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SUMMARY

An investigation was conducted in the Langley high-speed 7- by 10-

foot tunnel to determine effects of modifications to a bomb model (partic-

ularly with regard to drag) when mounted on a wing-fuselage model and
tested at Mach numbers from 0.70 to 1.10. In addition, the static
longitudinal stability characteristics of several configurations of a
larger scale model of the bomb alone were obtained over a Mach number
range from 0.50 to 0.95.

The results obtained for the wing-fuselage-bomb model indicate
that large reductions in installation drag were obtained for the wing-
fuselage-~bomb model when the flat nose of the basic bomb was replaced
by rounded or pointed noses of various calibers. Shortening the
mounting pylon gave further decreases in the installation drag.

The tests of the bomb alone indicated that only the flat-nose
configurations were stable over the greater part of the Mach number
range. Nose-shape modifications which improved the drag also caused
the bombs to become unstable at low angles of attack. The stability of
the low-drag bomb configurations could be improved by lengthening the
cylindrical portion of the body behind the center of gravity.

INTRODUCTION
An investigation was conducted in the Langley high-speed 7~ by 10~

foot tunnel at the request of the U. S. Army Chemical Corps to determine
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the aerodynamic effects of modifications to a bomb designed to house a
cluster of smaller bombs. Primarily, the investigation was to determine
a configuration of the bomb which would give low installation drag when
mounted from an airplane wing. Some tests previously had been made of
the basic bomb shape at the Cornell Aeronautical Laboratory and are
reported in reference 1. In the present investigation, various configu-
rations of a 0.0298-scale model of the bomb were tested in combination
with a swept-wing—fuselage model mounted on a reflection plane in the
Langley high-speed T7- by lO0-foot tunnel.

Additional tests were made to determine the effects of some of the
modifications on the stability of the isolated bomb. In these tests,
aerodynamic characteristics in pitch were determined for a sting-mounted
0.1517-scale bomb model over a range of angle of attack from -3° to
about 16° and Mach numbers from 0.50 to 0.95.

SYMBOLS

The following symbols apply to the semispan-wing-fuselage—bomb
model:

Twice semispan 1lift

Cr, 1lift coefficient,
aSy
cp drag coefficient, S#ice semispan drag
ASy
Chn pitching-moment coefficient referred to 0.15¢ of wing,

Twice semispan pitching moment
qSC

Cp bomb-plus-interference drag coefficient,
s Su

@Dmodel + bomb ~ CDmodeﬁ

28¢

q free-stream dynamic pressure, % pV2, lb/sq ft
Sw twice wing area of semispan model, 0.291 sq ft
Sg maximum frontal area of 0.0298-scale bomb, 0.00132 sq ft
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a
Rw
Subscript:

E

b/2
mean aerodynamic chord of wing, éL\jF 2 dy
LI

(using theoretical tip), 0.299 ft

local wing chord parallel to free stream, f+t

twice span of semispan model, 1.000 £t

b/2
effective Mach number, éL cMy dy
W J0

local Mach number obtained from calibration made without a

model in place on reflection-plane plate
average chordwise Mach number
mass density of air, slugs/cu ft
angle of attack, deg

Reynolds number based on wing ¢C

denotes bomb configurations with extended fins

The following symbols apply to the bomb-alone model:

1ift coefficient, Lift
qSF

drag coefficient, 2L2&
aSy

pitching-moment coefficient referred to 0.3781ly,
Pitching moment

Syl

maximum frontal area of body, 0.0336 sq ft

overall length of basic bomb configuration (configuration i,

fig. 6), 1.138 ft
Reynolds number of bomb based on 1y,
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MODELS AND APPARATUS

Semispan Wing-Fuselage-Bomb Model

This investigation was conducted in the Langley high-speed T- by
10-foot tunnel with a small semispan wing and a wing-fuselage model
mounted on a reflection-plane plate (fig. 1). The plate was mounted on
the tunnel wall and was located about three inches from the wall so that
it would be out of the tunnel boundary layer. The 0.0298-scale semispan
model was attached to a strain-gage balance by an extension of the wing
root which passed through the reflection-plane plate. A gap of about
l/l6 inch was maintained between the wing root and the turntable cutout
and between the inner surface of the half fuselage and the reflection-
plane plate to prevent fouling. The balance, located outside the tunnel
wall, was enclosed by a can t0 minimize air leakage into the model flow
field.

Tne wing was made of steel and had a quarter-chord sweepback angle
of 40°, aspect ratio of 3.43, taper ratio of 0.479, and NACA 65A010
airfoil sections normal to the quarter-chord line. The wing had

Llo incidence relative to fuselage reference line and 5%0 negative

dihedral relative to the fuselage plane of symmetry.

The fuselage was made of a steel beam covered with bismuth-tin
alloy.

The bombs were suspended beneath the wing (with the bomb axis
parallel to the fuselage reference line) by constant-chord pylons with
330 sweepback. Sketches of the pylon-bomb configurations are shown in
figure 2. The pylons were constructed of steel and had NACA 64AOOT
airfoil sections parallel to the airstream. Ordinates of the various
bomb noses are given in figure 3. The bomb noses, cylindrical midsections,
tall, and fins (fig. 4) were made of brass. Photographs of a bomb
suspended beneath the wing-fuselage combination and beneath the wing
alone are presented in figures 5(a) and 5(b).

Bomb-Alone Model

Eight configurations of a 0.1517-scale model of the bomb (fig. 6)
were tested on a sting-support system in the Langley high-speed T- by
10-foot tunnel. The noses are defined in figure 7 and details of the
bomb tail section and fins are shown in figure 8. The noses and cylin-
drical midsection were made of aluminum whereas the tail section and fins
were made of steel. The model contained an intermal strain-gage balance
and was pitched through the angle-of-attack range at constant Mach number.



NACA RM SL54D30 CONSTDERERiin 5

B TESTS
Semispan-Wing-Fuselage~—~Bomb Model

The semispan-wing-fuselage—bomb model was tested on a reflection
plane mounted on the wall of the Langley high-speed 7- by 10-foot tunnel,
which induces over the reflection-plane surface a region of local
velocities higher than the midstream tunnel wvelocities and permits
testing of small semispan models up to Mach numbers of 1.10. Local Mach
number variations in the test region for average test Mach numbers are
shown in figure 9. The change in local Mach number over the model is
greatest at the high effective Mach numbers and decreases with decreasing

speed. The effective Mach number, which is used as the basis for data
presentation, is obtained from the following relationship:

b/2
= 2
M= 5. JC cM, dy

Lift, drag, and pitching-moment coefficients were obtained over an
angle-of-attack range that generally extended from -3° to 12° at Mach
numbers from 0.70 to 1.10. The variation of Reynolds number (based on
wing mean aerodynamic chord) with Mach number is shown in figure 10.

The Jjet-boundary corrections to the data were considered to be negligible.

The results presented in the present paper are believed to be
accurate within the following limits for each Mach number:

M M IA'G)) ACDS
0.70 +0.003 +0.0005 +0.056

.90 +.003 +.000k4 +.041
1.10 +.003 +.0003 +.035

Bomb~Alone Model

Lift, drag, and pitching-moment measurements were obtained on the
0.1517-scale model of the bomb. The pitching moments were measured
about an axis 5.15 inches from the forward end of bomb configuration 1
(fig. 6). The models were tested over an angle-of-attack range that
generally extended from -3° to 16° at Mach numbers from 0.50 to 0.95.

CONPERde
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The Mach numbers and dynamic pressures were corrected for blocking
by the method of reference 2. No jet-boundary corrections were applied
as they are considered to be extremely small. The drag data have been
corrected to correspond to a pressure at the base of the model equal to
free-stream static pressure. For this correction, the pressure inside
the models was measured at a point just forward of the base of the model.

The angle of attack has been corrected for deflection of the sting-
support system under load.

The variation of Reynolds number (based on length of configuration 1)
with Mach number is presented in figure 10.

RESULTS

The results of the investigation are presented in the following
figures:

Figure
Semispan-wing-fuselage-——bomb model:
Basic -data:
Wing-fuselage . « v ¢« ¢ & o ¢ & o o o o o o o o o 2 & a & o o« o 11
Wing alone . « ¢ v ¢ v ¢ o v o o o o s s o 4 e e s e e o« . . . 12
Wing-fuselage—bomb combinations . . . . . . . . . . . . . . . 13
Wing-bomb combinations . « . ¢« ¢« v ¢ ¢ + o « 4 e e e 4 o . . . 1k
Drag characteristics . . . ¢« . ¢« ¢ « ¢« = ¢ ¢+ v v v o o« . 15 t0 18
Summary of aerodynamic characteristics . . . . . . . . . . 19 to 20
Bomb-alone model:
Basic data . . ¢ ¢ ¢ v i 0 e b v e d e e e e e e e e e e e e . 21
Summary of pitching-moment-curve slopes . . . . . . . . . . . . . 22
Comparison of pitching-moment characteristies . . . . . . . . . . 23
Minimum drag characteristics . . . . . . . . . . . ¢« . .« .« ... 24

The lift-curve slopes were averaged between zero and 0.10 1ift
coefficient, and the pitching-moment-curve slopes were measured at zero
1lift for the reflection-plane model. The pitching-moment-curve slopes
were measured at zero angle of attack for the bomb-alone results.

Semispan-Wing-Fuselage~Bomb Model
Drag characteristics.- The increments in drag coefficient (including

interference) based on bomb maximum frontal area are presented in fig-
ures 17 and 18 for the zZero-lift condition.
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Large reductions in the bomb-plus~-interference drag were obtained
when the original flat nose was replaced by rounded or pointed noses of
. various calibers (fig. 17). The largest reduction in drag due to nose
- shape was obtained by using the nose of configuration 5 (a 1.9 caliber
long, spherlcal -tipped parabolic nose) The drag of configuration 5 at
a Mach number of 0.70 was only 30 percent of the drag of configuration 1.
_ Below a Mach number of 0.94, the lowest bomb-plus-interference drag was
obtained with three pylon-bomb arrangements (long pylon and bomb configu-
ration 5, long pylon and bomb configuration 3w, and short pylon and bomb
configuration 3p),

The effect of extending the fins on bomb configuration 3 was to
reduce the bomb-plus-interference drag slightly, except at M = 1.10.

Extending the bomb cylindrical midsection of configuration 4
(yielding configuration 9) reduced the bomb-plus-interference drag over
the Mach number range. Comparison of the drag results of configurations 3
and 9 to determine the effect of lengthening the cylindrical midsection
while keeping the overall length constant shows that configuration 9
with the lengthened midsection had slightly lower bomb-plus-interference
drag, except between M = 0.80 and M = 0.95. The opposite effect of
extending the bomb cylindrical midsection is shown for the wing-alone
case (fig. 18). Configuration 3 had lower bomb-plus-interference drag
than configuration 9 except near a Mach number of 1.0.

Shortening the pylon length substantially reduced the bomb-plus-
interference drag of configuration 3y (bomb with nose 35, original
midsection and extended fins). This short-pylon arrangement had the
lowest bomb-plus-interference drag of any pylon-bomb combination above
Mach number 0.9% and only slightly higher drag than the better configu-
rations at lower Mach numbers (fig. 17).

Lift and pitch characteristics.- The lift-curve slopes and pitching-
moment-curve slopes are summarized in figures 19 and 20. The cross-
hatched areas of figure 19 define the boundaries of the parameters with
the pylons and bombs mounted from the wing. In general, the addition of
a bomb-pylon arrangement to the wing decreased the lift-curve slope, the
largest decrements occurring between Mach numbers of 0.90 and 1.05. The
bomb-pylon arrangements caused small changes in BCm/BCL at Mach numbers
below 0.90; however, at higher Mach numbers, changes in the aerodynamic-
center location of the order of 5 percent were caused by the addition of
the bomb-pylon arrangements. Near a Mach number of 1.0 all bomb-pylon
configurations produced forward movements of the aerodynamic center.
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Bomb-Alone Model

Pitch characteristics.- The basic bomb (configuration 1, flat nose,
original midsection and tail) was stable for the Mach numbers investigated,
except for an unstable trend at M = 0.95 (fig. 22). The configurations
having other nose shapes all showed varying degrees of instability near
zero angle of attack. The most unstable arrangements were bomb configu-
rations 3 and 3 (1.9 caliber noses). Lengthening (behind the center of
gravity) the cylindrical portions of bomb configurations 4 and Lg
decreased the bombs' instability to near neutral values. The fin
extensions had little effect on the stability of the bombs.

A comparison of the pitching-moment curves of the various bomb
configurations with the original fins is shown in figure 23 for two
Mach numbers. All configurations exhibited stable pitching-moment
variations at angles of attack above about 6°. There was no large effect
of Mach number on the pitching-moment-coefficient variation above angles
of attack for which OCy/da became negative.

Drag characteristics.- The drag coefficients of the bomb models at
zero angle of attack are summarized in figure 24. The drag of the basic
borb (configuration 1) was from 5 to 13 times the drag of the modified
bombs with sharp noses. Bomb configurations 3 and 3g (1.9 caliber
noses) did not show a drag rise until a Mach number of 0.88. The drag
rises for configurations 4, 4w, 9, and 9p occurred around a Mach number
of 0.75. The fin extensions reduced the drag of configurations 1 and 3
but had little effect on the drag of the other configurations. The
bombs having the lengthened midsections (configurations 9 and 9E) had
higher drag than the same bomb with the original midsection (configu-
rations 4 and 4g) at Mach numbers below about 0.85.

CONCLUSIONS

The results of a wind-tunnel investigation of a 0.0298~scale-model
bomb mounted from a semispan-wing-fuselage and wing-alone model indicate
that large reductions in drag at low 1lift coefficients are obtained when
the flat nose of the bomb is replaced by rounded or pointed noses of
various calibers. The bomb-plus~interference drag is further reduced
by using fin extensions, bomb midsection extension, or shorter mounting
pylon. The installation of the bombs reduces the lift-curve slope and
generally causes forward movements in the aerodynamic center.

Results of an investigation of a sting-mounted 0.1517-scale model
of the bomb alone indicate that only the flat-nose configurations were
stable over the greater part of the Mach number range. All nose-shape
modifications improved the drag but caused the bombs to become unstable
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at low angles of attack. The instability of the low-drag bomb configu-
rations could be decreased by lengthening (pehind the center of gravity)

the cylindrical portion of the body.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 16, 195k.

;célfhniaL é/- /4:¢427-¢1?
Thomas J. King, Jr.
Aeronautical Research Scientist

Approved: o%m /M

Thomas A. Harris
Chief of Stability Research Division
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(a) Wing-fuselage—bomb model.

Figure 5.- Photographs of reflection-plane model.
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(b) Wing-bomb model.

Figure 5.- Concluded.
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Figure 14.- Drag characteristics of 0.0298-scale 40° sweptback-wing model
with long pylon and various bomb configurations.
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