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) INVESTIGATION AT SUPERSONIC SPEEDS OF EXTERNAL-DRAG
EFFECTS AND PUMPING CHARACTERISTICS
OF A SHORT EJECTOR

By Eugene S, Love and Robert M. O'Donnell
SUMMARY

An investigation was conducted at free-stream Mach numbers of 1.62,
1.94, and 2.41 to determine the external-drag effects and pumping charac-
teristies of a short ejector (spacing ratio of 0.19)} housed within a
highly boattailed afterbody. The tests covered secondary to primary
diareter ratios of 1.50 and 1l.33, mass flow ratios from O to 0.20, and
a sonic and a supersonic primary nozzle; the temperature raitio was about
one (cold air Jet). All tests were conducted with an artificially
induced turbulent boundary layer along the model. Jet static-pressure
ratios were varied from the jet-off condition to about 36 for the sonic
nozzle and to a maximm of about 8 for the supersonic nozzle.

INTRODUCTION

In recent years considerable attention has been given to the effects
that & propulsive jet exhausting from the base of a body may have upon
the base and afterbody drag of a body at supersonic speeds. Numerous
investigations have been made of these effects (see refs. 1 to 15, for
example), but relatively few have deelt with combined primary jet flow
and secondary or cooling air flow. The pumping characteristics of ejec-
tors exhausting into still gir have been fairly well established through
investigations of the type reported in references 16 to 22. Although
much of this intTormation should be directly applicable, insofar as ejec-
tor performance is concerned, to the case of supersonic outer streams of
varying Mach number, there are undoubtedly certain critical conditions
of operation and of ejector and nozzle geometry for which the Mach number
of the external flow would have some effect. These critical conditions
are, at present, not clearly defined, and the probable magnitude of the
effect when it does occur has not been established.
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The investigations reported in references 10 and 11 are examples
of recent studies in which afterbody and base pressures, drag, and
ounping cnaracteristics have been measured at supersonic speeds for com-
bined vprimary jet flow and secondary flow. The present investigation is
a continuation of a general investigation of the effects of a primary
jet (sonic and supersonic nozzle) with and without secondary air flow
upon the base and afterbody drag of a body of revolution; pumping char-
acteristics of the ejector are also being measured. The first part of
this investigation was reported in reference 11 for the case of a zero-
length ejector or zero spacing ratio. (Spacing ratio is defined as the
ratio of the distance between the plane of the primary nozzle exit and
the plane of the model base to the exit diameter of the primary nozzle.)
The results to be presented herein are for the same model but with an
ejector having a spvacing ratio of about 0.19. Jet static-pressure ratio
was varied from the jet-off value to about 36 for the sonic nozzle and
t0o a maximum of about 8 for the supersonic nozzle. 45 in reference 11
the primary variables were free-stream Mach number, primary jet Mach
number, secondary exit ares, and the ratio of secondary mass flow to
primary mass flow.

SYMBOLS
A area
Ap - A
Cc base-drag coefficient, P (;fy—x or P 23
Dp BA) B\ A
\xmxx max
2
Cp boattail pressure-drag coefficient, d[l PA%; £\ "aX
A B2 “a=\Tpax/ L
c total afterbody drag coefficient, Cp + C
Dpg v oy drag » YDyt Ppy
a diameter
L total body length
M free-stream Mach nunber
2 . —pco
P pressure ccefficient,
2
P static opressure
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Po total pressure
q dynamic pressure
W ratio of mass flow of secondary air to mess

flow of primary jet
b 4 axial distance measured from nose of model
z axiel distance measured from base of model

Subscripts:

B base of model

J primary jet

© free-stream condition

s secondary flow

A boattail surface

max maximum value

N base annulus of shroud only

APPARATUS

Wind Tunnel

All tests were conducted in the Langley 9-inch supersonic tunnel
wvhich is a continuous-operation, closed-circuit type in which the pressure,
temperature, and humidity of the enclosed air can be regulated. Different
test Mach numbers are provided by interchangeable nozzle blocks which form
test sections approximately 9-inches square. Eleven fine-mesh turbulence
damping screens are installed ahead of the supersonic nozzle in a settling
chamber of relatively large area. A schlieren optical system is provided
for qualitative flow observations.

Model

With the exception of the change in ejector length from O to
0.071 inch, the model (see fig. 1) is the same as that employed in
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reference 11 and described therein. Two interchangeable afterbodies

or shrouds permlt a change in secondary Gischarge area. Both the

sonic (Mj = 1} and supersonic (Mj = 5.23) nozzles have essentially the
same exit srea. Static-pressure orifices are located on the boattail
surface as shown in figure 1, and base-pressure orifices are located at
90€ intervals sround the annuli of both shrouds with two of the four
orifices in line with the support struts.

'=STS AND PROCEDURE

Tests were conducted at Mach numbers of 1.62, 1.94%, and 2.41 with
a stagnetion pressure of approximately 1 atmosvhere; the corresponding

Reynolds nurmber range, based on body length, was from 2.1 X lO6 to

2.9 X 106, a11 testing was done at O° angle of attack and with an
artificially induced turbulent boundary lsyer along the model. The
latter was accomplished by use of a l/8-inch-wide fine salt band placed
approximately 1& inches from the model nose. (See fig. 1.)

n

The afterbody and base pressures were recorded for both shrouds for
the Jjet-off condition and up to primary jet statlc-pressure ratios of
epbout 36 for the sonic nozzle and to gbout 3 or lower, depending on Mach
number, for the supersonic nozzle. In reference 11, the support struts
were found to have negligible effect on the base pressures, hence an
avergge value obtained from the four orifices was used in calculating
base drag.

Prixary total pressures were measured by means of a calibrated total-
pressure tube within the stagnation chember ghead of the nozzle as -
Geseribed in reference 11. Jet static pressures were calculated from the
measured total pressures on the pasis of the exit Mach number as deter-
mined from the measured srea rstio. Auxiliary tests have shown this pro-
cedure tc be relisble. Primery mass fiows for both nozzles were calcu-
lated by using the measured total pressure and assuming the nozzle to be
choked at the minimum area. Secondary mass flows of C to 20 percent of
the primary mass flow were measured directly by means of calibvrated
rotameters.

Throughout the tests the dewpoint of the tunnel air was kept suffi-
ciently low to insure negligible condensation effects. The air supply
for the primary Jet and secondary had approximately the same dewpoint as
the tunnel air. The stagnation temwerature of the tunnel alr was about
100° F, while that for both the primary jet and secondary air was about
80° F (primary to secondary termerature ratio of about 0.96, or essen-
tially unity).
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PRECISION

Model alinement wes maintained within +0.1° of zero pitch and yaw
with respect to the tunnel center line. Based on past surveys of the

" stream, the free-stream Mach number is accurate to within t0.01. The

pressure coefficients are accurate to within approximately 10.003.

Secondary mass-flow ratios are estimated to be within t0.2 percent,
whereas total recorded pressures in the Jjet model were accurate within
t0.01 inch of mercury for pressures less than 50 pounds per square inch
and 0.5 inch of mercury for higher pressures.

RESULTS AND DISCUSSION

The discussion is presented in two parts: the Tirst part concerning
the effects of the primary jet and secondsry flow upon drag, and the last,
* the pumping cheracteristices. Results for the case of no primary jet flow
or secondary flow have been presented in reference 11 and will not be dis-
cussed herein except to mention the slight differences in the experimental
base and bogttail pressures for the two shrouds. These differences were
attributed to slightly different external shroud contours and orifice
installations. These construction differences were within the machining
accuracy of shroud duplication and are not expected to affect the con-
clusions drawn from the results. In all drag results to be presented,
small arrows hsve been placed on the left-hand ordinates of the figures
to indicate the values for jet off and no secondary flow.

Dreg

Base drag.- The values of base-drag coefficient CDB to be presented

are the negative products of tThe average base pressure coefficients and

the ratio of base annulus area to maximum body frontal area, el . (Néga-

tive CDB implies thrust. Since this area ratio is 0.100 for the first

shroud and 0.1425 for the second shroud, like values of CDB do not imply

like wvalues of EB'

The variation of CDB with jet static pressure ratio Pi for the
Dy

d
sonic nozzle is shown in figure 2(a) for the first shroud (Ji = l.5é)
dJ

d.
SN
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and in figure 2(b) for the second shroud C;i = 1.33). The general vari-
J

ation of CDB with &) follows what might be expected from previous

D
“ o

investigations of jet effects without secondary flow (see ref. 7, for

example). Increasing free-gtream Mach number apparently does not alter

P
significantly the change in Cp, with P—J. With some exceptions at the

(2]
lower pressure ratios at M = 1.94, the effect of mass flow ratio is
small.

Figure 3 presents simlilar results for the supersonic nozzle. Over
a comparable range of Jjet pressure ratio, the effects of increasing mass
flow ratio are greater for the supersonic nozzle than for the sonic
nozzle at M = 1.62 and of the same order at M = 1.94 and 2.41. The
positive peak occurring in the base-drag curves at the lower pressure
ratios is characteristic of primery jet effects; this peak is observed
to occur at a lower pressure ratio for the supersonic nozzle and is asso-
ciated with the lower pressure ratio for starting for this nozzle. (The
term “starting” refers to the theoretical jet static~pressure ratio
required to oring = normsl shock to the nozzle exit.)

Comparison of the results for the two shrouds glves an indication
d
of the effects of secondary to primary diameter ratio E§ for the par-
J
3
ticular condition of constant - only since, first, the difference in

ennulus area is contained in CDB and, secongd, PR would experience

4,
some effect by the change in —S, TFor this condition and taking into

&
B
account the jet-off value of CDB (see arrows on ordinates of figures)

the effect of decreasing %§ from 1.50 to 1.33 for both the sonic and

supersonic nozzle is small and, for the most part, negligible.

In both figures 2 and 3 dashed curves have been shown that represent
CDB based on a common base annulus area, Ag - Aj, for the case of no

secondary flow. Some observers propose that the values of CDB thus

obtained represent roughly the maximum jet effects upon base drag (the
maximum possible base area over which the base pressure may act has been
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included) and are therefore useful in preliminary estimates and thrust-
drag evalustions. These curves have been included to show their relation
to the other resultis.

Boattail pressure drag.- Examples of the experimental pressure dis-
tributions over the boattail from which boattsil pressure-drag coefficients
were obtained are shown in figure 4 for the sonic nozzle and in figure 5
for the supersonic nozzle. All of these results are for M = 1.62. In
general, the effects of the primary jet and secondary flow were greatest
at this Mach number and the indicated point of flow separation was far-

p
thest forward on the boattail. The effect of increasing 51 and mass

[oe]
flow ratio w are in most instances similar to those obtained in refer-
ence 11 for the zero-length ejector, namely a general positive increase
in the magnitude of the pressures and an increase in extent of the region
affected. However, for some conditions increasing w from 0.10 to 0.20

had a negligible or slightly reverse effect (for exsmple, see fig. &,

o« o

Pd . 4.05 and rig. 5, Ei - 0.81).

The boattail pressure-drag coefficient CDA was obtained as the

sum of the graphicael integration of the measured pressures from §.= 0.87
to %-: 1 plus the theoretical drag from the beginning of the boattail

(%-: 0.82) to %'= 0.87. With regard to the latter, the results of ref-

erence 11 showed that the theoretical pressures over the boattail were
in good agreement with the experimental pressures sahead of the point of
flow separation. In addition, the theoretical drag coefficient of the

initigl portion % = 0.82 to 0.87} is small, ranging from sbout 0.0019

at M= 1.62 to 0.0013 at M = 2.41, and therefore represents a rather
insignificant contribution to the boettalil pressure drag. Consequently,
moderate differences between the theoretical and experimental pressures
over this initial portion would bhave negligible effect upon the wvalue
of CDA .

P.
The varistion of CDA with jet pressure ratio -4 for the sonic noz-
(+-]

zle is shown in figures 6(a) and 6(b) for dlameter ratios of 1.50 and 1.33,

p.
respectively. With some exceptions in the lower range of —i, the effects
(2]
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of the addition of secondary flow for mass flow ratios up to 0.20 are, for
wide ranges of primary jet operation, subordinate to the effects of the

primary jet or varying Bi. For narrow renges of primary jet operation
[>+]
/ Dy
\a chenge in -= of the order of L4}, the effects of
Y

o0

and w may

el o]
|5

8

PJ

be comparsble. As is to be expected, the variation of CDA with = is
[

; except at low values

] Ig
leS

of the sare type as the variation of CDﬁ with
D
0]

P P
of —gy inereasing Ei causes a decrease in CDA and this decrease is
oo ) “oo
reduced by increasing Mach number. In all instances the addition of
secondary flow as compared to the condition for w = O decreases CDA'

For a fixed diameter ratio g§ the magnitude of the drag reduction caused
J
by a secondary flow and the effect of increasing mass flow ratio depend upon

D3 P
the particular combination of Si, w, and M. In the lower range of 51,
oo [
increasing Mach number noticeably decreases the effect of increasing mass
flow ratioc. Aside from reducing this Mach number effect, decreasing the
diameter ratio from 1.50 to 1.33 has only smell effect (proper account
being given to the values of CDA for jet off and no secondary flow,

particularly at M = 1.62; see ref. 11).

Figure 7 presents the results for the supersonic nozzle. For narrow
ranges of primary Jet operastion, these dste show that the effects of mass
P.
flow ratio w may exceed the effects of jet pressure ratio —i. This is
[+]
particularly evident at M = 1.62. With increasing Mach number the effect
of w 1is reduced. There are some effects of decreasing diameter ratio
from 1.50 to 1l.33, but with the exclusion of the results at M = 1.62 for
B
it near 1 and w = 0.10 to 0.20, these effects are small. When consid-
@
ergtion is given to the difference in starting pressure ratios the major
difference between the results for the sonic and supersonic nozzle appears
to be that the effect of a small amount of secondary air flow is, at com-
P.
parable vglues of —23 generglly greater for the supersonic nozzle.
Y

[+5]
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Total afterbody drag.- The total afterbody drag is defined as the
sum of the boattail pressure drag and the base drag. The results are
shown in figures 8 and 9. Comparison of these results with the results
presented in figures 2, 3, 6 and 7 shows that the total afterbody drag
is determined primarily by the bosttail pressure drag and that the obser-
vations given in the preceding section on boattall pressure drag also
apply to the total afterbody drag.

Base drag would sppear to contribute very little to the total after-
body drag for full-scale highly boattailed configurations since the ratio
of the area of the base annulus to the maximum body frontal area for full-
scale configurations is usually smaller than the ratios used in the
present investigation. In comparison with the total drag of a complete
configuration (wing-body-teil, and so forth) having an afgerbody of this

type, the power-on base drag and its variation with M, %i, and w would
c

be small indeed. The use of the area represented by Ap - Aj in engi-
neering estimates of the contribution of CDB to the total afterbody drag
would sppear generally conservative for 0 £ w € 0.20, notable exceptions
occurring at M = 1.62 for the sonic nozzle at high jet pressure ratios.
The present results suggest that equally and perhaps more satisfactory

estimates of total afterbody dreg for afterbodies of thls type having
comparavle mass flow ratios could be made by assuming that CDB is zero.

Punping Charscteristics

The pumping characteristics will be presented as the total pressure
Bo
ratio of the secondary air —= that is required to maintain a given

D
~

is wvaried.

©le

8

mess-flow ratio w as the Jet static-pressure ratio

p.
These results also show, of course, the effect of 59- upon w at
=]
Po

constant —E,

co

Effect of diemeter ratio.- The effect of decreasing the diameter
4

ratio ai from 1.50'to 1.33 is shown in figure 10 for the sonic nozzle
J

and in figure 11 for the supersonic nozzle. In fairing the curves for
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Y

w = O what gppears to be a cut-off value of 51 could not be sharply
ca

defined by the customary abrupt change in slove because of insufficient

data points. The fairing of the curves for w = 0 is, therefore, ques-

P-
tionable in these regions. |See fig. 10(a}, for example, Si =8 to 16

oo

4
fer E§ = 1.50;) From simple continuliy considerations, the effect of
J
4
decreasing ai would be expected to be significant and in the direction
J

Po
indicated by the experimental results, namely, an increase in ?Ti for

“ o0

P
constant ~=~ and w.
P

o0

Effect of free-streem Mach numbers.- The question of the possible
effects of free-stream Mach number upon pumping characteristics and the
applicability of results from studies of ejectors exhausting into still
alr may be resolved to some degree by a few simple considerations. If

p.
the value of -2 is moderately greater than that for which the primary
[>]
Jet first fills the ejector and results in the combined primary and
secondary flow being well supersonic throughout at the ejector exit,
changes in free stream Mach number cannot be expected to affect the
pumping characteristics other than through negligible effects uvon the
ejector boundary layer neer the ejector exit. Under these conditions
changes in free-streamr Mach number will only affect the degree of expan-
sion, or compression, of the ejector flow at the ejector exit. (Of
D
course Ei under these assumed conditions is elways greater than that
-
for separation of the supersonie ejector flow from the ejector wall by
a compression at the ejector exit.) It becomes clear, therefore, that

changes in base pressure do not necessarily mean changes In pumping
P

characteristies. I, however, the value of - is lese than that for
oz

the conditions Jjust described, free-stream Mach number may affect the

pumping charecteristics. It is obvious that the pquing characteristics

for a zero-length ejector will always be affected by base pressure

which in turn is affected by free-stream Mach number; at w = O the

D K b
value of -2& for such an ejector is equal to -2 at 21l values of -4,
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Consequently, it is appropriate to think of the possible effects of free-

p
stream Mach number upon s in terms of its effects upon gﬁu From
o [>+]

prior investigations of Jjet effects upon base pressure with verying free-

Y
stream Mach number, -B  ig observed to be of the order of 1 and usually

[>]

D

less; the maximum effect of free-stream Mach number upon —£ ghould

oQ
therefore be of the same order.

Figure 12 presents examples of the pumping charscteristics for the
tests of the model of this investigation with zero-length ejector reported
in reference 11. These results show that except at low mass-flow ratios
and Jjet static-pressure ratios, free-stream Mach number has only secondary

Pj Y
effects as compared to the effects of w &and —J. The velues of 28 at
-] Poa
23
low w (less than about 0.02) and low T are of the order of magnitude

[><]

b < o .
of -B and the meximum effect of free-stream Mach mmber is seen to be,

[>2}

in general, of this order. In view of these results for the zero-length
ejector (spacing ratio of zero), a finite positive spacing ratio would be
expected to show even less effect of free-stream Mach number, with the

s
vossible exception of very low values of -4, This is confirmed by the

- o
by the present results (spacing ratio of 0.19) which are shown in fig-
ures 13 and 14. On the basis of these results and those of figure 1z,
and in view of the Tact that these data are for configurations which
would pe prone to gccentuate effects of free stream Mach numoer, it would
appear permissible to conelude that ejectors most likely to be encountered
in full-scale installstions will experience little effect of free-stream
Mach number upon their pumping characteristics. The results of reference 10
for a diameter ratio of 1.2 and a spacing ratioc of 0.8 show no effect of
free-stream Mach number.

p.
The present results (figs. 13 and 1%) show that the value of -4 at
[+
which free-stream Mach number ceases to affeet the pumping characteristics
tends to decrease with increasing mass-flow ratio. In figure l5(b) a
dashed curve is shown for w = 0.10 which was derived through interpola-
tions and extrapolations to the results of reference 21 for ejectors
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exhausting into still air. The tendency toward agreement with the present
results is encouraging frox the standpoint of the gpplicability of results
from ejector tests in still air. For the larger spacing ratio of refer-
ence 10, good egreerent was shown with the results of reference 21 when
proper account was given to the vena contracta effect common to the con-
figuration of reference 10.

Effect of svacing ratio.- A comparison cf figure 12 with figures 13

and 1L revesls that changing the spacing ratic from zero to 0.19 had only
small effects upon the p»umping characteristics for the supersonic nozzle.

D
At comparsble values of -9 (less than about 8) the same was true for the
* 00
®3
sonic nozzle. However, at the higher values of —~ reached with the sonic

co

P
nozzle only, the values of %8 at w=0.02 and at both diameter ratios
co
were generally greater for a spacing retio of 0.19, and this difference

b
tended to increase with —éj at w = 0.10 the same general effect occurred

oo

d. d
at Ei = 1.50, but at El = 1l.33 the effect of this change in spacing
T
s s

ratio was minor.

Effect of type of primary nozzle.- A comparison of the results for
the sonic nozzle (fig. 13) with those for the supersonic nozzle (fig. 14)

o)
shows that only at low values of w and s} do these nozzles have simi-
(o]
ler pumping characieristics. At higher values the supersonic nozzle
Po
requires several times the value of —£ required by the sonic nozzle at
P
= o0
PJ' )
equivalent values of w and —=. This is also true for the zero-length
o
ejector, snd, referring vo the preceding paragraph, one may conclude that
this difference between the sonlic and supersonic nozzles is not signifi-
cantly associated with flow conditions within the jector but is deter-
mined primerily by conditions atv or downstream of the ejector exit. From
a consideration of only tne viscous scavenging effects of the jet upon the
D
~o
secondary air, one might expect a decrease in —— for the supersonic
D
= 00

nozzle. However, if the coribined effects of jet Mach number and nozzle
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geometry (divergence angie of 12° in particular) upon the shape of the
initial portion of the free jet boundary as shown in reference 23 are

Po .
also considered, the increase in —£ for the supersonic nozzle is not
p

o0
too surprising.

Schlieren observations.- Figure 15 presents a typical schlieren

photograph illustrating the basic features of the observed flow and model
installations at M = 1.62, and figure 16 presents a few sequences obtained

-

3 g
at the same Mach number which illustrate the effecits of Ei, w, and ==,

P j
Comparison of figures 16(a) and 16(b) would tentatively indicate that
b G
some of the increase in E?Q associated with decreasing E§ might, at
) J

the higher mass-flow ratios, be attributable to the earlier sppearance of
shocks within the Jet other than those associated with normal jet struc-

P-
ture (see ref. 23), for example, at w = 0.20 and 51 = 0.81. Comparison

-]

of figures 16(b) and 16(c) might lead one to suspect that a major cause of

D
the higher values of s for the supersonic nozzle, as compared to the
D

[+2]

sonic nozzle, is the presence and strength of the additional shocks for
the supersonic nozzle; for example, at w = 0.20 <the supersonic nozzle

B3

shows that a strong additional shock is already present at —= = 0.81,
[0 ]
. . P3 . .
whereas the sonic nozzle may operate at least to 5 = 2.02 with practi-

-

cally no apnormal change in jet structure. These phenomena might be
taken to suggest that the supersonic nozzle, by induction effects and

p.
georetry, succeeds in choking the ejector at lower values of —< and

-]
thet the additional shocks are required by the turning of the supersonic
flow by the shroud surface; the pressure-rise through shocks thus gen-

Po
erated woulé increase —=2, However, such an explanation for the increase
=]
. Pog - . . - .
in —— must be invalid, since & similar increase has already been shown
Do

t0 occur for the case of the zero-length ejector. These additional shocks,
therefore, cannot be considered the cause of the large differences bhetween
the sonic and supersonic nozzle or to contribute significantly to the
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increase in —= with decreasing
P J
>}

Pog dg
—=. They may play a more important
P
Pg
role in the variation of E;i with w, but this too appears doubtful,
ca
notwithstanding the effect that increasing w 1s observed to have in
increasing the strength of existing shocks or in creating additional

P

shocks. Indications are that at some combinations of low —= and

oQ
high w the secondary flow will choke the secondary annulus in the
plane of the primasry nozzle exit. Under these conditions the presence
of additional shocks is a logical expectation.

General Remarks

The application of the results which have been presented herein
should te confined to configurations resembling closely those employed
in this investigation. Particular care should be exercised in applying
the pumping characteristies. In reference 10, the geometry of the
secondary passage was shown to be important te the pumping characteris-
tics; in this investigation nozzle geometry is indicated to be of impor-
tance. The possivle effects of these variaovles, coupled with the effects
of spacing ratio and diemeter ratio, deserve special attention.

CONCLUSIONS

An investigation has been conducted to determine the external drag
effects and pumping characteristics of a short ejector having a spacing
ratio of 0.19 and housed within a highly boattailed afierbody. Tests
were made at free-stream Mach numbers of 1.62, 1.9%, and 2.41 for sec-
ondary to primary diameter ratios, 1.50 and 1.33, and for a sonic and
supersonic primary nozzle. Mass-flow ratio was varied from O to 0.20.
The following conclusions are indicated:

1. The contribution of the base drag to the total afterbody drag was
small at all mass-flow ratios and Jjet static-pressure ratios, with minor
exceptions at low Jet static-pressure ratios. The effect of the primary
Jet and secondary flow upon boattail pressure drag was the predominant
factor in determining the effects upon total afterbody drag.

2. The veriation of base drag, poattall pressure drag, and total
afterbody drasg exhibited conventional effects from increasing jet
static-pressure ratio, namely, a decrease with increasing Jjet static-
pressure ratlio except at low jet static-pressure ratios where the con-
verse was true. The addition of secondary flow caused a decrease in
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these drags and, with few exceptions, the reductions in drag tended to
increase with increasing mass flow ratio.

3. In general, increasing free-stream Mach number reduced the effects
of mass-flow ratio and jet static-pressure ratio upon the drag.

4. When consideration is given to the difference in the jet static-
pressure ratios for starting, the drag results for the supersonic nozzle
and sonic nozzle were similar. The only mejor difference was the tend-
ency of & small smount of secondery air flow to have, in general, a
greater effect with the supersonic nozzle.

5. A cursory comparison of the results of this investigation with
the results of NACA RM L54T22 (same model employed in this investigation
but with a zero-length ejector) indicated that changing the spacing ratio
from O to 0.19 did not significantly alter the effects of the primary jet
or secondary flow upon the drag.

6. In general, decreasing the diameter ratio from 1.50 to 1.33 had
only small effect upon the drag but, of course, had significant effect
upon the pumping characteristics, which were conventional insofar as the
effects of jet static-pressure ratio, mass-flow ratio, and diameter ratio
were concerned.

T. The effect of free-stream Mach number upon the pumping character-
istics was negligible except at low jet static-pressure ratios where the
effect was generally small. The present results and a comparison with
results from the investigation of NACA RM I54I22 for the zero-length
ejector tend to indicate that when free-stream Mach number does affect
the pumping characteristies of an ejector, these effects will most likely
be small.

8. A comparison with the results for the zero-length ejector indi-
cated that changing the spacing ratio from O to 0.19 had only small effect
on the pumping characteristics for the supersonic nozzle and for the sonic
nozzle at comparable jet static-pressure ratios (up to about 8). At the
higher jet static-pressure ratios reached with the sonic nozzle only, the
pumping characteristics were, in some instances, significantly affected
by this change in spacing ratio.

9. The pumping characteristics of the sonic and supersonic nozzle
were notably different. The geometry and exit Mach number of a super-
sonic primary nozzle appear to be important in determining the pumping
characteristics.

Langiey Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 12, 1955.
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