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SUMMARY 

Hinge-moment data have been obtained f o r  oscillating  control sur- 
faces on swept, unswept, and del ta  wings through  the  use of wind-tunnel 
and rocket models. The in-phase ana damping-moment coefficients were 
measured  and a range of unstable  aerodymmic damping wes found at tran- 
sonic speeds for  each of the  configurations  tested. The magnitudes of 
the hinge-moment coefficients are given and, since no systematic  theory 
that would account for separated-flow o r  aspect-ratio  effects was avail- 
able, comparisons are  made w i t h  theory  based on two-dimensional potential 
flow fo r  subsonic,  sonic, and supersonic  speeds. A rather  surprising 
agreement with theory is noted for  a range of conditions where the  theory 
would not  be  expected t o  apply. Although the  theory is  inadequate i n  
predicting  the magnitudes  of the damping coefficient in the  transonic 
speed  range, some of the  trends seem t o  be correctly  given. The results 
show the importance of several  factors: for example, the dependence of 
the damping-moment coefficients upon the  amplitude of oscil lation,  ini-  
tial angle of attack, and reduced frequency. The results indicate that 
troubles caused by transonic  control  f lutter may be alleviated t o  some 
extent by the  use of  dampers, structural  modifications, o r  by aerodynamic 
cha.nges. 

INFRODUCTION 

One 02 the most d i f f i cu l t  -problem t h a t  hes misen  as   f l ight  speeds 
have increased  into  the  transonic a d  supersonic speed range is concerned 
with control-surface  flutter.  Flutter  troubles on control  surfaces have 
been the rule raYner then the  exception on most configurations. Broadly 
speaking, there are two types of f l u t t e r  i-n-Mlving control  surfaces that 
have been of concern. One i s  coupled f l u t t e r  that involves an interaction 
between control-surface motion and one o r  more other degrees or' fkeedom 
of the  airplane.  Adjusting  the mass balance, f o r  example, as  directed 
by theory  has  usudly proved  &equate t o  correct this coqled  control-  
surface  f lutter.  However, even  though the coupled f l u t t e r  is eliminated, 
another  type of flutter  involving only  the degree of freedom of the con- 
t r o l  surface is frequently encountered.  (See refs. 1 t o  9.) This single- 
degree-of-freedom not sensitive t o  
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mss balance. However, l ike  most singledegree-of-freedom  types of 
f l u t t e r ,  it is  very sensi t ive  to  damping. 

To determine the amount of dm-ping necessary t o  prevent t h i s  single- 
degree  type of f lu t t e r ,  a number of experimental measurements have 
recently been nade at transonic speeds  of the hinge mxments on control 
surfaces on swept, unswept,  and de l ta  w i n g s .  Ekesenting  soze  preliminary 
resul ts  of 1;hese investigations is the primary  purpose of t h i s  paper. 
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SYMBOLS 

aerodynamic hinge moment on control  per  unit deflec- 
t ion,   posit ive  trail ing edge down, ft-lb/radian 

free-stream dy-namic pressure, lb/sq f t  

area moment of aileron mea rearward of and about 
hinge l ine,  ft3 

mean geometric control chord, f t  

mean geometric wing chord, ft 

eequency of osci l la t ion,   rdians/sec 

aileron reduced  frequency, a 

wing reduced  frequency, !!?!E 
2v 

free-stream velocity, ft/sec 

Mach number 

equivalent  viscous-dmping  coefficient, radians f t - lb  

control-surface  iieflection,  positive  trailing edge 
down, radians 

r a t i o  of control chord 

flutter  derivatives as 
erence 10 

to wing chord 

used, fo r  exanple, i n  ref- 
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DISCUSSION CIF PARAMECERS 

The hinge  mment exfsting on 831 osci lht ing  control  i s  not  necessmily 
i n  phase with the-control  position ard may be represented i n  complex nota- 
t ion by the  relation 

control span, f t  

The part  i s  the conponent is phase with the  displacenent end 5s 

commonly called  the  inphase o r  spring norrent, wherees k C - 4  is t h e  cm- 

ponent that  is 90° out of p h s e  wiYn displacement, tha t  is, i n  phase with 
the  velocity.  This  part is called  the  quadrature  or danping moment. 

.Negative  values of Chs oppose the displacement and hence act  as an 
eerodynmic s p i n g  and resul t  i n  an increase i n  the s t i f fness   or  an 
hcres?se  in  the  natural  frequency of a control  surface. Likewise,  nega- 
t ive  vdues of afi oppose the  velocity and hence indicate  stable damping; 
tha t  is, a free  oscil lation of a cont ro l   sz face  would damp out. Positive 
values of Chf, then w o u l d  indicate an unstable aerodynamic damping moment, 
a d  an oscil lation would increase  in amplitude unless structural h p f n g  
o r  a control-surface *per provided damping  moments greater  then  the 
unstable aerodynamic rcoments.  The value of equivalent  viscous &ping 
required of the  dmser t o  ove rbabce  the unstable  aerodymaic moment is 
given by the  expression 

Chs 

where C is t i e  dmper hinge  nonent i n  loot-porn& per angular velocity 
required of the daaper. 



The h t a  gresented  in ti=is paper axe in   the  form of the  s tabi l f ty  
coezficients chg and Chk; the  expressions  relzting  these  values to 
cormonly use&  coefficients  in  f lutter  analysis are 

and 

It nay be of in te res t  t o  see just wl-xt the theory  predicts  for  the 
control-swface damping xonents  throughout  the  transonic  speed  range. 
Figure 1 shows theoretical  values of the  control dan2ing coeffi- 
cient, 2s a function of  Mach  nurcber for  three  values of re&uce& frequency 
based on control   cbrd.  These values have been obtained from refer- 
ences 10, 11, arkL 12 for  the subsonic,  sonic, and supersonic  ranges. 
All calcCLations are  for a 20-percent-chord control hinged a t  i t s  leading 
edge. N o  two-dimensional coefficients are ta5ulated between M = 0.8 
end 1.0, and hence the CUTVSS have been arbitrarily faired between the 
subsonic and sonic  theories. Theory shows tha t   for   the  lower range of 
reduced freqcencies  there i s  an abmTt loss i n  stable dunping and tha t  
the dzm2in.g  becomes unstable an6  remaim wstable  u~ t o  supersonic  speeds. 
Theory furtller hdica%es that a t   t h e  higher  redxced  frequencies  the 
ins tab i l i ty  does  not exis t  "uhroughout the speed  range.  This has been a 

confirmed by experience  inasxuch as it has gemrally been found that, 
i f  it i s  g>ss ib le  t o  make the  control-surface ,frequency high enough, the 
troubles kave been cured or  avoided. '&en an  exce:lsive penalty m u s t  be 
paid t o  achieve a sui-ficiently high frequency, it IIELS beer_ necessary to 
p o v i d e  dampers t o  absor3 the .*-stable wrodpamic damping tha t  remains. 

# 
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DISCUSSION OF RESULTS 

d 

Now th&t the  predictions of the  idealized  theory have been considered, 
sone experimental results i n  the transonic speed range are  discussed. 
Experimental data are somewhat d i f f icu l t   to   cor re la te  because of non- 
l inear i t ies  that are encountered 011 control  surfaces. One nonlineer 
effect  is i l lustrated  in   f igure 2, which s h o w s  the  experimental  varia- 
t i on  of the damping-aoxent coefficient  wlth  the amplitude  through 
which the  control is  oscillating. These data axe f o r  an unswept, semi- 
span model  which was tested i n  the Langley gh-speed 7- by  10-foot 
tunnel   a t  a Reynolds nmber of about 2 x 10 $? based on wing chord. The 
25-percent-chord aileron h A  =-percent kerodynamic balance and was not 
sealed. It can be seen that at these Nach nmibers there is a nonlinear 
variation of demping-moment coefficient w i t h  amplitude.  Further, for  
this  particular  cese  the maximum unstable damping appears t o  occur at 

level  of s t ructural  damping, this could explain some of the  limited- 
amplitude f lut ter   obtained  in  many cases of control-surrace  flutter. 
These nonlineas  variations  with amplitude, however, make evaluations of 
the  effects of other  parameters,  such  as Mach number, d i f f icu l t .  

- some intermediate am$litude, and it is possible  that, combined with some 

- 

I n  order t o  obtain some iaea of Mach nmiber effects,  a constant 
amplitude 010 oscil lation was chosen near the maximuu! unstable damping, 
around 2.5O, an& the danping coefficients f o r  this   mpli tude were plotted 
as e Ifunction of Mach nmber.  Figure 3 shows the  experimentally  deter- 
mined  daaping-moment coefficients et angles of attack of 00 and 60 fo r  
the same configurztlion, and the dashed curve indicates  the ve3ues pre- 
dicted by two-diaensional  subsonic,  sonic, and supersonic  theories. The 
theoretical   values  presented  in  this  f igure as w e l l  as subsequent fig- 
ures were calculated  for a X>-percent-chord control hinged &t the  leadlng 
edge. It can be seen frm the  curves t k r u g h  the data points that there 
i s  an abrupt change f r o m  stable  to  unstable damping, and it has  been 
Zound t'nat the Mach  number a t  which th i s  change takes plece depends upon 
rrmy  Things, f o r  exanple, a i r fo i l  thickness, angle of &tack, o r  ampli- 
tu&e of oscillation. 

O f  immediate importance to  the  transonic and supersonic  airplane 
designer i s  the magnitude of tke ~m.xinur?l unstable danping that is likely 
t o  be encountered  over the ent i re  Kach  number range. It can  be seen 
that  theory, whi& I s  the idealized two-aimensional  theory,  predicts 
sone  of the  trends  but is inadequate in  predicting  the magnitudes. The 
magrLtude thus deperkis  upon oscil lation amplitude as was seen in fig- 
ure 2 and, t o  a lesser  extent, angle of attack as indicated  in  figure 3. 

.. 

The aerodynamic prof i le  of the  control i s  known t o  h v e  an effect  
on aLleron buzz, m !  figure k shows -the effect  of coatrol-surface 
trailing-edge  thickness on the damping-mment coefficient.  Control 
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surfaces with thickened t r a i l i ng  edges have been found i n  some cases to  
be less susceptible  to  control-surface buzz, and the r e s u t s  of t h i s  
figure show tht the control  surface with a thickened t r a i l i ng  edge had 
smaller  unstable damping mnents thm the one with a shavp t r a i l i ng  edge. 
Mzximum values of Cb-  over an axplitucie range of &l@ at zero  angle of  

attack were used for  this conpazison. 
-6 

Also of in t e re s t   t o  the airplane  designer is  the aerodynamic inphase 
or  spring mxent, and figure 5 shows the in-gkase moment coefficient  plot- 
ted  against Mach number for the same two aileron  profiles a6 i n  figure 4. 
The coefficient C- is the inphase aerodynamic moment coefficient, and 

negative  values, it may be recalled,  indicate a stiffening or spring 
effect. It i s  seen thzt Chg is  negative  throughout  the Mach mmber 
range, and. it i s  of interest  i n  comparing  tize effect  of the coritrol pro- 
f i l e  that the magnitudes of  the inphase moments are increased when the 
t r a i l i ng  edge i s  thickened, whereas the damping m n t s  are decreased; 
this- would. indicate a lmge  reduction  in the  phase angle of the nonent 
vector as the t r a i l i ng  edge is thickened. Theory again follows the 
general  trend  but  predicts too large a magnitude. However, the  theory - 
shown was for  a two-dimensional control wit’n a sealed gap and hiriged at 
tne leading edge, whereas the control  for this  experbent  permitted flow 
though t’ne gap wd had X)-percent aerodynsmic balance. 

% 

Swept#-wing controls have also encountered  control-surf ace ins tab i l i -  
ties, and figure 6 presents the dmping-mnent  coefficients on a swept- 
rudder  co&igk&tlon having a 25-percent-chord control hinged st the 
leading edge. These data were obtained from tests of a 5-percent-thick 
sedspzn rode l   in   the  Langley  8-foot transonic  pressure  tunnel. The data 
are representative of  oscil lation  mplitudes of f lo ,  zero  angle of attack, 
and Reynolds numbers of about 6 x 106. These tests extended t o  su2er- 
sonic speeds of aboat M = 1.12 and again  Sndicate an  abrEpt loss i n  
damping, E.S i n  the  case of the unswept config-wation. The theory and 
experhent  are  for a constant  value of reduced  frequer-cy of 0.048 and 
the experjmental curve i s  obtair-ed from cross  plots of data. The theory 
i s  based on the component flow Nach  number peqendicular t o  the hinge 
l ine.  Although the trend of the  instabil i ty  seem t o  be predicted by 
theory, the crossover  points and t>e nlagnitudes are in   e r ror .  The 
unstable ba;ripi94 region  obtained  experimentally  occurs a% a sligfitly 
higher Mach  number tnan t h E t  for t h e  unswept wirg, a l t h o r n ,  as mellCioned, 
not as high as the t  predicted by %ne compol?-ent flow Mach  number theory. 

The inphese hinge  nonents for  the s m e  configuration as i n  figure 6 
are  shown in   f igure 7, end e very good i f  not  coincidRnta1 agreement is 
lzoted with  theory. 



Although control-surface  instabillties on del ta  wings have not  been 
as docmented as those  for  other  types of configurations,  experimental 
hinge-moment measurements have been obtained f o r  oscil lating delta-wing 
controls end the damping-moment  components are shown in figure 8. Some 
data  are shown for  a full-span  nodeltes%ed  in the Ames 6-  by 6-foot 
supersonic  tunnel  (ref. 13 and unpublished  data) f o r  a control  with a 
shezp trailing edge. These data were obtainea a% zero angle of attack, 
oscil lation  mplitudes of *lo, a Reynolds nmiber of 2.4 x Lo6 based on 
wing xnean aerodp-amic  chord, and reduced frequencies up t o  0.03. A d d i -  
t ional  data  are shown fo r  e rocket moiiel launched  by  the  Langley Pilotless 
Aircrsft Research  Division at zero  angle of attack  with a full-span 
constent-chord unbalanced control having a thickened t r a i l i ng  edge. The 
reduced  frequency f o r  this tes t   var ied from 0.09 t o  0.03 between Mach 
numbers of 0.3 and 1.9, and the  Reynolds number based on the w i n g  mean 
aerodynanic  chord  ranged f’rorn 3.5 x lo6 t o  18 x lo6. The  damping-moment 
coefficients f o r  the del ta  wing also show a loss i n  stcble damping at 
transonic  speeds, and stzble damping appears to be  regafned at supersonic 
speeds, depending upon the  amplitude of oscillation. The rocket model 
encountered control-surface  flutter in  the  range of Mach nmber  indicated 
by the  hatched  area and appeared t o  become stable zbove a IrIach  number of 
about 1.3 .  The control remained stable up t o  the maximum speed of the 
f l igh t  around M = 2.0, although a fa i lure  in the  oscil lating mechanism 
precluded  obtaining damping coefficients  in  this range. Stiffness  coeffi- 
cients chs were obtained  for  the same configurations and Etre shown i n  
figure 9. The Eeasured stiffness  coefficients  increase as sonic speeds 
are approached and decrease at supersonic  speeds i n  much tk manner tha t  
theory  predicts. The theory is f o r  a sealed gap, whereas the  tunnel 
experhents  permitted some flow. 

The resul ts  of the  investigations  thus fax have indicated  that   the 
airplane  designer has several measures a t  his disposal  for solving the 
problexn of single-dewee-of-freedon  control-surface f lu t t e r .  Aerodynamic 
modifications  appear t o   o f f e r  some promise but  reqdre  considerably  nore 
study t o  establish trends that will be prectical  for design.  Structural 
modifications that increase  the  stiffness and, hence,  frequency of the 
control appear t o  be straightforward,  although there are l imits  t o  the 
amom% by which the  control-surface  frequency can be increased  before 
excessive weight penalties or other  complications are encountered. The 
addition of control-surfece dampers appems t o  of fe r  another means of 
elhinating the  control-surface  instabilities, and some of the data of 
t h i s  pzper may be useful  for this purpose. O f  course,  each basically 
airferent  configuration will require  separate  study. It must be  pointed 
ouk tha%, if  the  control-surface  frequency is low, the  size of the daznper 
required t o  overcome the large  unstable aerodynamic damping encountered 
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at the low reduced frequencies may impose  restrictions on the  rate at 
which the pilot may control the airplane. Hence,  it appears thet some 
kind of a compromise m y  be necess- between control-surface  stiffness 
and damper size. 

Langley Aeronautical Laboratory, 
National Advisory Cmmittee for Aeronautics, 

Langley Field, Va., May 16, 1955. 
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THEORETICAL  DAMPING  COEFF; AS FUNCTION  OF MACH NO. 
AND  REDUCED  FREQUENCY 

2-DIM. C0MP.-FLOW THEORY 
-12r 

-8 c 

. 
I I I I I I I I I I 
0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 

M 

Figure 1 

EFFECT  OF AMPLITUDE ON CONTROL-SURFACE 
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Figure 2 
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DAMPING COEFFICIENT FOR UNSWEPT-WING CONTROL 
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Figure 3 

DAMPING COEFFICIENT FOR UNSWEFT- WING CONTROL 
a = Ooi ka=0.12 

-8 r 
C 

hd 

8 .  

12- 

" 0 

-A 

I 
I 
I 

I I I I I I 
.6 .7 .8 

M 
.9 1.0 1.1 

Figure 4 
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STIFFNESS COEFFICIENTS FOR UNSWEPT-WING 
CONTROL 
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Figure 5 

STIFFNESS COEFFICIENTS FOR SWEPT- RUDDER CONTROL 
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STIFFNESS COEFFICIENTS FOR SWEPT- RUDDER CONTROL 
ka ~0.048; 8=t1° 
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Figure 7 

DAMPING COEFFICIENTS  FOR  DELTA-WING CONTROL 
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Figure 8 



. 

STIFFNESS  COEFFICIENTS  FOR  DELTA-WING CONTROL 
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