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RESEARCH MEMORANDUM 

ROCKET-MODEL  INVESTIGATION OF THE ROLLING EFFECTIVENESS 

OF A FIGHTER-TYPE WING-CONTROL CONFIGURATION 

AT MACH NUMBERS  FROM 0.6 TO 1.5 

By H. Kurt S t r a s s  and Edward T.  Marley 

SUMMARY 

An inves t iga t ion   of   the   ro l l ing   e f fec t iveness   o f   spoi le r  and a i le ron  
aerodynamic controls  on a fighter-type  airplane  has  been  conducted a t  
Mach numbers from 0.6 t o  1.5 by  the  Langley  Pilotless  Aircraft   Research 
Divis ion  by  ut i l iz ing  rocket-propel led  tes t   vehicles .  

No effects  of  mutual  interference between t h e  midspan s p o i l e r  and 
the  outboard  aileron were detectable .  Above the  speed  of  sound,  the 
a i le rons  were r e l a t ive ly   i ne f f ec t ive  as compared with  the  spoi ler .because 
of wing twist ing.  For condi t ions  of   equal   rol l ing  effect iveness ,   the  
twisting-moment coef f ic ien t  o f  t he   a i l e ron  w a s  approximately  three times 
t h a t  of t h e   s p o i l e r .  

INTRODUCTION 

An investigation  has  been made, by means of  rocket-powered models 
i n   f r e e   f l i g h t ,   o f   t h e   r o l l i n g   e f f e c t i v e n e s s  of a wing-control  config- 
urat ion  planned  for  a fighter-type  airplane.   Rolling  effectiveness and 
drag measurements  were obtained a t  Mach numbers from 0.6 t o  1.5 wi th   t he  
controls  mounted upon wings  which  approximated the   s ca l ed   s t ruc tu ra l  
cha rac t e r i s t i c s   e s t ima ted   fo r   t he   a i rp l ane .  The rol l ing-effect iveness  
r e s u l t s  are compared with  experimentally  determined  rigid-wing  values. 



b diameter o f   c i r c l e  swept  by wing t ips,   2.85 feet  

Cm s ec t ion  pitching-moment coe f f i c i en t  

C wing chord   pa ra l l e l   t o  model center   l ine,   inches 

D drag  of tes t  model,  pounds 

h spoi le r   p ro jec t ion  above  wing surface normal t o  chord  plane, 
inches 

M Mach number 

m concentrated  couple  applied  near wing t i p   i n  a plane 
perpendicular  to  both  the  41.7-percent-chord  l ine  (main 
spar   locat ion)  and the  wing chord  plane,  inch-pounds 

P s t a t i c   p re s su re ,  pounds per  square  foot 

P l  concentrated  load  applied on the  41.7-percent-chord  line at 
” 

” 

b/2 
- 0.925,  pounds 

s3 
v 

Y 

a 

‘P 

‘a 

rol l ing  veloci ty ,   radians  per   second 

dynamic pressure,  pounds per  square  foot 

area of two wing panels  measured to   fuse lage   cen ter   l ine ,  
2.70  square  feet 

exposed area of th ree  wing panels, 3.29 square feet  

f l i gh t -pa th   ve loc i ty ,  feet  per  second 

distance  to  41.7-percent-chord  l ine,   measured  perpendicular 
t o  model cen te r   l i ne ,   f ee t  

angle of a t t a c k  ! 

def l ec t ion   o f   t e s t  wing along  41.7-percent-chord  line  under 
, 

load PI ,  inches 

def lec t ion   of   each   a i le ron   in  a plane  perpendicular  to  the 
a i le ron   h inge   l ine  



i W  average wing incidence  for  three wings  measured i n  plane 
p a r a l l e l   t o   t h e   d i r e c t i o n  of f l i gh t ,   pos i t i ve  when tending 
t o  produce  clockwise roll as seen from the rear, degrees 

0 angle of t w i s t  due t o  m, radians 

h/c  spoiler  extension above  wing sur face   in   loca l   chord   l engths  

p2 wing bending-stiffness  parameter,  inches  per pound 

Q/m w i n g  torsional-stiffness  parameter,   radians  per inch-pound 

Pb/2V w i n g  t ip   hel ix   angle ,   radians 

Cw5 la, e f fec t ive   s ec t ion  twisting-moment coefficient  per unit r o l l i n g  
effect iveness  

Subscripts:  

a a t  a l t i t u d e  of test  

av aver  age 

0 a t  sea l e v e l  

r a t  reference  station  (mid-control)  

6 per  degree of  a i leron  def lect ion 

MODELS AND TECHNIQUE 

The geometr ic   character is t ics   of   the   tes t   vehicles   used  in   this  
invest igat ion are descr ibed  in   the  sketches and  photographs  of  figures 1 
t o  5. 

The a i r f o i l   s e c t i o n s  used on the   conf igura t ions   t es ted  were t h e  
NACA 0009-1.16 38/1.14 (modified) a t  the   roo t  and t h e  NACA 0007-1.16 
38/1.14 (mod.ified) a t  t h e   t i p .  The a spec t   r a t io  b2/S2 f o r  a l l  models 
t e s t e d  was  3.02.  Both  wings  of the  proposed  airplane  are  equipped  with 
upper-surface  spoilers and  boundary-layer  control  fences,  lower-surface 
t i p   s k i & ,  and p la in   par t ia l - span   t ra i l ing-edge   a i le rons .  During most 
r o l l i n g  maneuvers,  an  unsymmetric condition  occurs which  could  not  be 
duplicated  with a single  three-wing tes t  vehicle  of  the  present  type,  
s o  severa l  mo'dels were flown t o  t e s t   t h e   a i r p l a n e   r i g h t  and l e f t  y i n g  
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panels  independently. The various'   control  config&ations are i l l u s t r a t e d  
schemat i ca l ly   i n   f i gu re  5 .  The type A model s imula tes   the   r igh t  wing 
of   the   a i rp lane  when t h e   s p o i l e r  and. a i l e ron  are set to   cause   t he  air- 
p l a n e   t o  roll t o   t h e   r i g h t .  Tyye B i s  similar, bu t   on ly   t he   spo i l e r  is  
extended. Type C s imulates   the lef t  wing of   the   a i rp lane  when t h e   a i r -  
plane i s  i n   r i g h t  roll. For s impl ic i ty ,   the  t e s t  model was constructed 

a s  i s  i l l u s t r a t ed .   Th i s  i s  of no importance  because  the  relative  loca- 
t ion  of   the  boundary-control   fence and t h e  wing t i p   s k i d  is t h e  same as 
t h a t  f o r  t h e   a i r p l a n e   l e f t  wing p a n e l   i n   r i g h t  roll. 

I i n  a manner t o  cause  the model with a r i g h t  wing t o  roll t o  t h e   l e f t ,  

An important   phase  of   this   invest igat ion was the  determination  of 
t he   e f f ec t s   o f   ae roe la s t i c i ty  upon the  rol l ing  effect iveness .   To 'do 
this, a s t i f f  model  and a f l e x i b l e  model were constructed  for  every 
wing-control  configuration. The s t i f f  models were as s t i f f  as could 
f eas ib ly  be made i n   o r d e r   t o  minimize ae roe la s t i c   e f f ec t s ,  whereas  the 
f l e x i b l e  models  were cons t ruc ted   in  a manner t o  approximate  the  scaled 
s t ruc tura l   charac te r i s t ics   es t imated   for   the   p roposed   a i rp lane .  The 
data from the s t i f f  and   f lex ib le  models  were c ross   p lo t ted   aga ins t  wing 
to r s iona l   s t i f fnes s   and   t he   va lues   fo r   t he   ro l l i ng   e f f ec t iveness   a t  
i n f i n i t e   r i g i d i t y  were obtained by extrapolat ion.  The s t r u c t u r a l   d e t a i l s  
of  the two types of  wing construction  are shown i n   f i g u r e  4. The surface 
f i n i s h  of a l l  models was highly  polished  lacquer  with a minimum of 
waviness. 

, j  

The technique  used t o  measure the  model s t ruc tu ra l   cha rac t e r i s t i c s  
i s  i l l u s t r a t e d   i n  figure 6, which presents  a t y p i c a l   t e s t   s e t - u p  of t he  
type  used  for  determination  of  the  spanwise  variation  of  the  torsional 
s t i f fness   parameter  @/m. The va r i a t ion   o f   t he   f l exura l   s t i f fnes s  
parameter $/Pz with  span was determined. i n  a s imi la r  manner with  the 

subs t i tu t ion   o f  a concentrated  load on the  41.7-percent-chord  line 
( loca t ion   of  main spar)   near   the wing t i p   f o r   t h e   t o r q u e   t r a n s f e r  yoke 
i l l u s t r a t ed   i n   t he   pho tograph .  

The f l i g h t  tes ts  were made a t   t h e  Langley P i lo t less   Ai rcraf t   Research  
S ta t ion  a t  Wallops Is land,  Va.  The tes t  vehicles  were propelled by a 
two-stage  rocket  propulsion  system  to a Mach  number of  about 1.5. A l l  
data  were obtained  during a period  of  approximately 10 seconds  of  coasting 
fl ight  following  rocket-motor  burnout.  Time h i s t o r i e s  of t h e   r o l l i n g  
ve loc i ty  were obtained.  with  special  radio  equipment. The f l igh t -pa th  
ve loc i ty  was obtained  with CW Doppler radar  and  the  space  coordinates 
with SCR 584 radar.  These  data, in  conjunction  with  atmospheric  data 
obtained by means of  radiosonde,  permit  the  evaluation of t he   a i l e ron  
ro l l i ng   e f f ec t iveness  pb/2V and the   t o t a l   d rag   coe f f i c i en t  Cm as 

a funct ion of Mach number. The Reynolds number for   the  tests var ied  
from  approximately 3 x lo6 a t  M = 0.6 to 9 x 10 6 a t  M = 1.5. For a 
more complete  description  of  the  f l ight  testing  technique,  see  reference 1. 

* _ _ _ I _ _  



ACCURACY AND CORRECTIONS 

5 

Based upon previous  experience,  the maximum experimental   error i s  
est imated  to   be  within  the  fol lowing limits: 

Subsonic  Supersonic 

C% . . . . . . . . . . . . . . . . . . . . .  fO. 004 *o .002 

p b / 2 ~ ,  radians . . . . . . . . . . . . . . . .  +O. 004 to.  002 
M . . . . . . . . . . . . . . . . . . . . .  20.005 @. 005 

The sensit ivity  of  the  experimental   technique, however, i s .  such  that  much 
smaller i r r e g u l a r i t i e s   i n   t h e   v a r i a t i o n  of pb/2V with Mach  number  may 
be  detected. For purposes of economy and ease  of  construction, small 
var ia t ions  from the  desired  values  of Oo and 5 O  f o r  wing incidence and 
control   def lect ion,   respect ively,  were permitted. The data were adjusted 
f o r   e f f e c t  of  wing incidence by use of the  equat ign  given  in   reference 2, 
which was derived from s t r i p   t h e o r y   f o r   r i g i d  wings. The adjustments 
fo r   a i l e ron   de f l ec t ion  were made by  reducing  the  data  to @ and  then 

multiplying by the  nominal 6, value of 5'. For the   case  of   the   a i leron 
and spoiler  in  combination,  adjustment w a s  made only   for   tha t   por t ion  
contributed by the   a i le ron .  The actual  measured  values  for  the  models 
t e s t ed   a r e   p re sen ted   i n   t ab l e  I i n  o rde r   t o  show the  magnitude  of  such 
adjustments. 

sa 

No attempt w a s  made t o   c o r r e c t   f o r   t h e   e f f e c t  of the   t es t -vehic le  
moment of iner t ia   about   the  roll axis  on the  measured va r i a t ion  of pb/2V 
with Mach number, s ince  the  analysis   in   reference 1 ind ica t ed   t ha t   t he  
magnitude  of  the  correction i s  small enough not   to   a f fec t   the   conclus ions  
drawn from these data. 

RESULTS AND DISCUSSION 

Basic data.- The s t ruc tura l   and  aerodynamic data  obtained  during 
this inves t iga t ion  are p resen ted   i n   f i gu re  7. The measured d i s t r ibu t ions  
of t h e   s t i f f n e s s  of t h e  wings i n  bending  and  torsion are presented as 
p l o t s  of 6p/P2, the bending-stiffness  parameter,  and 0/m, the   to rs iona l -  

s t i f fness   parameter ,   against  b%. The s t ruc tu ra l   cha rac t e r i s t i c s  
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es t imated   for  a t y p i c a l   a i r p l a n e  have  been  scaled down to   a l low comparison 
with  the  measured  character is t ics  of the”test  models. The va r i a t ion  

of elm (measu red   pa ra l l e l   t o   t he   d i r ec t ion   o f   f l i gh t )   w i th  has b/2 
been  included to   a l low  use  of t h e  method presented   in   re fe rence‘  3 t o  
ob ta in   e f f ec t ive  twisting-moment  coefficients. The s t a t i c   p r e s s u r e  
ex is t ing   dur ing   each   f l igh t  i s  a l so  shown on the f igu re  as the   va r i a t ion  
of PJPo with Mach number, where  Pa/Po i s  the r a t i o   o f   s t a t i c   p r e s s u r e  
a t   t h e   a l t i t u d e   o f   t h e   t e s t   t o   s t a n d a r d   s e a - l e v e l   p r e s s u r e  (2116 pounds 
per  square  foot) .  The aerodynamic resu l t s   ob ta ined  are presented  as  
t he   va r i a t ion  of pb/2V, the   cont ro l   ro l l ing   e f fec t iveness ,  and. CQ, 
t he   t o t a l   d rag   coe f f i c i en t ,   w i th  Mach number. 

Because different   a tmospheric   condi t ions  prevai led  for   the  var ious 
tests, and  because  the  data were obtained  over  an  altitude  range of 
approximately 10,000 feet, it w a s  necessary   to   cor rec t  a l l  of t he   ro l l i ng -  
effect iveness   data   to   s tandard  sea- level   condi t ions  to   provide  an 
adequate  basis  for  comparison.  This  correction was  made i n  a manner 
similar t o   t h e  method described i n   r e f e r e n c e  3. 

Rolling  effectiveness.-  The e f fec t   o f  wing f l e x i b i l i t y  upon r o l l i n g  
effect iveness   corrected  to   sea- level   condi t ions i s  presented   in   f igure  8. 
The rigid-wing  values  were  obtained  by  extrapolation from cross   p lo ts  
of . pb/2V against  wing t o r s i o n a l   s t i f f n e s s .  These d a t a   a r e  summarized 
i n   f i g u r e  9 t o   a l l o w   d i r e c t  comparison  between the  various  wing-control 
configurations.  It i s  noted  that  above the  speed  of sound the   a i l e ron  
was r e l a t i v e l y   i n e f f e c t i v e  as compared with  the  spoi ler   because o f  wing 
twis-t ing.   In  addition, a comparison i s  made of  the  measured  roll ing 
effect iveness  f o r  t h e  combined a i l e ron  and s p o i l e r  A with  that   obtained.  
from t h e  summation of  t he   r e su l t s   o f   t he   a i l e ron  and s p o i l e r  A t e s t e d  
separately.  The excellent  agreement  between  these  values  indicates  that  
the  mutual   interference between t h e  midspan s p o i l e r  and the  outboard 
a i le ron  was very  small .  

Figure 10 presents   the   var ia t ion   o f   the   e f fec t ive   sec t ion   twis t ing-  
moment coefficient  cmg/ag (see reference 3 )  with Mach number fo r   t he  

spoiler-alone  and  aileron-alone  configurations.  Since ag i s  proportional 
to   the   ro l l ing   e f fec t iveness ,   the   compara t ive ly  low values of cms/as 
obtained for the   spoi ler   (about   one-third  as   large  as   those  for   the 
a i l e r o n )   i l l u s t r a t e  a possible  merit of spo i l e r s   fo r   con t ro l  where  wing 
twist ing i s  a problem. 

Drag.- A comparison of t h e   r e s u l t s  from the  s t i f f -wing  configurat ions 
with  those from the  f lexible-wing  configurations,  t o  show t h e   e f f e c t  
of  wing f l e x i b i l i t y  upon the   va r i a t ion  of t h e   t o t a l   d r a g   c o e f f i c i e n t  Cm 
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with Mach number, i s  presented   in   f igure  11. In   every   case   the   f lex ib le  
models had less drag  than  the  comparable s t i f f  models. It i s  in t e re s t ing  
t o  note  that   the  increment  in  drag  coefficient due to   t he   i nc rease   i n  
wing s t i f fness   for   the   conf igura t ion  which  employed the  aileron  and 
s p o i l e r   i n  combination i s  approximately  equal  to  the sum of the  increments 
for   the   cont ro ls   t es ted   separa te ly .   This  i s  i l l u s t r a t e d   i n  figure l l ( a ) ,  
i n  which the  es t imated  var ia t ion  of  Cm with M obtained by subtract ing 
the  sum of the  incremental   values from the   s t i f f -wing   resu l t s  i s  compared 
with  the measured  flexible-wing data. 

The effect   of  the  type  of  control upon the   var ia t ion   o f  CDT with 
M i s  p re sen ted   i n   f i gu re  12 f o r   t h e  s t i f f -  and  flexible-wing  models. 
The most s ign i f icant   fac t   about   these   da ta  i s  the  extremely  large 
inc rease   i n  C D ~  which  accompanied the  use  of   the   spoi ler .  A t  speeds 

l e s s   t han  M x 0.95,  the  drag  of  the  spoiler  Configuration was  more 
than  twice  that  of the  aileron  configuration;  for  speeds  greater  than 
M FZ 0.95,  the  drag was approximately 20 percent   greater .  

Effect  of gap  upon spoiler  performance.-  Figure 13 presents  a 
comparison  of two types  of  spoilers that were t e s t e d   i n  combination  with 
a i le rons  on the  s t i f f  wings. The spoi le r  A was similar t o  that   planned 
for   use upon the  proposed  airplane,   whereas  for  spoiler B, the  spanwise 
va r i a t ion  of the  extension of the   spoi le r  above the wing surface  differed 
s l i g h t l y  from spoi le r  A and there  was  no gap  between the  lower  surface 
of   the  spoi ler  and the  wing surface  as  employed by  spoiler A. A s  the  
average  extension  of  the two types of spo i l e r s  was very  nearly  the same 
( f o r   s p o i l e r  A, (h/c)  av = 0.063; fo r   spo i l e r  B, (h/c), = 0.0614) , the  
d i f fe rences   in   the   va lues   o f  pb/2V and CDT which  were obtained  for  

t he  two cont ro ls   a re   a t t r ibu tab le   p r imar i ly   to   the   e f fec t   o f   the  gap. 
Phe gap  caused  an  appreciable  increase i n  pb/2V a t  Mach numbers  below 
M M 1.36 and  indications  of a decrease above M % 1.36. The e f f e c t  of 
the  gap upon the   t o t a l   d rag   coe f f i c i en t  was a decrease of approximately 
25 percent   in   the  subsonic   region and  approximately 10 pe rcen t   i n   t he  
supersonic  region. 

CONCLUSIONS 

An invest igat ion,   by means of  rocket-powered  models,  of t h e   r o l l i n g  
effect iveness   of  a wing-control  configuration  simulating a f igh ter - type  
airplane  indicates   the  fol lowing  conclusions:  .~ 

1. Within  the  experimental  accuracy, no mutual  interference  with 
r e spec t   t o   ro l l i ng   e f f ec t iveness  was de tec tab le  between the midspan 
spo i l e r  and the  outboard  aileron. 
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2. Above the  speed  of  sound, t he   a i l e rons  w e r e  r e l a t i v e l y   i n e f f e c -  
t i v e  as compared with  the  spoi ler   because  of  wing twis t ing .  

3. The r e su l t s   i nd ica t e   t ha t ,   f o r   equa l   ro l l i ng   e f f ec t iveness ,   t he  
aileron  had  approximately three times t h e   e f f e c t i v e  wing  twisting-moment 
coe f f i c i en t   o f   t he   spo i l e r .  * 

4. For   equal   rol l ing  effect iveness   the  use  of   the   spoi ler  was 
accompanied by  an  extremely  large  increase  in   the  total   drag  coeff ic ient  
as compared w i t h   t h a t   f o r   t h e   a i l e r o n .  

Langley  Aeronautical  Laboratory 
National  Advisory Committee f o r  Aeronautics 

Langley  Field, Va. 

REFERENCES 

1. Sandahl,  'Carl A. ,  and  Marino, Alfred A.: Free-Fl ight   Invest igat ion o f  
Control  Effectiveness of  Full-Span 0.2-Chord Plain  Ailerons a t  High 
Subsonic,  Transonic, and Supersonic  Speeds t o  Determine Some Effec ts  
of  Section  Thickness  and Wing Sweepback. NACA RM L7Do2, 1947. 

2 .   Strass ,  H. Kurt,  and  Marley, Edward T. : Rolling  Effectiveness  of A l l -  
Movable  Wings a t  Small  Angles of Inc idence   a t  Mach Nbbers  from 0.6 
t o  1.6. NACA RM L5lHO3, 1951. 

3. S t rass ,  H. Kurt ,   Fields,  E. M., and Purser,   Paul E.: Experimental 
Determination of Ef fec t  of  S t ruc tu ra l   R ig id i ty  on Roll ing  Effect ive-  
ness o f  Some S t r a igh t  and Swept  Wings a t  Mach  Numbers from 0.7 
t o  1.7. NACA RM L5,0Glbb, 1970. 



J NACA RM ~51128 C- 

TABLE I 

Wing-control 
configuration 1 Type I Construction 

Model 

Spoi le r  A 

1 Flexible  C Aileron 

1 Flexible  B 

Aileron + spo i l e r  A I A I Flexible  I 1 

Spoiler  A 

1 S t i f f  C Aileron 

1 S t i f f  B 

Aileron I c . I S t i f f  I 2  
Aileron + s p o i l e r  A 1 A 1 S t i f f  

Aileron + spoi le r  A 1 A 1 S t i f f  l 2  
I I I 
I I I 

Aileron + spo i l e r  B 1 S t i f f  A 

-0.01 

- .04 

.07 

-.01 

-07 

-.01 

0 

.10 

9 

4.96 I 7 ( c )  

1 -  - 
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Fig-ure 1. - General a.rra.ngement of tes t   vehicle .  
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Figure 2. - Ty-pica.1 tes t   vehicle .  
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Figure 3.- Close-up of wings and controls.  
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( a) External  details ., ' 
Figure 4.- Description of wings  and controls.  All dimensions are i n  

inches . 
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( b )  Spoi le r   de ta i l s   ( th ickness  = 0.062). 

Figure 4.- Continued. 
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( c )  Structural de ta i l s .  

Figure 4.- Concluded. 
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Figure 5.- Schematic i l l u s t r a t i o n  of the  control  combinations tested as 
seen from r e a r  of t es t  vehicle. Arrows show d i r e c t i o n  of pos i t ive  
rotat ion.  



Figure 6.- Typical  structural t e s t  setup. 



18 - NACA RM ~31128 

M 

M 

(a) Spoiler A on flexible wing; (h/c),, = 0.063. 

Figure 7.- Structural and aerodynamic data. 
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(b )  Aileron  on  f lexible .  .wing; 6, = 5 .Oo. 

Figure 7. - Continued. 
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( c )  Aileron and spo i l e r  A on f l ex ib l e  wing; 6, = 5.0'; (h/c),v = 0.063. 

Figure 7.- Continued. 
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(d)  Spo i l e r  A on s t i f f 'w ing ;  (h/c),, = 0.063. 

Figure 7. - Continued. 
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( e )  Aileron on s t i f f  wing; 6, = >.Oo. Results shown f o r  models 1 and 2. 

Figure 7.- Continued. 
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(g )  Aileron and spo i l e r  B on stiff wing; 6, = 3.0'; (h/c),, = 0.061. 

Figure 7.- Concluded. 
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( a )  Aileron and spo i l e r  A; 6, = 5.0'; (h/c) av = 0.063. 

Figure 8.- Effec t  of  wing f l e x i b i l i t y  upon var i a t ion  of r o l l i n g   e f f e c -  
. t iveness  with Mach number. Sea-level  conditions. 
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(b) Spoiler  A; (h/c),, = 0.063. 

Figure 8.- Continued. 
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( c )  Aileron; 6a = 5.0 0 . 
Figure 8.- Concluded. 
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(a)  Extrapolated  r igid-wing  values.  

Figure 9.- Effec t  of control   configurat ion upon var ia t ion  of r o l l i n g  
effect iveness   with Mach number. Aileron  and/or  spoiler A. 6, = 3.0'; 
(h/c),, = 0.063 where deflected.  
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(b)  Flexible-wing models a t  sea- level  conditions. 

Figure 9.- Concluded. 
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Figure 10.- Variation of effective  twisting-moment  coefficient  with  Mach 
number  for  aileron  and  spoiler A. 
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( c ) Aileron. 

Figure 11.- Effect  of wing f l e x i b i l i t y  upon va r i a t ion  o f  t o t a l   d rag ,   coe f -  

- . 

f i c i en t   w i th  Mach number. 
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(a)  St i f f -wing models. 

(b)  Flexible-wing models. 

Figure  12.-  Effect of control   configurat ion upon va r i a t ion  of t o t a l  drag 
coef f ic ien t   wi th  Mach number. Aileron and/or s p o i l e r  A. 
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Figure 13.- Comparison of   the   var ia t ion   o f   ro l l ing   e f fec t iveness  and 
to ta l   d rag   coef f ic ien t   wi th  Mach number f o r  two types  of  spoilers 
on s t i f f  -wing 'models.  Basic d.ata uncorrected for a l t i t u d e .  
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