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VARYING THE MAXTMUM-THICKNESS POSITION UPON THE
AFRODYNAMIC CHARACTERISTICS OF A SERTIES

OF 3% - PERCENT~TEICK DELTA WINGS

By James N. Mueller

SUMMARY

A wind-tunnel investigation of a family of 3%-percent-thick

symmetrical double-wedge delta wings vwas made to determine the effects
of thickness distribution on 1ift, drag, and pitching moment. Six
maximum-thickness positions (18, 30, 40, 50, 60, and 7O percent chord)
were tested on each of three basic wings which had semiapex angles of
30°, 359, and L0O°. The tests were made at Mech numbers of 1.62, 1.94,
and 2.1 and Reynolds numbers of 1.96 X 106 to 2.75 x 106 in the
Jangley 9-inch supersonic tunnel. The experimental data are compared
with linear theory throughout.

The resulits indicated that the wing drag caleculated by the linear-
ized theory was in qualitative agreement with the test results in
indicating the effects of varylng the maximum-thickness position. The
decrease in minimum drag coefficient as a result of moving the wing
maximum~thickness position from 18 to 70 percent chord was as much as
50 percent, whereas the gain achieved in lift-curve slope was about
22 percent. The optimum maximum-thickness position appeared to be
near 60 to 70 percent chord. Iifi-curve slope was accurately predicted
by linear theory for the condition of shock-wave attachment to the
leading edge of the wings. The maximum l1ift-drag ratio obtained was
10.8. The predictions of the drag-due-to-1lift factor based on the
method of linear theory is adequate only for those wings which approach
closely the restriections of the theory. The chordwise center of
pressure of all wings colncided approximately with the wing center of
erea and remained essentially invariant with maximum-tbhickness location,
Mach number, and the ratio of the tengent of the wing semiapex angle to
the tangent of the Mach angle (tan ¢/tan m).
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INTRODUCTION

The effects of chordwise thickness distribution on the theoretical
Pressure-drag chsracteristices of delta wings with symmetrical double-
wedge profiles have been determined on the basis of linear theory by
Puckett {ref. 1) and by Puckett and Stewart (ref. 2) for the complete
rarge of sweepback angles of both the leading edge and the ridge line.
The results of these analyses showed that for any given value of the
tangent ratio tan e¢/tan m (where e 1s defined as the wing semiapex
angle and m 1s the Mach angle of the free-strear flow) the wing
pressure drag could be held to a relatively low value, dependent on the
cholce of the chordwise position of maximum thickmess. The results of
a limlted investigation of the effect of thickness distribution at a
Mach number M of 1.53% conducted on 5-percent-thick symmetrical double-
wedge deltz wings mounted on slender bodies and which had maximum-
thickness locations at 20 and 50 percent chord (reported in refs. 3, L,
5, and 6), have tended to support the theoretical prediction of refer-
ences 1 and 2 after due consideration had been given the friction drag.
More recently, data cobtalned by Eugene S. ILove and Richard E. Lovett in
an investigetion conducted in the langley 9-inch supersonic tunnel (these
data are included herein) for Mach numbers of 1.62, 1.93, and 2.0 on
8-percent~thick delta wirgs with the maximum-thickness location at
50 percent chord showed significant wing-drag reductions as compered to
previous tests by Love (ref. 7) on wings which had the maximum thickness
located at 18 percent chord. Ulmann and Dunning (ref. 8) bhave also
shown, in tests at M = 4.04 on 8-percent-thick delta wings with
maximum thicknesses at 18 and 60 percent chord, significant wing-drag
reductions with a rearward shift in the location of maximum thickness.
Welsh, as a result of rocket-model tests conducted on 6-percent-thick
symmetrical double-wedge delta wings having maximum-thickness locations
of 20, 50, and 80 percent chord (ref. 9), concluded that the wing drag
calculated by the linearized theory was in qualitative agreement with
test results in indicating the effects of verying the position of
maximum thickness.

Although the linearized theory does not consider maximum-thickness
location in tke 1ift calculations, a comparison of the experimental data
of Iove and lovett on 8-percent-thick delte wings having meximum thick-
nesses at 50 percent chord with the results cobtained in reference 7 on
wings of the same thickness but with the maximum~thickness location at
18 percent chord, shows a significant increase in lift-curve slope &s a
result of the rearward movement of the maximum-thickness position. The
results of the investigation of Ulmann and Dunning (ref. 8 at M= k.04
on georetrically similar wings indicate similar behavior upon relocation
of the maximum-thickness position from 18 to 60 percent chord.
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A review of the availsble literature on experimental investigations
of delta-wing thickness-distribution effects (as discussed in the pre-
ceding paragraphs) has shown that, to date, all the investigations have
been of a limited nature with regerd to the variation in the maximum-
thickness position. Moreover, these tests have been concerned with
relatively thick wings which are, serodynamically speaking, less effi-
eient than thin wings at supersonic speeds. Therefore, on the basis of
the foregoing findings and in an effort to Turther the knowledge of
thickness-distribution effects on the serodynamic characteristics of
delta wings, a systematic wind-tunnel investigation has been made of a
series of thin, symmetrical, double-wedge deltae wings having thickness

ratios of 3% vercent. The selection of the thickness ratio was based

upon considerations of structural feasibility and the fact that thin
wings and control surfaces are an serodynamic necessity at supersonic
speeds if high lift-drag ratios are to be reelized. A secondary, though
important, purpose of the investigation wes the assessment of the use-
fulness of linear theory for wings which approach closely the restric-
tions of the theory.

The scope of the investigation included the measurement of the
1ift, drag, and pitching moment on & family of 18 delta wings having
semiapex angles of 30°, 35°, and 40°. For each semiapex engle there
were six wings with the maximum-thickness positions at 18, 30, 40, 50,
60, and 70 percent chord. The wings were sting mounted and were tested
in the Iangley 9-inch supersonic tummel at Mach numbers of 1.62, 1.94,
and 2.41. The Reynolds number range of the tests was from 1.96 X 1
to 2.75 X 106 based on mean aerodynamic chord.

SYMBOLS
A aspect ratio
b wing span
c wing root chord
[ wing mean aerodynamic chord, %-c
Cr, 1ift coefficient, Lift
as
Cn pitching-moment coefficient,
Pitching moment about wing center of area
aSt
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Drag

drag coefficient,
asS

drag coefficient at zero 1ift
pressure~drag coefficient, CDmin - CDf

skin-friction~drag coefficient

rise 1n drag coefficient above minimum, Cp - CDmin

rate of change of 1lift coefficient with sngle of attack
at zero 1lift

two-dimensional value of rate of change of 1ift coefficient
with angle of attack

elliptic integral of second kind with modulus {1 - w2
1lift-drag ratio

maximun lift-drag ratio

Mech angle, sin™ %

'L
Mach number

Proca1l = P

pressure coefficient,
q

static pressure
dynamic pressure, é Mgp

Reynolds number based on @€

distance of ridge-line spex from itrailing edge, percent
root chord

wing area

wing maximum thickness
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w = Ltan e
tan m
a angle of atback
B =M -1
€ wing semiapex angle
¥ ratio of specific heats, 1.4 for air
T airfoil thickness ratio, t/c

APPARATUS AND TESTS

Wind Tunnel, Balance, and Model Support

Wind tunnel.-~ The investigation was conducted in the Iangley 9-inch
supersonic tummel, which is a continuous-operation closed-return type
of tunnel with provisions for the control of the humidity, temperature,
and pressure of the enclosed air. The test Mach number is varied by
means of interchangeable nozzle blocks forming test secitions approxi-
mately 9 inches square. Eleven fine-mesh screens in the relatively
large settling chamber ahead of the nozzle aid in keeping the turbulence
in the tunnel test section at a low level. During the tests, the quan-
tity of water vapor in the tunnel air was kept sufficiently low so that
the effects of water condensation in the supersonic nozzle were
negligible.

Balance and model support.- Figure 1(a) is a sketch which shows
the salient features of the three-component strain-gage balance used
in the investigation 1o measure 1ifs, drag, and pitching moment. The
method of model supvort is shown in figure 1(b). As cen be seen, the
wings were mounted on support stings whose shanks passed through the
opening of the movable-windshield nose with small clearance and were
attached to the floating-frame section of the balance through insertion
in the angle-of-sttack spindle. The streamwise gap between the nose of
the movable windshield and the base of the support sting was 0.020 inch
or less, and the nose of the movable windshield had the same shape (but
slightly smeller dimensions) as the perimeter of the base of the sting.

Models

The gecmetric characteristics of the wings are given in table T.
The wings were machined from heat-treasted steel and the surfaces were
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ground and polished to a smooth finigh. The thickness of the leading
anG trailing edges was from 0.00L to 0.002 inch. All the wings were
mede to the same nominal area. For structural reasons wing support
stings of two sizes (see figs. 2 and 3) were used. The larger wing
support stings, designated "sting A," were used on those wings which
had the maximum-thickness position at cr forward of the midchord point
and the smeller wing-support stings ("sting B") were employed on the
remainder of the wings. (See fig. 4.) In all cases, the nose of the
wing support stings was behind the wing ridge lines in order +to minimize
sting tare-interference effects. The stings were made of sufficlent
width to minimize the danger of wing failure in the regions of extreme
thinness where the stings are attached to the wings. Mirrors approxi-
mately 1/16 inch in diameter were flush-mounted in the sting shoulder
(28 shown in fig. 1(b)) as a part of the optical angle-of-attack system.

In order to evaluate the effects of the presence of the stings on
The 1ift, drag, and pitching moment of the test configurations, two
pressure-distribution models were constructed as shown in figure 5.
(For a detailed description of these models, see appendix A.)

Test Procedure

Measurements of the 1ift, drag, and pitching moment were made at
Meck numbers of 1.62, 1.94, and 2.41 through an angle-of-attack range
of -2° to 6° in increments of 1°, except near o = 0° where 1/2° incre-
ments were obtalned. With the optical system for indicating angle of
attack, the indicated angle may be taken as the true value since the
load deflection of the wings ahead of the mirrors is negligible. All
the wings were tested consecutively (numbers 1 to 18) at M = 1.62,
M= 1.9%, and M= 2.51. (The test procedure used on the two pressure-
distribution models is discussed in detail in appendix A.) The Reynolds
number range of the tests was from 1.96 X 106 to 2.75 X 106 based on
mean aerodymamic chord.

Corrections 1o Experimental Data

The wing support stings used in the tests were of necessity large
as a result of wing-load considerations; hence it was considered manda-
tory to obtaln an accurate estimate of the magnitude of the sting tare-
interference effects, particularly in regard to drag at zero 1lift. Test
models used for this purpose are shown in figure 5 and a detailed deserip-
tion of the sting tare-interference tests can be found in appendix A.
The change in pressure drag of the wing-sting configurations due to the
presence of the stings (A and B) was applied to the measured drag data
of the force tests. Figure 6 shows the magnitude and variation of these
changes in pressure-drag coefficient with angle of attack (up to 6°) and



NACA RM I55D26 S 7

at all test Mach numbers. Iift and pitching-moment changes due to the
presence of the stings were found to be negligible.

Additional corrections, which have been standardized and considered
routine for wing-sting tests in the Iangley 9-inch supersonic tunnel,
were applied to the drag of the wing-sting configurations to account for
the difference between free-stream pressure and (1) the measured pressure
on the base of the support-sting shoulders and (2) the pressure in the
fixed-windshield-—shield-—balance~box enclosure.

Precision of Data

Stream surveys obtained with the empty test section have indicated
that the mean values of the Mach numbers in the region ocecupied by the
test models in the test nozzles were 1.62, 1.9%, and 2.41 and that the
variation about these means was t0.0l1 or less. The estimated probable
errors in the aerodynamic quantities are included in the Tollowing table:

O, o ¢ & v e e e e e e e e e e e e e e e e e e e e e e +0.002
CD = « = + = + o + o e e e e e e e e e e e e e . *0.0002
G = = = = = + + & & & 4 o e e e e e e e e e e e e .. *0.0018
a, deg
TNIBIBL & v v & v v e e e e e e e e e e e e e e e e e e +0.05
RelatiVe « ¢ v v 4 ¢ o o = e o o o s =« o o « = a « @« « = « +0.01
R v ot e e e e e e e e e e e e e e e e e e e e e e e . E0.05 X 106

The velue of £0.05C given for angle of attack is a result of the error
in initial referencing of each wiling with respect to stream direction.
The value of +0.01° is the error that might be incurred in relative
angle~of-attack readings for a given test.

Reynolds Number

The Reynolds numbers of the wings based on mean aerodynamic chord
(see table I) varied as shown in the following teble:

Reynolds number

Wings
M=1.62 M= 1.9 M= 241

1t06 | 2.75x 106 | 2.70 x 106 | 2.36 x 106

T to 12 | 2.50 2.46 2.1k

13 to 18 | 2.28 2.25 1.96
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The small variations in Reynolds number shown are believed to be
negligible Insofar as the aerodynamic forces and moments are affected,
as is indicated in the results of references 10, 11, and 12.

RESULTS ANWD DISCUSSION

The variation of lift, drag, pitching moment, and lift-drag ratios
for an angle-of-attack range of -2° to 6° are giver in figures T to 15
for all the wings of the investigation at Mach numbers of 1.62, 1.94,
and 2.41. Table II presents a summary of the results of the investigation.

Lift

For the individuzl wings, the 1lift varies linearly with angle of
attack. For this reason, the 1lift results can be discussed and compared
with theory on the basis of lift-curve slove. The analyses of refer-
ences 13, 14, 15, and 16 using linear theory indicate that the tangent
ratio tan e/tan m 1is a basic varameter in sweptiback-wing or triangular-
wing theory. Values of tan e/tan m greater than 1 represent a wing
whose leading edge is ahead of the Mach cone originating at the wing
apex (supersonic leading edge); values of tan e¢/tan m less than 1
represent & wing with a subsonic leading edge. References 1, 2, 1k,
and 15 have shown that, for thin triangular wings with leading edges
aread of the Mach cone, the lift-curve slope has Ackeret's (ref. 27)
theoretical two-dimensional velue of

or. = —2% (1)
oo e -1 -

and that, for triangular wings with leading edges behind the Mach cone,
thilis value becomes

Sqt tan €
tan m (2)

or =
o E\hf[2 -1

The lift-curve slopes of the wings at all test Mach numbers are
shown in figure 16 as a function of maximum-thickness position. Also
included in the figure are the test values of the tangent ratioc
tan e/tan m, along with the lift-curve slopes predicted by linear
theory. A cursory examination of the data for the condition in which .
the shock wave is detached from the leading edge of the wing shows an
increase in lift-curve slope as the meximum-thickness positlon is
moved rearward. This result i1s believed to be directly attributable
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to the faet that significant transonic-flow effects occur on triangular
wings at supersonic speeds for detached-shock conditions as conmelusively
shown by Boyd and Phelps in reference 18. Also, as shown in refer-

ence 19, airfoil thickness distribution has a pronounced effect on the
flow characteristics over the wings (and thus force characteristics)
when the flow over the wing is transonic in nature. Rearward movement
of the wing maximum-thickness position, with the conseguent reduction
in the leading-edge wedge angle, would tend to favor shock attachment
and thereby minimize the severity of the transonic flow phenomena
{characterized by shock waves and flow separation) on the wing. Thus,
an improvement in wing lifting ability and consequently better agreement
with theory could reasonably be expected. A meximum increase In 1ift-
curve slope of about 22 percent was realized (at tan e/tan m= 1.070
test condition) when the maximum-thickness position was moved from

18 percent to 70 percent chord. This percentage increase in the 1ift-~
curve slope with rearward movement of the wing maximm-thickness pogi-
tion agrees well with the value of 19 percent obtained on geometrically
similar 8-percent-thick delta wings with maximum-thickness positions at
18 and 50 percent chord (ref. 7 and unpublished data of Iove and Lovett,
respectively) at comparzble Mach numbers.

The lift-curve-slope data for attached-shock conditions (figs. 16(b)
and (c)) show no appreciable change in slope with rearward movement of
the wing maximum-thickness position end there is excellent agreement
between experiment and theory. (Shock attachment has occurred on all
wings when +tan e/tan m = 1.584%.)

The importance of shock attachment to the serodynamic character-
istics of delte wings has long been recognized, having been discussed
by Clinton E. Brown of the Iangley Iaboretory before a technicel group
as early as 1948. Iove also discussed this subject in reference 7.
More recently, Ulmann and Bertram took cognizance of this phenomenon
and presented (ref. 20) some simple methods for modifying the predic-
tions of linear theory to account for shock detachment.

The lift-curve slopes have been replotted in figure 17 as a ratio
to the theoretical two-dimensional slope, as given by equation (1),
against the tangent ratio +tan e/tan m for the six maximum-thickness
positions. (Because the test points shown in this figure represent
data obtained at different Mach numbers, and because displacements
occur in the data with Mach number for a given meximum-thickness
position, it was not considered feasible to show faired curves.) It
is at once apvarent from an inspection of the figure that the maeximum-
thickness position is extremely criticel inscofar as the lift-curve-
slope value is concerned when the flow over the wing is of a transonic
nature. At the highest test value of the tangent ratio, the test points
at all thickness locations tend to merge, 2 condition directly attrib-
utaeble to shock attachment to the leading edges of the wings.
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At the lowest values of the tangent ratio (abscissa of plot) for
whick tests were made, the maximum-~thiclkness position appears, again,
to be tending toward secondary importance, as might be expected. In
reference 20, it was pointed out that the analysis of delta-wing data
for Mach numbers below 2.5, plotted to the variables of figure 17, has
led to the conclusion that the linear theory gives a fairly accurate
prediction of the 1lift of thin delta wings at low values of the tangent
ratio but overestimates the 1ift at tangent ratios from about 0.7 to
1.5. Figure 17, however, shows that if the leading-edge wedge angle is
relatively small, thereby approaching closely the restrictions of linear
theory, the lift-curve slope of the wing is predicted closely by linear
theory. For example, the lift-curve slopes of the wing with the location’
of maximum thickness at 0.70c are predicted within 3.5 percent through-
out the tangent-ratio range of the tests (0.736 to 1.840).

Figure 18 has been prepared by using the results of the present
investigation and published (refs. 3, L, 5, 7, 8, 10, and 21 to 26} and
unpublished delta-wing test data to show, primarily, some effects of
thickness ratio on the variation of the lift-curve-slope ratio agelnst
the parameter tan e/tan m. Figure 18(a) is for wings with the maximum-
thickness position relatively far forward (0.18c to 0.20c). Shown in

the figure are wings having thicknesses of 3%? 5, 6, and 8 percent. At

the lower end of the tangent-ratio scale (around tan e/tan m= 0.5

and lower) the data poilnts for all the wings tested at Mach numbers of
2.41 and below exhibit a tendency to cluster, which would indicate that
the wing thickness has very little effect on the lift-curve slope when
the flow over the wing is basically subsonic in nature. Hall (ref. 27)
obtained similer results on triangular wing-body combinations. As one
moves further along the tangent-ratio scale (an increase in +tan €/tan m),
the advent of transonic-flow phenamena on the wings is manifested by the
divergence of the test data for the wings of different thickness ratios.
Further increase in the tangent ratio results in the flow over the wings
becoming predominantly supersonic, and when leading-edge shock attach-
ment occurs the importance of the thickness on lift-curve slope is once
again minimized, as evidenced by the fact that the thin- and thick-wing
data appear to merge in the vicinity of +Han e/tan m= 2.2, Except at
those localities where the test points for all thickness ratlos merged,
the data exhibit systematic variation with thickness ratio with the
wings of least thickness following the trend of the theoretical curve
most closely. The agreement and the magnitude of disagreement between
theory and experiment may be attributed to lesding-edge wedge angle and
shock attachment in the manner described in the discussion of figure 17.

The displacement of the hypersonic Mach number (M = 6.9) data rels-
tive to the data obtained at the lower Mach numbers (perticularly those
data obtained in ref. 7 for geometrically similer models) is to be
expected, because, for these relatively thick wings, the correlating



NACA RM I55D26 b 11

parameters based on linear theory are not applicable at high supersonic
Mach numbers, that is, Mach numbers sbove about 3 (ref. 22). The same
reasoning would be expected to apply to the M = L.0O4 data. Predictions
of high Mech number results can be more accurately determined through

use of a method based on shock-expansion theory presented in reference 20
by Ulmenn and Bertram.

Figure 18(b) shows the compiled data for wings of various thickmess
ratios having their maximum-thickness positions near midchord (0.50c to
0.62c). Basically, the data of this compilation show results similar
to those for the wings with maximum thickness well forward for the low
and high tangent-ratio values. However, in the intermediate tangent-
ratio range (where the transonic-flow phenomena were so prevalent for
the wings with maximum thickness at 0.18c to 0.20c¢c) the effects of
thickness are considerably reduced. This is due, of course, to the
fact that the leading-edge wedge angle becomes less with rearward move-
ment of the meximum-thickness position. The betiter asgreement with
theory for these wings as compared with the wings of figure 18(a) may
also be atitributed for the most part to the reduction in leading-edge
wedge angle. Again as expected (see ref. 20) the data at M= 4.0k and
6.9 are considerably higher than the data at the lower supersonic Mach
numbers.

Drag

Minimum drag.- The minimum drag coefficients for the 5%-percent—

thick delta wings of the investigation are presented in figure 19 as a
function of the wing maximum-thickness position for the three test Mach
numbers. Included in the flgure is the theoreticel pressure-~drag
coefficient computed by the method of reference 1, the equations of

which are given in appendix B. Also shown in the figure, for illustra-
tive purposes only, are the theoretical total-drag-coefficient curves
(pressure dreg plus friction drag) computed on the basis of the skin-
friction coefficients corresponding to completely laminar and completely
turbulent flow in the boundary layer. Leminar skin-friction coefficients
were estimated from the Blasius flat-plate incompressible theory (ref. 28),
since differences are negligible at the test Mach numbers (1.62, 1.94,

and 2.41) between this theory and the more accurate theories which account
for compressibility (refs. 29, 30, and 31). Turbulent skin-friction
coefficlents, on the other hand, were obtained from reference 32

(extended Frankl and Voishel results). The Reynolds number used in the
selection of the skin-friction coefficients was based on the mean aero-

dynamic chord (g c) of the wings. The peaks on the theoreticzl curves

(fig. 19(a), € = 30°) represent the condition whereby the Mach line and
wing ridge line are coincident and sre characteristic of the linear theory,
although unrealistic. (See refs. T, 20, and 22.)
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As can be seen in the figure, all the test points fall generally
within the boundaries of the theoretical total-drag-coefficient curves.
Tt is seen zlso that ithe data, in most cases, exhibit a smootn varia-
tion with maximum-thickness position, going from an initial value
near the theoretically all-turbulent drag curve to a final valuve
near the theoretically all-laminar drag curve. (This cbservation is
most evident at M= 1.9% and 2.41.) This variation of the experimental
test points strongly suggests that the wing ridge lines are insirumental
in "triggering" boundary-layer transition as observed in reference 7.
Actually, the locations of the boundary-layer transition lines are deter-~
mined by thke presence of shock waves on the wing surface and the steep
adverse pressure gradients that are predicted to occcur just downstream
of the ridge line and which are accentuated by these surface shock waves
(see refs. 3, T, and 18). The bereficial effect om wirg drag of moving
the maximum-thickness position rearward from 18 percent chord to 70 per-
cent chord is reflected in a meximum decrease of around 50 percent in
the minimum dreg coefficient. These findings are compareble to results
obtzined on 8-percent-thick delta wings (for rearward shifts in the
maxirnm-thickness position, from 18 to 50 and 60 percent chord) by
other investigators, for example, ILove (ref. 7) and Love and Lovett
(data presented herein) at Mach nunbers 1.62, 1.93, and 2.40 and Ulmann
and Dunning (ref. 8) at M= 4.0Ok.

The variation of the minimum drag with Mach number 1s shown in
figure 20 for wings with common maximum-thickness positions. (For the
sake of clarity the designmation of individual test poinits has been
omitted.) For those wings having tie location of the maximum thickness
from 18 to 50 percent crord, the variation of minimum drag with Mach
number is generally linear and the rate of decrease with increase in
Mach number is found to be comparable to similar wings of 8-percent
thickness tested through the same Mach number range (ref. 7 and data
of Tove and Iovett). The minimun-drag variations of wings with more
rearward maximum-thickness positions (60 to 7O percent chord) show an
initial decline through half of tke Mach number range (to sabout M = 2)
simiier to the forward-thickness~location wings; however, the curves
have a tendency to level out with further increase in Mach number.

This result is probably due to more favorable flow conditions over the
wing incurred with the advert, or near advent, of shock-wave attachment
to the wing leading edge. The lowest value of minimum drag coefficient
(0.0049) occurred at M= 2.11 on the aspect ratio 3.36 wing (e = 40°)
with the maxirmum~-thickness pogsition at the 70-percent-chord station
(wing 18).

The linear theory for delta wings, as derived by Puckett (ref. 1),
indicates that all delta wings with double-wedge airfoll sections having
a given maximum-thickness locztion and the same value of the tangent
ratio will have the same value of CDPS 72 (where CDP is the minimum

pressure-drag coefficient) within the restrictions of linear theory.
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Thus, the theoretical predictions of the minimum pressure drag for wings
of the same meximum-thickness position appear as single curves when
plotted in the form CDDB/T2 against +tan e/tan m.,

In order to compare the experimental drag data of the present
investigation on the basis of the linear theory, it was necessary to
deduct & calculated friction-drag coefficient from the experimental
values of measured minimum drag coefficients. For the purpose of these
calculations, therefore, boundary-layer trensition was assumed to occur
at the wing ridge line and laminar and turbulent friction-drag coeffi-
cients were celculated by using the methods described previcusly. The
variations of the theoretically derived and the experimentally adjusted
wave-drag parameter CDPB T2 with tangent ratio are shown in figure 21

for all meximum-thickness locations. A cursory inspection of the figure
reveals fair agreement of the test points with theory, with the exception
of the wings with maximum thickness relatively far forward (0.18¢c).
However, correletion of the experimental data along a single curve
appears to be best for the wings with the maximum thickness at this
Torward chordwise wing station. In general, as the maximum-thickness
vosition is moved rearward, the scatter of the date increases; thus

the correlation as predicted by linear theory appears to become pro-
gressively worse. The key to a true comparison of this nature, however,
lies in the accurate assessment of the skin-frictiom-drag coefficients.
With this in mind, on the basis of the comparison shown in figure 21
(based on approximated values of skin-friction-drag coefficients), the
quantitative and qualitative predictions of the linear theory can be
considered good, at least for nonblunt wings.

To illustrate the effects of thickness ratio on the variation of
the drag parameters CDmin%/Ta and CDDB 2 with tangent ratio of
double-wedge delta wings, results obtained in other facilities (refs. 3,
k, 5, 7, 8, 9, 21 to 26, 33, 34, and unpublished data) on delta wings
of various thicknesses and those of the present tests are compiled in
Tigures 22 and 23. The plots of the minimum-érag parameter CDminB 2
(figs. 22(a) and 23(a)) are intended solely for the discretionary use
of the reader and to afford a comparison of the pressure drag (CDP%/%Q)
values with the minimum-drag (CDmine/;a) values from which they were
obtained by subtraction of a skin-Triction-drag coefficient
(CDP = CDpip - CDf)‘ (The minimm drag coefficients Cpuj, OFf the
tests of refs. 3, L, and 5 include the forces on the mounting body;
for the rocket-model tests of ref. 9, Cppy, represents wing drag
plus wing-body interference drag.) For those data fram tests up to
and including M = 2.41, the skin-friction-drag coefficients were deter-
mined as described in the previous paragraph. At M = L.04, skin-friction-
drag coefficients have been determined for those wings with the maximum
thickness near midchord (0.50c to 0.60c) by means of fluorescent-lacquer
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tests (ref. 24) and references 30 and 35; therefore, these values have
been used in computing the pressure drag for this series of wings. For
those wings with the maximum thickness at 0.18c, an experimental value
of friction-drag coefficiernt was obtained by plotting the drag coeffi-
clents of wings having the same plan form and section against the square
of the wing thickness ratio ard maeking & straight-line extrapolation
through the experimental points to the zero-thickness ordinate. The
skin-friction-drag coefficients for those wings at the hypersonic Mach
number (M = 6.9) have been determined as outlined in reference 23.

In figure 22(b) are shown those drag datz for wings with the
maximum-thickness positions at or near the 20-percent-chord location
(0.18¢ £ 1 - r £0.20¢). It is at once apparent that the difference
between the experimentally derived and the theoretically predicted wing
drag is guite large. Thus, the conclusion that linear theory is
inadequate for predicting drag characteristics for wings with relatively
blunt leading edges previously determined by Love (ref. 7) and others

appears to be valid even for the thin (3%-—percent-thick) wings of the

present investigation. The overall correlation of the data cannot be
considered good. For those data obtained at the relatively low Mach
nunbers (up to and including M = 2.41), it would be expected that a
better degree of correlation could be obtained if the accuracy of
assessment of the skin-friction-drag coefficients was improved. As
regard the high Mach number data (M = 4.0% and 6.9), Ulmann and Bertram
(ref. 20) have pointed out that, for wings with maximum thickness at
locations other than midehord, higher order terms become important and
the two-dimensional shock-expansion theory indicates Mach number effects
in the shock-attached region which camnot be correleted by these param-
eters. (See fig. 22(b).)

In figure 23(b) are shown the drag deta for wings which have
meximum~-thickness positions near or at the midchord station 0.50c < 1 =
r £ 0.62c. Again, tke overall correlation of tke data cannot be con-
sidered good. However, a better degree of correlation of a2ll ihe
experimental data would probably be realized with a more accurate

asgsessment of friction drag.

Drag due to lift.- In delta-wing theory (ref. 13), a subsonic
leading edge is characierized by an infinite pressure pesk at the nose
of the airfoll which, in the drag-due-to-1ift calculations, must be
accounted for by a leading-edge-suction term. The following equation
(extracted from ref. T7) gives the theoretical drag due to 1lift with
leading-edge suction as

2y 1 ph-w (3)
Cr2 4crL Ysrwr
do
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where o is in radians. Although the theory shows a forward thrust on
the thin plate with & sharp edge, it is not to be expected that this
characteristic will be realized in practice because very thin delta
wings produce & laminar seperation at the leading edge which tends to
reduce the very high suction pressures that produce the drag relief

(ref. %6).

When the leading edge is supersonic; that is, when tan e/tan m 1.0,
no leading-edge suction force exists theoretically and the drag due to
the 1lift is given by the expression

ACh _ 2 X
2= % ()
da.

For this condition the pressure at the nose is finite and the theoretical
stagnation point is at the leading edge; therefore, no flow can occur
between the upper and lower surfaces.

Figure 2 shows some effects of meximum-thickness position on the
variation of the dreag-due-to-1lift factor ACD/CL2 for the wings of the
investigation at the three test Mach numbers. Included in the figure
are the theoretical drag-due~to-1ift curves with and without leading-edge
suction and the test points representing the reciprocal of the experi-
mental lift-curve slopes obtained on the wings. The experimental wvalues
of ACp CI? were obtained by evaluating the slopes of the straight lines
faired through the experimental points on plots of ACp against 01?.

t all Mach numbers and tangent ratios of the tests, the wings with the
maximum-thickness position at 18 percent chord indicate, according to the
concepts of inviscid theory, leading-edge suction (the difference between
the ACp 01? values and the reciprocals of the experimental lift-curve
slopes). For the other wings, the indicated leading-edge suction is
either less or nonexistent, depending on maximum-thickness location and
tangent ratio.

The fact that substantial Jeading-edge suction is indicated is
surprising in view of the sharpness of the wing leading edges and is
believed to be misleading, because the method of indicating leading-
edge suction based on equation (3) is obviously inadequate for those
wings which fail to approach closely the restrictions of the linear
theory. Although theory based on a wing of zero thickness predicts the
drag~due-to-1ift factor ACH CL? to be equivalent to the reciprocsl of
the lift-curve slope ;/Cla when tan e/tan m 2 1, experimentally with
wings of finite thickness it appears that leading~edge wedge angle and
therefore shock attachment or the approach thereto is the criterion
rather than tangent ratio. Thus, for wings which spproach closely the
restrictions of the theory, good predictions can be expected.

N
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Iift-Drag Ratio

Experimental and theoretical lift-drag ratios of the test wings
are presented in flgure 25 plotted against wing 1lift coefflcient, and
in figure 26 the maximum lift-drag ratios are compiled and shown as a
function of the wing maximum-thickness position. In the celculstions
of the theoretical lift-drag ratios it was assumed that the flow over
the wing was laminar to the ridge line, at which point transition
occurred, with turbulent flow existing over the wing behind this line.
Friction-drag coefficients (see table IT) based on this type of boundary-
layer flow were added to the previously calculated wave-drag values in
determining the theoretical lift-drag ratios. In the calculation of the
theoretical values of (I/D)max: the following equetion, cbtained from

reference 13, was used:

(5)

A cursory examination of figure 25 shows the trends of the experi-
mental and theoretical I/D curves to be clearly allied; however, as
shown in figure 26, the calculated values of (L/D)pmax depart markedly
from the experimental velues in the low (tan e/tan m = 0.736 and 0.894)
and high (tan e¢/tan m = 1.535 and 1.840) operating range of the investi-
gatlon. The cause of this large discrepancy can possibly be attributed
to the inaccurate theoretical assessment of the drag-due-to-lifi
factor AC /CL? (see table IT), which enters into the equation for
(L/D} max ?see eq. (5)). At intermediate tsn ¢/tan m values the
agreement between tre calculated and the experimental values is con-
siderably improved, although in all probability the agreement is
fortuitous.

As shown in figure 26, the trends of the experimental curves, which
show an increase in (L/D)payx with rearvard movement of the maximum-
thickness position, are predicted rather closely by the theory in most
cases. Both the calculated and experimental curves show a tendency to
reach a maximum near the 60~ to TO-percent-chord station. The highest
lift-drag ratio (10.8) was obtained at M= 2.41 on the ¢ = 40° wing
of highest aspect ratio (A = 3.36) and with the position of maximum
thickness at the most rearward station tested (70 percent chord). This
wing also had the least minimum drag of 211 the wings. With minor
exceptions the experimental values of (L/D)_ 5, increased with Mach

nunber; this is in opposlition to the theoretical prediction.
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Center of Pressure

The chordwise center-of-pressure location of the wings are shown
in figure 27. The experimental center of pressure was determined from
the change in pitchirng-moment-curve slope with lift-curve slope near
zero 1lift. The chordwise center-of-pressure position is shown by linear
theory to be fixed at the wing center of area (midpoint of the mean
aerodynamic chord) and is shown in the figure. The experimental centers
of pressure are approximately 3 percent ahead of the theoretical position
and essentially independent of maximum-thickness location, Mach number,
semispex angle, and, therefore, tangent ratio +tan ¢/tan m. Semispen
tests of a 2.9-percent-thnick double-wedge delta (e = 30°) wing with the
maximum thickness at 62 percent chord (ref. 33) showed a similar center-
of -pressure location (between 47 and 48 percent of the mean aerodynamic
chord) at Mach numbers of 1.50 and 2.00.

n contrast to the negligible variation of center of pressure with
tangent ratio tan ¢/tan m indicated by the present results, results
for thicker wings (8 percent, ref. 7) have shown a forward movement of
the center of pressure of sbout 10 percent with increase in tangent retio.

CONCLUSICNS

An investigetion of the effects of thickness distribution on the

aerodynamic characteristics of eighteen 3%-—percent—thick delta wings

was made at Mech numbers of 1.62, 1.94%, and 2.41 in the Reynolds number
range from 1.96 X 106 to 2.75 x 106. An analysis of the results has
indicated the following conclusions:

1. The wing drag at zero 1ift calculated by the linearized theory
was in qualitative agreement and Talr quantitetive agreement with the
test results in indicating the effects of varying the maximm-thickness
position.

2. The decrease in minimum drag coefficient cDmin as a result of

moving the wing maximum~thickness position from 18 to 70 percent chord
was, for some cases, as mich as 50 percent. The optimum meximum-
thickness position, from the standpoint of minimum drag, appeared to
be near 60 to 7O percent chord.

3. The lift-curve slope was accurately predicted by linear +theory
for the condition of shock-wave attachment to the leading edge of the
wings. TIn edditlion, equally good agreement between theory and experi-
ment was obtained for the condition of shock-wave detachment for those
wings with the location of the maximum thickness at 60 to 70 percent

sl
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chord; however, as the maximum-thickness position was moved forward on
the wing, the agreement between theory and experiment deteriorated.

4. The gain in lift-curve slope achieved by shifting the maximum-
thickness position from 18 to 70 percent chord was as much as 22 percent.

5. The maximum lift-drag ratios increased with rearwsrd movement of
the wing maximum-thickness position and appeared to reackh a maximum at
all Mach numbers and wing semiapex angles when the maximum thickness was
located at the 60~ to TO-percent-chord station. The maximum lift-drag
ratio obtalned in the tests was 10.8 and occurred st a Mach number of
2.41 on the wing which bad the least minimum drag of the series. The
experimental variation of the maximum lift-drag ratio with Mech number
was in opposition to the theoretical prediction of decreasing maximim
lift-drag ratio with increasing Mach number.

6. The prediction of the drag-due-to-1lift factor based on the
method of linear theory is adequate for wings which approach closely
the restrictions of the theory.

T. The locations of the chordwlse centers of pressure of the wings
were at the 47- to L8-percent-mean-aerodynamic-chord stations and
remained. essentlally invariant with maximum-~thickness location, Mach
nunmber, semiapex angle (therefore, aspect ratio), and ratio of the
tangent of the wing semiapex angle to the tangent of the Mach
angle (tan e/tan m).

Iangley Aeronautical ILeboratory,
National Advisory Committee for Aeronautics,
Ilangley Field, Va., April 6, 1955.
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APPENDIX A
EVALUATION OF SUPPORT-STING TARE-INTERFERENCE EFFECTS

It was considered necessary in this investigation to evaluate the
sting tare forces and interference effects if a correct analysis of the
drag results was to be made, particularly for the minimum drag. Tests
were therefore undertaken on two configurations considered representa-
tive of the test models of the primary investigation.

Descriptlion of Models

The models used in the tests are shown in figure 5. As previously
described in the body of this report, two stings of different sizes
were employed to support the wings used in the primary investigation.
(See figs. 2, 3, and 4.) Therefore, in the tests of sting tare-
interference effects it was necessary to cobiain data on wings equipped
with the stings of different sizes. The wings chosen for the tests
were geometrically similar to wings 10 and 11 of the primary investiga-
tion (wings 10 and 11 were supported by sting A (large) and sting B
(small), respectively, in the primary investigation) and were considered
to be representative of the wings of the lnvestigetion.

As shown in figure 5, the wings were mounied on sweptback siruts
which attached to an angle-of-attack bar (not shown in sketch). Mirrors
approximately 1/16 inch in diameter (not visible in sketch) were flush-
mounted in the strubts as part of the optical angle-of-atiack system.
Sting replicas (or dummy stings) were attached to the wings as shown to
simulete the actual support stings. These dummy stings were detachable.
Measurements of the pressure distributions over the portions of the
wings influenced by the disturbances created by the stings and over the
faces of the stings were accomplished by means of pressure orifices
located on the surfaces of the models at the positions shown in fig-
ure 28. A complete set of orifices was placed in the strut-~free side
of the models only.

The models were made from hardened sieel, similar to those used
in the main investigation, with comparable tolerances.
Test Procedure
The procedure followed in conducting the tests was to obtain

pressure data on both models at all Mach numbers (1.62, 1.94, and 2.41)
and the desired angles of attack with the dummy stings attached and
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then repeat the tests with the stings removed. The angle of attack was
usually varied from O° to 6° in increments of 2°. Since a camplete set
of orifices was present in only one surface, tests were made at both
positive and negative angles of attack in order that complete data might
be obtained. For purposes of calculation, it was necessary to assume
that the pressures existing on the bobttom surface at a given positive
angle of attack were ldentical to those measured on the top surface at
the same negative angle of attack.

Pressure Measurements and Reduction of Data

The pressures on the wing and sting surfeces and the total pressure
in the tunnel settling chamber were recorded menually from a multiple-~
tube manometer.

Inasmich as the tests of sting tare-interference effects were for
the determination of the change in force and moment coefficients of the
wing-sting configurations due to the presence of the support stings on
the wings, integrations of the measured pressures recorded on the models
were made for the conditions with and without the dummy stings attached
to the wings and over an area on each model as shown in outline in the
Following sketches:

I‘\ ———e -
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Precision of Data

The estimated probable errors in the serodynamic quantities for
M=1.62, 1.94, and 2.41 are included in the following table:

P it et et e e e e e e e e e e e e e e e e e e e +0.05
o, deg
Tnitial . . & & v & ¢ 6 e 4 e st e e e e e e e e e e e e . +0.075
Relative . & & @ ¢ v i it e e e e e e e e e e e e e e e +0.01
CDP {0 M e [0 [0 1 X

The value of 10.075 given for angle of attack is & result of the error

incurred in the initial referencing of each wing with respect to stream
direction. The value of £0.02° is the error that might be incurred in

relative angle-of-attack readings for a given test.

Results

The principal results are shown in figure 6 as the change in
pressure-drag coefficients due to the presence of the stings. No
plots of change in 1ift and pitching-moment coefficients due to sting
Dpresence are shown, because these changes were negligible.

Figures 29 and 30 show the pressure changes which occurred on the
test configurations due to the presence of sting A and sting B, respec-~
tively. With the aid of the pressure diesgrams (figs. 29 and 30) and
figure 28, the extent and magnitude of the sting interference regions
are easily visualized. The largest changes in pressure occurred at the
wing stations occupied by the stings, and, as expected, & rapid decrease
1n pressure change occurred with rearward movement along the faces of
the stings. Since the areas under the curves are indicative of the
pressure drag, the reduction In pressure change is indeed favorable as
regards the tare drag of the stings. Tt is also seen that the pressure
change at the sting station (station I) is smaller for sting A than for
sting B, because, of course, of the smaller wedge angle of sting A. On
the other hand, it is seen that the area of influence of sting A is
considerably more than that of sting B. This fact and the moderate
pressures over the face of sting A combine advantageously to produce a
relatively small tare-interference drag force (and, at some angles of
attack, a thrust) as shown in figure 6(a). On the contrary, the area
of influence of sting B on the wing pressures is relatively small;
conseguently, most of the tare-interference drsg 1s due to the pressures
on the face of the sting.
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APPENDIX B
CAICULATION OF PRESSURE DRAG
The equations for computation of the pressure drag of triangular

wings are as follows:

For the Mach line bekind both the leading edge and the ridge line,

2
2T 1 cos™t n + _____l;___(i + sin'lrn) (B1)

Cn =
p Br(1l - r2) Ml - 2 r’l _ r2p2\2

For the Mach line ahead of the leading edge but behind the ridge
Jine,

oo o 22| Go(nr) 3 (g - logn _ gyp-1 -1-) (B2)

Br [r(l - )2 =(1 - 2)\2 /EE_:—I n

where

rl logn . r cos~in +
r Jne -1 ¥Yn2 -1

_1{ V1 - r2n2

—2  __ tan (B3)
1 - ren2 \R - TR+ yn2 - 1
For the Mach line ahead of both leading edge and ridge line,
o512 Go? F! 1 [/ log nr
Dp = ox Ml -~ )2 (L - r)2 r(1 - r)l\l/r—gn—gTi -
\
dogn . oginl Lo osintl (BY4)
2 - 1 rn n
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“here -

Gpt =Ll=zx) logn . rcosln,
el 7 k21

1 2Jr2n2 -1 (B5)

log |1 +
n{l - r) + V2 - 1 - \/r2n2 -1

ren2 - 1

e - 1 + Vtr2n2 - 1 (n? - 1) (B6)
n(l - r)

i-r log rn + 1 1log
l+r | f2n2 1 2 -1

In these equations,

thickness ratio at root

T
r distance of ridge-line apex from trailing edge, percent
root chord
n=tanm
tan €
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TABIE I
GEOMETRIC CHARACTERISTICS OF 3% - PERCENT-THICK DELTA WINGS v
Me
]

‘ t

r
1 N l -
| o ™

(a) Dimensions of wings

e, s,

Wings |e€, deg | b, in. | ¢, in. %c’ in. | sq 1in. A }%, in.
1to b 30 h.298 | 3.722 2.481 8.00 | 2.31 {0.130
T to 12 35 L7534 | 3.380 2.253 8.00 | 2.80| .118

13 to 18 ko 5.180 | 3.087 2.058 8.00 | 3.36 | .108
(b) Maximum-thickness locations
I . l-r l-r7
Wing e, deg percent,c Wing e, deg percent’c Wing e, deg percent,c

1 %0 18 7 35 18 13 Lo 18
2 30 30 8 35 30 14 ho 30
3 1 30 %o 9} 35 Lo 15 | k4o ko
L 30 50 10 35 50 16 ko 50
5 30 60 11 35 60 17 ko 60
6 30 70 12 35 70 18 4o 70




TABIE II
SUMMARY OF RESULTS

(a) M= 1.62
Drag Pitching Lift-drag Center of Optimum 1ift
moment, ratio prespure coefficient
la 1', e cnb-/cIU.,

e G | Gy | oo (x| goreent | O
Thear. |Exp. | Tear. [ Exp. [Theor. | Exp. Exp. |[Theor.| Exp.[Theor.| Exp.|Theor.| Exp.
1 18 0. 005494 === |0.00960 10,0124 |0.2036 |0.3250] © | 0.0005 | 9.566] 8.% | 50 ]49.209{0.1857/0.1775
2 30 00493 |-—== | .02051] .005| .2836| .3360| © .o0004| 9,256{ 8.5 | 50 |[hB.02] .1903| .1775
3 ho L0045 |-=-=| 00896 | .0102| 2836 .3715( O .0015 | 9.902] 8.45) 50 (h7.25( J17R] .ATTR
y 50 .00398{~——~| .00817| 008k ] .2836| .3880] O .0000 }20.370} 8.85| 50 (18.18! .1694| .1580
5 60 00351 [==mme | .0OTTT| .0090| .2836| .3600| © .0013 10,634 9.00| 50 [46.89| .1652| 1550
6 10 +00265 |=wwme | -00TH51 .0002| .28361 .3624( O .0012 [10.872] 8.8 | 50 |&7.47]| .2636] .1625
T 18 0.00561{~--~ |0.01479 |0.0128 |0.2863 |0.3160| O | 0.00104| 7.685; 7.95| 50 {47.67{0.2273|0.1925
8 30 00503 |===- | .01079] .0113| .2865| .3280| O .00167| 8.998{ 8.5 | 50 |[u46.29| .1gh2[ .1T50
9 ko 00456 |-=== | .009%0( .00BB| .2863( .3250| © .000% | 9.691[ 9.29 50 [&7.01| .1725{ .1690
10 50 00408 [«——| .00843| 0105 | .206%3| .32T0| O L0016 [10.279| 9.05| 50 |48.32| .1726} .1750
1 60 00360 | === ] 00798} .0092| .2863} .3350| O L0017 |10.462} 9.19] 50 [46.63] .1670) .1670
12 70 00313 [ | .00799| .0083| .2863| .3340| O .0021 |10.k52] 9.85| 50 [b5.87{ .1671) .1590
13 18 0.00570 | -=-- 10.01598 |0.0140]0.319 [0.2850| 0 | 0.0018 | 7.005| 8.00] 50 |45.80] .2238) .2075
1 30 00512 [~me=| 01155 | .OLLT| .319 | .2846| O .0015 | 8.238| 8.70| 50 |u6.72| .1903| 1954
15 ko +00465 |~ww=| 00980( .009B[ .319 | .3026( © .0021 | 8.9%%]| 9.25| S0 [h5.65| 17531 .1700
16 50 SOOULT (~w=m | .00879( .0085( 319 | .312%{ © .0020 | 9.443! 9.9 | 50 (%5.90| .1660| .1625
17 60 00369 |~~—-| .00827| .0078| .319 | .3280f O .0020 | 9.755(10.08{ 50 |46.14] .3610| .1500
18 0 .00322 |~-~-| .00824| .0099( .319 | .330%| O .0020 | 9.752] 9.95 50 [u6.27| .1607] .1570
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TABIE II.- Continued

SUMMARY OF RRESUTTS

(p) M=1.9%
Tifi Drag Lif{-drag Center of Optimum lift
ralio presgsure coefllcient
1- rs‘ ) C
€ Cg, [Cres

i ety I o, B | Owa | S (loas | porsamt | Crogs
Theor. | Exp. | Theor, |Exp. | Theor.|kxp.| Theor. | ¥xp. |[Theor.| Exp. Theor. | Exp. Fxp. [Theor. | Exp.
11|30 18 |o.0h12]0.0548/0-0075T |-~~~ |0.00520|---=|0.01277 [0.01207 |0.5802j0.k290| © (.1951 7.60 b7.610.1847|0.1500
2| 30| 30 [ .ok12| .0365| .00463 |-~ | .0OWEB|~-am| .0003L| .0089 | .3802{ .41TR| O 8.h2h| 8.21 r.25] .1568| .1k75
3|30 ko | .o412| .0573| 00576 |-~m=| -0O25]{-—==] .00801 .008% | .3802| .k304| O 9.002| 8.79 hp.32| J1h5n| . 1kko
k|30 50 | .oh2| .0382]| 00343 |~mw=]| .0038L|-=--| .00724 | .0068 | .3802| .Wh90| O 9.552| 8.80 48.25( .13683| .1325
51301 60 | .o4i2] .040B| 00842 |wmmm| 0033T]|~m=-| .006T9| .0069 | .3802] .4300] © 9.865| 9.21 %6.53| .1339| .1350
63| 70 | .ok12| .0%00] .Q087TT{=~==| .00204 [~emm| .006TL| .006TL| .3802{ .MhIO| © 9.925| 9.15 k1.75| .13%2| .1320
7135 18 |0.0420[0.0559|0.00733 |~~~ [0.00528]--~-|0.01261 |0.0120 | 0.413 |0.3924| O 6.928| 7.40 ler.21 00,1747 }0.1800
8|3 30 .0u20| .0385| .00U63 | ~rem| .OOUTS[===~| .00938] .0095 | 413 | .4150] O 8.032| 8.35 h7.ho| .2507] .2400
9] 3] Lo L0420| .0392| .00379}-~m=| .00432|~w—=| .00821| ,0080 | .413 | .k200| O 8.639| 8.85 L8.21| .1h01| 1375
103 50 | .0%20| .0399| .00345[-~--| .00380{~=| .00T33| .008% | k1% | .4160| O 9.087| 9.05 48.12| ,1332| .1k70
11| 3| 60 L0L20] .0k15| .00B45 [=mme| .0OBUY fnm-| 00689 L0069 | 413 | M276] O 9.373 ] 9.22 kr.11] .1292{ .1300
12 (3| 70 | .0k20]| .O430| .00380|=wua| .00301[-~uv]| .0068L| .0058 | k13 | .k7T70| © 9.h271 9.20 h7.21| .128%{ .1000
13 | kol 18 |0.04:20[0.0578|0.0063Y4 [-~~- |0.00537 | ~~=~|0.01271 10.0128 | 0.413 |0.38%0{ © 6.900| 7.40 46.03{0.1754 |0.1725
W | ko]l 30 | .ok20| .0588; .00422|—an-| 004 |~=ua| .00006] .0005 | .13 | .3850] © 8.17131 8.0 Ls.61] .1481| 1450
15 ko]l k0 | .ok20{ .0397| .00355|-~m=] .004:L1|-~~-] .007961 .0078 | k13 | .3990] O 8.720] 9.21 45.61} .1388| .1375
16 | kol 50 | .ok20| .OW16! .00329|-—--| .0039T7{---~{ .00726{ .00OT1 | 413 | .4015| O 9.1501 9.55 hr.09] L1326 .1325
17| ko] 60 | .0:20| .0423: -00333|-~=-| 00353 1--—-| .00686] .0065 | 413 | .h23k| o 9.393 [10.30 h6.70] .1289}) .1175
18| k| 70 | .0%20| .04350 .00372|~---{ .00310!----! .00682] .0060 | .13 | .hOkO| O 9.421 J10.00} 46.28] .1285| .1100

0¢
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TABTE II.~ Concluded
SUMMARY OF RESULTS

920CCT WY VOVN

(c) M=2041
Pitching Iift-dreg Center of Optimm 1ift
LifL Drag momant ratio presgure coefficienlk
1l - r, (]
’ b c‘“m/ To?
& P:Eﬁ:: GIu. CDP “'Dr cDm.Ln AcD/ cL2 cmn_ (I‘/D)mnx percent chpt
M.A.C.
Theor.| Exp. | Theor.|Exp.| Theor. |Exp.| Theor.| Exp. [Theor.| Exp. [Theor.| Exp. [Theor.| Exp.|Theor.| Exp. Theor.rmp.
1 18 |0.03184|0.0292|0.00510} ===~ |0.00485 |-~~~ [0.00995 [0.0097|0.550 {0.5343| O |0.00075| 6.766| 7.12] 50 |¥7.43|0.1346)0.1500
2 %0 | .03184k{ .0307| .00333|w===| .00HI0|~===| .00TT3[ .0081] .550 | .5483| O .00075| 7.677| 8.08[ 50 |47.56( .1187| .1150
3 ho | .03184] .03 .OQRTT|w=-==| .OO4OL|~m-~| .0067B! .006%] .550 | .5550] O .0009 | 8.297] 8.70! 50 [%7.13| .1111) .11%5
b 50 | .03184| .0316] .00255 fmerm=| 00363 |mr—| .00618| .0062] .550 | .5667| O 0008 | 8.585| 9.00f{ 50 |&7.h7| .1061| .0925
5 60 | .03184{ .0326| .0025T|-~—=] .00%525]-~-~| .00582] .0062| .550 | .55%20| O o008 | 8.847| 9.38] 50 [W7.55| .1030[ .0950
6 70 | 03184 .0320] 00285 {~=-e| .00286[m~~=]| .005TL| .0061| .550 | .5460{ O 0007 | 8.932! 9.40) 50 |[h7.81) .1020] .0850
7 18 |0.03184 |0.0502 (0. 00456 | <= | 0. 00495 | =~~~ ]0. 00951 10. 0004 |0.550 [0.5170( © |o0.00103] 6.921 '7.20] 50 |[46.69]0.1316|0.1325
8 30 | 03104 .0315| .00308|~~=w| .00450|~=um| .00T58]| 00| .550 | .5270( O 0010 } 7.752] 8.30! 50 {46.83| .1175( .1200
9 ho | .0318%| .0519| .00261]|-==~| ,OO%11|=~=-| ,00672| .0062| .550 | .5357| O o012 | 8.23%| 9.30| 50 |46.2k{ .1106] .1050
10 50 | .0318%| .0320] .002hS5|~===| .005T3[~=n| .00618 .gggﬁ .550 | .5297| o0 0012 | 8.585| 9.78{ 50 |k6.25( .1061| .0962
1 60 | .0520%{ .0327| 00249{===n| 00335 {=w=r| .00584] . 550 | 5400 O 0008 { 8.832{10.05| 50 |47.55{ .1032{ .0062
12 T0 05184 | .0350] .00280|-~=w] .00206|=~~| .00576] .0057| .550 | .5310| © .0010 | 8.80%| 9.99] 50 |46.97| .1025| .1000
13 18 |0,05184(0.0312{0. 00428 | =~nw |0. 00503 { =emw (0. 009310.0101(0.550 (0.5000] 0 [0.00098 6.995| 7.29{ 50 (46.86{0.1302(0.1375
% 30 | .03184| .0313) .0020Y |wmrm]| .0QOW56]-w-=] .00750| .00TL] .550 | .5283) O .0010 | 7.794| 8.55| 50 |Lh6.81| .1169| .1190
15 ho | .03184( .0321( .00252|amm-~| .0OH1B|~——~| .006TO[ .0059| .550 | .ShOO| © L0012 | 8.246| 9.45! 50 |W6.26| .1105| .09T5
16 50 { .0318%( .0328{ .002359|=w-( .00380|~-—~| .00619( .005%{ .550 | .5317| 0O .00025] 8.579| 9.75| 50 |h9.24} .1062( .0950
17 60 | .03184%| .0523) 00245 |~wr=]| .QO342|—wem} .0OO587| .0050) .550 | .5255] O .o0017| 8.810[10.55] 50 |46.38| .10%%| .0958
18 70 | .03184| .0320| .002T6|m~w=| .0050%|~wm=! .00580| .0Q49| .550 | .5333] O .0012 | 8.863110.80| 50 |46.25] .1028] .0925

T¢
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motor - Lift strain-gage beam - -Lift' straln-gage *
N beam No.2— l beam No |
Balance  ° \ :
: w: i ; Y e,
. ' pem b er
- TR = Flex-iink support
\'ﬁ\ —',,.\)‘E /a-'/‘/ '
. \% .
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Support rolls for
lateral translation N
of balance -- -—

Lateral translating /
screw

Wind-tunnel
side walls

(a) Strain-gage balance.

Figure l.- Sketch of strain-gage balance ugsed to measure model forces,
and method of model support.
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(b) Method of model support.
B
Figure 1.~ Concluded.
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Movable windshield !

Model support sting
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Sting A Sting B.

Figure 2.- Dimensional details of wing support stings used in invesiiga-
tion. All dimensions are in inches.
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- e

() Sting A on wing 7.

(b) Sting B on wing 11. L-87947

Figure 3.- Typical wings equipped with support stings A and B.




NACA RM L55D26

Test wings with sting A

Test wings with sting A

Test wings with sting B

L-879.8

Figure 4.- Photographs of wing rodels used in investigation. (The
appaerent difference in wing areas is due to depth distortion.)
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Fiat-plate wing shown for purpose of clarity Sting—attachment screw

A

Dummy sting A (removable)

+ Indicates pressure
orifice location

(a) Sting A on wing 10.

indicated location of
/_ maximum thickness

Dummy sfing B (removable)

Mounting strut

(b) Sting B on wing 11.

‘ Figure 5.- Pressure-distribution models used for assessment of support-~
sting tare-interference effects.
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(a) Configurations equipped with sting A.

of wing support sting, ACDp

Change in pressure—drag coefficient due fo presence
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(b) Configurations equipped with sting B.

Figure 6.~ Change in pressure-drag coefficient due to presence of wing
supporl stings.
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(2) 1 -r = 0.18¢c.

Figure T.- Aerodynsmic characteristies of 3% -percent-thick delta wings.

M = 1.62; semiapex angl €, 30°. Flagged symbols denote correction
applied to drag data to account for support-sting tare-interference
effects.
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Figure 8.- Aerodynsmic characteristics of %—percent-thick delta wings.

M = 1.62; semiapex angle €, 35°.
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Upper surface

(b) M= 1.94.

Figure 30.~ Continued.
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Lower surface
(o) Conecluded.

Figure 30.- Cortinued.
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Change in pressure coefficients due fo sting, AP

i31

Upper surface

(c¢) M= 2.41.

Pigure 30.- Continued.
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NACA - Largiey Fleld, Va.
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(c) Concluded.

Figure 30.- Concluded.

132

1

T ¢}
\u L - -\.Mv
/ \
. '/ 7 7
-{-— .N N _ A/\.......llll N ﬁ.\,Mui.
= N I —— —
i X L \ S
L.. — S -
s ° ge oo g o

dv°‘bulys o} enp sjusIoLe00 aunssaud ul sbupyo




