporized fuel at conditions where  the v a p o r i z d  fuel is evenly 
distributed. 

Maldistributed fuel w a s  believed  to  be  present when the vaporizer 
feed rates were low. Calculations  based on the pressure at the   capi l lary 
outlet  (combustor-inlet  pressure), the pressure drop  across  the  capil- 
l a r i e s ,  the probable  temperature of the  fuel  in the maneold  header, ana 
the vapor pressure of the fuel ( ref .  8)  indicated that incipient  boil ing 
might occur in the header at flow rates.- below 28, 25, and 2 1  pounds per 
hour for   tes t   condi t ions A, B, and C, respectively. Such boiling w o u l d  
cause the capillaries  leading from the upper side of the  header t o  feed 
vapor fuel and those from the bottom t o  feed liquid fuel. Thus, an in- 
crease of p i l o t   f u e l  flow at a given fuel-air r a t i o  would. mean an equiva- 
l en t  decrease i n  the amount of maldistributed fuel from the vaporizer 
and  should be reflected in an increase in the conibustion efficiency. 
The sol id   points  and curves of figure 10 exe used t o  indicate those data 
where vapor  lock was probable.  Conversely, the open points  and  broken 
l ines   ind ica te  no vapor lock. 

It is  a l s o  apparent  from figure 10, t h a t  for  those  conditions where 
header vapor lock does not  occur, combustion efficiency  increases w i t h  
decreasing  pilot   fuel flow ra tes .  This increase indicates a real gain 
in combustion efficiency resulting from prevaporized fuel injection. 
Such gains may be fur ther  illustrated by the data of figure EL, which 
compares the efficiency curves at condition B for  optimized  vapor-liquid 
inject ion and f o r  atomized l iquid  injection  alone. For the l i qu id  system, 
the  vaporizer was not  used, and totaL fuel was supplied through a spray 
nozzle of a capacity  sufficient t o  ensure  favorable  spray  characteristics 
over a range of fuel flows at the single test condition. This nozzle 
( i’$ gal/hr , 80’ hollow cone 1 w a ~  operated at a pressure  different ia l  of 
50 t o  160 pounds per square inch  for   the data shown. It is apparent from 
f igure ll that for th i s  combustor configuration, the use of vaporized 
fue l  with atomizing p i l o t  gave eff ic iencies  about 30 percent  greater than 



10 NACA RM E54F25a 

using  atomized fuel  alone.  However, since fuel atomization was not op- 
timized  over  the  entire  range  tested,  the  efficiencies  for  the  liquid 
fue l   in jec t ion  system  could be increased,  especially at lower fue l  flows, 
by improved atomization. However, a t  r ich  over-al l   fuel-air   ra t ios  where 
atomization was satisfactory,  marked efficiency  gains of the  vapor-liquid 
system  over the   l iqu id   fue l   in jec t ion  system were observed. Although 

' combustion s t a b i l i t y  and generally high efficiency demand  some p i l o t   f u e l  
supply,  probably  because of i t s  action as a flame seat, pi lot ing in excess 
of 15 t o  25 percent of the to ta l   fue l   genera l ly   resu l ted   in  lowered com- 
bustion  efficiencies for these  nomapor-locking  conditlons. 

Effect of combustor-inlet  pressure snd mass-flow ra t e .  - Representa- 
t i v e  combustion efficiency data from table 11 are 'presented a B  functions 
of over-all   fuel-air  ratio in f igure 12 for   tes t   condi t ions A t o  E. Data 
representing  operation  with  poorly  distributed  vaporized  fuel a r e  shown 
by solid symbols, and open symbols are used where vaporizer  feed  rates 
were believed suf f ic ien t   to   y ie ld  even circumferential  distribution of 
t h i s  fue l .  The curves shown i n  f igure 1 2  represent  the  efficiencies 
that can  be  obtained  with  optimized  division of t he   fue l  between p i l o t  
nozzle and vaporizer.  Figures =(a)  t o   ( c )  show the performance  obtained 
a t  combustor inlet pressures of 15, 8, and 6 inches of mercury a t   t e s t  
conditions A, By and C , respectively.  Figures lZ(d) and (e)  show the 
performance  obtained a t   t es t   condi t ions  D and E with a combustor-inlet 
pressure of approxjmately 15 inches of mercury absolute at air mass-flow 
ra tes  23 percent lower and 30 percent  higher,  respectively,  than that 
used  for  test  coBdition A. Combustor-inlet  pressures  for  condition E 
varied from 15.3 to 17.3 inches of mercury absolute  because of l imita- 
t i o n  of t h e   t e s t   f a c i l i t y .  These pressures  are  indicated i n  the figure. 
To faciJ l ta te   the  evaluat ion of the   e f fec t  of combustor-inlet  pressure 
and air mass-flow r a t e  on combustion efficiency,  the smoothed curves 
from f igure 1 2  are   replot ted in figures 13  and 14. Combustor-inlet con- 
ditions,  including  reference  velocity Vr, are  listed in these  f igures.  
Reference  velocity, as u s e d  therein, i s  based on the  density of the air 
at  combustor-inlet  conditions and on the maximum cross-sectional  ares 
of the combustor. 

Figure 13 shows the   e f fec t  of combustor-inlet  pressure on combus- 
t ion  eff ic iency.  Reduction of the  combustor-inlet  pressure from 15 
inches of mercury absolute to 8 and 6 inches of mercury absolute  resulted 
i n  decreases in maximum efficiency from 95 to 88 and 82 percent,  respec- 
t ively.  Also, combustion efficiency at the  higher  pressure was less 
affected by fue l -a i r   ra t io   than  were the lower pressure data. 

Figure  14 shows the  effect  of changing air mass-flow rates on ef- 
f iciency a t  near  constant  pressure. Combustion eff ic iencies   are  sub- 
s tan t ia l ly   the  same for air mass-flow ra tes  WJA of 2.78 and 2.14 
pounds per second per square foo t  (test conditions A and D, respectively) 
over most  of the fuel-air r a t i o  range  investigated; however, at 

. .  

. 
- 
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condition D, lean limit blow-out occurred at a fuel-air r a t i o  of 0.0076, 
w e l l  above that for  the  higher  air-flow  condition. The e f f ic ienc ies   for  
the  high air flow condition (3.62 lb/( sec)(sq f t  1 condition E)  were sub- 
s tan t ia l ly   the  same as for the  other  two conditions at fuel-air r a t i o s  
above 0.014; at lower ra t ios   the   e f f ic ienc ies  were lower  and the  combus- 
tor  reached i ts  lean  blow-out limit a t  about 0.OU. fuel-air r a t io .  The ', 

data of f igure 14 indicate that variations in air-flow r a t e  over t he  
range  investigated had l i t t l e  e f fec t  on combustion efficiency  except at 
lean  conditions. 

Data were obtained at condition F, which corresponds to a reference 
velocity of about 35 feet per  second and should represent a mild combus- 
tion  condition. However, the maximum efficiency  obtained a t  this condi- 
t i o n  w a s  only 93 percent. It appears that the final configuration of 
t h i s  combustor is efficiency-limited a t  around 93 t o  95 percent. The 
5-percent loss i n  efficiency may be the result of fuel losses  frm t h e  
vaporizer.  Since  the f i t  between the  conical  section of the  primary 
and the  secondary  sleeve w a s  not tight, a smal l  quantity of l iquid 
f u e l  might impinge i n  t h i s  area and leak  through  into the secondery 
d i lu t ion  zone. Several   l ight  carbon streaks on t h e  secondary  sleeve 
i n  this region  support this possibi l i ty .  A second poss ib i l i t y  i s  tha t  
l i qu id   fue l  impinging on the  surface of the  directional  tubes was in- 
completely  burned.  Either or both are feasible  sources of efficiency 
loss .  

Comparison with a current  production conibustor. - Figure 15 is a 
replot  of the  curves from figure 12  of efficiency  against  temperature 
rise. Also shown are data from reference 9 f o r  a current  production 
tubular combustor of the same diameter  operated a t  the same conditions. 
This figure indicates that higher  efficiencies were obtained  in  the ex- 
perimental combustor than  .in  the  production model at a31 test  conditions. 
The greatest   increases  in  efficiency were found at conditions of low 
inlet   pressure.  A fur ther  comparison  between the  efficiencies  obtained 
with  these two combustors is sliown i n  figure 1 6  in terms of the  corre- 
lating parameter Vr/PiTi proposed in  reference 10. Comparisons are 
d e  a t  temperature-rise  values of 680' asd U 8 O o  F, corresponding t o  
85 percent  rated and full ra ted  rotor  speeds,  respectively,  in a 5.2- 
pressure-ratio  engine. A t  a temperature rise of 680' F, the  experimen- 
tal combustor gave  approximately 1 2  percent greater combustion efficiency 
than  did  the  production combustor over the  entire  range of enghe severi- 
t ies tes ted.  A t  a temperature r i s e  of U 8 O o  F, the  experimental combus- 
t o r  produced eff ic iencies  greater than 75 percent at conditions much  more 
severe than those  result ing in blow-out in  the  production combustor. 

Other Characterist ics of Final Configuration 

Combustor pressure  drop. - A number of measurements of combustor 
pressure drop were made on the  final configuration. The data are 
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presented in tab le  111 where test  condition,  temperature rise, pressure 
drop, and pressure drop coeff ic ient   are  listed.. The pressure  drop  coef- - 
f i c i en t  &/q (pressure drop across combustor/impact pressure at refer- 
ence velocity  conditions} of the final canfiguration had a value of ap- 
proximately 18 for  isothermal flow and increased t o  approximately 24 for  
llOOo F temperature r i s e .  These pressure drop coefficients are equiva- 
len t   to   to td-pressure- loss   ra t ios   D/Pi  of approximately 7 t o  10 per- 
cent at a reference  veloclty of 100 feet per  second. 

Combustor-outlet  temperature profile.  - Combustor-outlet tempera- 
tu res   tha t  were the averages of seven  couples  taken at centers of four 
annuli of equal  areas as the  couples  traversed from near the wall t o  
near  the  center of the  duct were recorded. These average  temperatures 
were f a i r l y  uniform, and the  difference in temperature between the av- 
erages  taken  near the center of the  duct and those taken near  the wall 
was usually less than ZOOo F and never more than 4000 F (fig.   6(d) ) . 
C i r c d e r e n t i a l l y ,  however, t he  temperature  proflle at the combustor 
ou t le t  was uneven. Figure 1 7  presents  isotherms  constructed from indi- 
vidual  temperature  readings  taken at each of the 28 positions  covered 
in t h e  outlet-temperature  instrumentation  for test  condition A a t  an 
average  outlet temperature of 1475' F. A maximum difference in tempera- 
ture of almost 7000 F was present between the   ho t tes t  and the coldest 
points. The lop-sided  condition is  the  result of asymmetric inlet air 
flow, since a combustor rotat ion of 180' around i ts  axis made pract ical ly  
no change in   the   loca t ion  of the  hot  core of the   ou t le t .  

Cabon-deposition  characteristics. - A single run was m a d e  t o  test  
the carbon-forming tendencies of the  experimental combustor. For t h i s  
run, the combustor was operated at 100 feet per second reference  velocity - 
and 60 inches of mercury absolute  combustor-inlet  pressure  (test con- 
d i t ion  G) f o r  2 hours at an  average  outlet  temperature of 1450° F. The 
f u e l  used wa8 JP-4 ( t ab le  I) . N o  indication of carbon was found Fn the - 
conibustor at the end of this test. 

S t ruc tura l   re l iab i l i ty .  - The final combustor configuration was op- 
erated for  approximately 100 hours during this  investigation. The  com- 
bustor  exhibited no warping or burn-out of any of its components during 
t h i s  time. There was no evidence of fuel coking on the  outer walls of 
the primary where the  fuel  was vaporized.  Neither w a s  there any tendency 
toward  clogging in   the  capi l lary  feed system, as shown  by periodic  test-  
ing of t h i s  system. 

Flash-back l imitations.  - The most serious  l imitation  in  the  range 
of operation of the  experimental combustor was i ts  tendency f o r  flame 
e i t h e r   t o  flash back or  to  ignite  spontaneously  in  the  vaporization  sec- 
tion of the combustor.  Flash-back did  not occur a t  any of the standard 
test conditions  but was observed a t - lox   re ference   ve loc i t ies ,  high 
combustor-inlet  pressures, and especially at high heat-release  rates. 
This condition may be one of flash-back  through  the  stub  tubes as a re- 
sult of pressure  pulses  within  the confbustor. Test  conditions F ( i n l e t  
pressure  Pi, 2 1  in. Hg; reference  velocity V,, 35 f t /sec)  and G ( in l e t  
pressure Pi, 60 in. Hg; reference  velocity V,, 100 ft /sec)  represent 

C" 
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t h e  approximate limits a t  which the combustor could be operated  without 
f lash-back. Mended  operation  with flame burning in   the  vaporizat ion 
region would cer ta inly burn out l the conibustor. Therefore  the  conbustor 
was watched closely during operation  under  conditions  conducive t o   f l a s h -  
back and w a s  shut down immediately when t h i s  occurred. The limits 
iIuposed by flash-back would not  permit the  operation of this combustor 
at low a l t i tudes  in an actual  engine, since at reference  velocit ies of 
the  order of 100 feet per second, combustor-inlet  pressures  could ndt 
exceed  approximately 2 atmospheres. 

CONCLUDING REMARKS 

The combustor development work reported  herein was t he  result of 
an attempt to convert to   pract ice   the  design  pr inciple  of appr0xima;teI-y 
stoichiometric fuel-air admission. This des ign  principle  was not f u l l y  
a t t a ined   i n  two respects .   Firs t ,  it is believed that fuel  vaporization 
was not  complete f o r  dl fuel-flow rates and therefore a homogeneous 
fuel-air  mixture was not  charged t o   t h e  primary zone. It is fur ther  
believed  that  the  design  objectives of stoichiometric  fuel-air  admission 
were at ta ined only at low over-all fuel-air ratios so tha t   t he  primary 
zone probably  operated at fuel-air ratios  ranging from approxlmately 
stoichiometric at the  lowest temperature-rise  conditions t o  over three 
times r i c h  o f  stoichiometric a t  the high-temperature rises. The combus- 
tor  nevertheless is one which operated  with incoming fuel-air  mixtures 
uhich are believed t o  be much leaner than those of current  prevaporizer 
practices.  

Under simulated high-altitude  conditions  for  5.2-pressure-ratio 
engines (inlet   pressures 15 and 8 in.  Hg abs 1, the  experimental  preva- 
porizing combustor yielded  efficiencies of 95 and 88 percent, which 
were as much as 20 percent  higher than those  obtained  with a current 
production  tubular combustor of the  same diameter. These higher effi- 
ciencies were obtained i n  s p i t e  of t h e   f a c t  that the combustor was 
shorter by approximately 6 inches  than the current  production conibustor. 
Tnis  reduced length resul ted from t he   i n s t a l l a t ion  of t he  primary air- 
flow  control: mechanism during  the initial developm=nt stages. This con- 
t r o l  was not  used i n  the  later stages of tes t ing  and could  have been 
omitted t o  make available  increased combustion volume. 

The combustor a lso  represented a minimum of the cut-and-try  empiri- 
c a l  design che rac t e r i s t i c   t o   t he  development of a successful combustor. 
Considerable time w a s  spent on the  development  of the  secondary  sleeve 
and i n   t h e   i n i t i a l  development of t he  primary liner, but  the  stub  tube 
configuration shown i n   t h e  f i n d  burner was the  only one tested. Addi- 
t ional   gains  in performance mlght result from a systematic  study of 
primary zone variations.  

The'design  principle yielded a burner which had the objectionable 
quali ty of flashing back at mUd conditions. It is not known Whether 
this flash-back was pressure-induced  propagation up the stub tubes or - 
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whether it was due t o  spontmeous  ignition from hot m e t a l  surfaces   in  
the  vaporizer mea. The former s i tuat ion might be corrected by 
inser t ing screens in the  stub  tubes and t h e   l a t t e r  by control of the 
vaporizer metal temperatures  through  insulation. In any case, a cure 
for  flash-back w o u l d  have t o  be  found  before  this  type combustor could 
be seriously  considered  as  an  engtne component. Together  with  the 
sat isfactory  a l t i tude  eff ic iencies ,   there   are   indicat ions that the com- 
bue tor   re l iab i l i ty  is eat isfactmy.  In part icular ,   the  design principle 
might r e s u l t   i n  a combustor with  exceptional f'reedom from  coking. In a 
single test  at above-atmospheric  conditions, the  burner shcwed no t race 
of deposits. The f ac t   t ha t  only blue  flames were observed at 60-inch 
mercury pressure and a fue l - a i r   r a t io  of 0.02 suggests that the carbon- 
formfng tendencies of t h i s  burner would be very low. 

In general, it has been  demonstrated that the  design  principle of 
near-stoichiometric fuel-air admission is practicable and may r e su l t  i n  
a combustor which is e f f i c i en t  and  carbon-free, even under  severe oper- 
sting  conditions. 

Lewis Flight  Propulsion  Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, July 1, 1954 
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WLFI I. - mTEL ANALYSIS 

Properties 

Dis t i l l a t ion  A.S.T.M. D-86, *F 

Percentage  evaporated 
10 
2 0  
30 
40 
50 
60 
70 
80 
90 

Initial boiling pofnt 

Final  boiling  point 
Residue,  percent 
Loss, percent 

Aromatics, percent by volume 
s i l i c a   g e l  

Reid vapor pressure, lb/sq in .  
Specific  gravity, 60° F 
Hydrogen-carbon r a t i o  
Aniline point, OF 
Lower heat of combustion, Btu/lb 
Smoke point, mm 

MILF-5624B 
grade Jp-4 

13 9 

2 53 
291 
311 
324 
333 
347 
363 
382 
413 

486 
1 .2  

- 7  

10 

2.7 
,776 
,168 
137 

18,675 
32 
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35.7 
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92 
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95 
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94 
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Plenum chamber 
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Shut-off valve 

A h  regulating valvee Altitude-exhaust I 
steam-fed 

Figure 1. - Inatallatlon  of 9$"lnch-diameter experjmental. tubular uombuator. 
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Qp 
0 

Thermocouple 
Total-preaewx rake 

(a) In l e t  thermocouples (cbromel-ahnel) 
and Inlet  total-pressure rake a t   s t a t i o n  1. 

0 0 0  
\ Q / 

(b) Outlet  total-preeeure rakes ( c )  Temper&ture-mcording positions 
in  plane at  etation 2. of seven nlovable outlet  thermocouples 

(chromel-almel) In plane at station 3. 

Figure 2. - Pressure and temperature  Fnstrumentation of experimental combustor. 
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t I: 

. . . . . . . . . . . . . . 

1 I 

. . . . . - . . . 

(a) Inlet total-pressure rae, (a) Inlet  thermocouple. (c) Outlet total-preesure rake 

Figure 3. - Ombustor Instruumnt8t;lon. (Dimensions are In Inches.) 
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section wall 

(a) libJwble outlet thermocouple. 

Figure 5.  - Concluded. Cambustor inrhrumentation. ( ~ i o n s  are in inches.) 
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(a) Configuration M-1. 

0 
d A B 

( 0 )  Configmat ion "3. 

A B 
(d ) Configuration "4. 

A Louvers: 1" by l", rai6ed 1/4"; 
2 rings, l3 per rlng 

B Holes: 1"; 3 rings, l3 per ring 

A l.3 Holes: 5/8O 

B Louvers: 1" by l", raised 1/4"; 
2 r-8, 13 per ring 

C Holes: 1"; 2 singe, 13 per r h g  

D 13 Slots: 1" by $9' 
2 

A 4 Slots : 1/2" by 4" 

B 8 S la te :  1" by 4" 

A 8 Slots: 3/8" by 4" 

B 8 Slots: 1" by 4" 

Figure 5 .  - Experimental secondary sleeves ahowing hole configurations; 
quarter sections. 
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(a) Configuration M-1. (b) Configuration "2. 

Radial   d is tance from e x i s ,  in. 

( c)  Configuration "3. (a> Configuration "4. 

Figure 6. - Outlet temperature  proftles obtained with four 
different  secondary  sleeve configurations. 
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1 

Figure 7. - Effect of relative primary air flow on combustion efficiency. 
Test cundition A: inlet preseure Pi, 15 Fnohes of mercury absolute; 
i n l e t  temperature TI, 250O F; air flow W ~ A ,  2.78 pounde per second 
per  square foot. . - . . . .. 
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1 I I r 
I A - 

I 
4 1  -c 
8" 

I 
" /' l l r  I I . 

t 
L 1 

A L 
E 
l 
F 

A 16 Swirl louvers, l / Z - i n .  diam. 

B l3 Directional tubes, 5/8-h. dim.  
C 8 Slots, 3/8 by 4 2n. 
D 8 Slots, 1 by 4 in. 

semlcirole 

G G 

E Pilot. fue l  supply 
F Main fie1 supply 
G Observation positions 

I 

* 1 
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I I 1 I I 

Manifold vapor lock I 
Probable 

0 Iarprobable 

7 BlOW-oUt 

Fuel  t o  pilot ,   percent 

(a)  Test   condition B: inlet greseure Pi, 8 inches of mercury  Ebeolute; inlet 
temperature Ti, 2l5O t o  230 Fj air f l o w  WJA, 1.49 pounds per  second per 
square foot .  

Figure 10. - Efficiency of experimental combustor as funct ion of percentage f u e l  
flow t o  p i l o t   f o r  nsLcrow ranges of fuel-air r a t io .  
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(b) Test condition C: inlet ressure Pi, 6 inches of mercury absolute; Inlet 
temperature Ti, 210' to 220 F; air flow W$A, 0.93 pounde per eecond per 
square foot. 

B 

Figure Lo. - Concluded. Efficiency of werimental combustor a6 function of per- 
centage fuel flow t o  pilot  for  ow rangea of fuel-air ratio. 
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Figure 11. - Efficiency of experimental combustor w i t h  vapor 
in jec t ion  plus atomizing pilot and with atomized f u e l  in jec-  
t i o n  alone. T e s t  oosditlon B: inlet presm Pi,. 8 lnches 
of mercury absolute; inlet temperature T i ,  215' t o  2%' F; 
air flow WJA, 1.49 pounds per second per square foot.  
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Fuel-bL: r a t l o  

(b) Teat  aondltion E: inlet pressure Pi. (el Teot c c d l t i r n  E: inlet prassurs Pi, 

atms Ti, 215' t o  23300 F; air flow UJA, 
8 inches o f  meraury absolute; in le t  t e r n -  15.5 to 17.5 lnuhes of mercury abmlute; i n l e t  

1.49 pounds pmr second per square foot. m d s  per second per square kat. 
teplwrature T i .  255' P i  air flow UJA, 3.62 

F l $ u ~  12. - Effect or fuol-rir ratlo IRI c w h u s t l r m  efficiency of exprlmmt.1 ambutor.  
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Figure 13. - W e c t  of pressure on combustion efficiency of 
experimental combustor. 
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Figwe 14. - meet of r a a B s - f l a r  rate 011 efficiency 
of experimental ccPnbUstOr at near-constant  pree- 
sure. 
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(‘a) Inlet- pressure P i ,  15 inches of mercury absolute-: inlet 

90 

80 

70 

rn  

temperature Ti, 2560 to  268O F. 
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J 

Temperature rise,  % 

(b) Inlet pressure PI, 8 inches of mercury absolute; inlet 
temperature T i ,  225O to 268O F. 

Figure E. - Comparison of  efficiencies of experimental and pro- 
duction combustors. 



. .  

I *, 

. .. 

3164 

. .. 

0 9 

Correlating parameter V,,/PITi, (€t/sec) /( lb/sq f t )  (%) 

P i w e  16. - Comparison of efficiencies o f  experimental and production C O ~ ~ U E ~ O ~ S  i n  terms of 
correlating parameter. 
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Figure 17. - Temgerature prof i le  of experimental combustor outlet. 
Average outlet temperature, 1475O F. Te8t oonditian A: inlet 
pressure Pi, 15 inches of mercury absolute; i n l e t  temperature Ti, 
240' t o  250' F; air f low WJA, 2.75 pounds per second per equare 
foot. 
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