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DESIGN OF CENTRIFUGAL IMPl?LLER BLADES*

By A. Betz ’and 1. Flfigge-Lotz

1, )?UNI)AMENTAL PRINCIPLES

1. Preliminary Remark

In the older, simple centrifugal impeller theory, it
is assu]ned that the flow not only follows the shape of the
blades over the blade surface, but that it approximately
maintains the same character between the blades. This as-
sumption is justifiable to some extent if the distance be-
tween the blades is small compared with the radius of cur-
vature of the absolute streamlines, as is the case for a
relatively slowly rotating impeller. The more the rota- .
tional speed was raised, however, and the blade area cor-
respondingly reduced the more the inadequacy of these
simple assumptions appeared. Particularly at the blade
tips, the mean direction of the streamlines no longer
agreed with the directions of the inlet and exit tangents
of the blades and these angles had to be corrected by em-
pirical valuesi For very high-speed impellers (Kaplan
turbines) the simple ideas underlying this method of com-
putation practically lost their meaning entirely. It was
then that these blades began to ‘be designed by the pro-
cedure developed in aeronautics for isolated wings, with
the effect of the neighboring wings taken into account
as a disturbance. This method of computation becomes
simpler the greater the distance between the blades, with
the resulting small disturbance by the neighboring blades.
An important aid for this computation procedure is the
conformal transfortiation (see reference ,1) of a blade case
cade. Even by”this conformal transformation method, how-
ever, the computational difficulties increase very greatly
if the blades” are too large or if their distance apart is
too smallr A characteristic that indicates whether a given
Sys”tem iS suited to the method of con$orrnal transformation
is that the bladas do not overlap (i.e., that it be pos-

,,\ sible to see, through between them when viewed along the

*’[Berechnung der Schaufeln von Kreiselr2idern.” Ingenieur-
Archiv, vol. 9, December 1938, pp. 486-501.
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axial or radial direction for axial and radial impellers?
respectively) . A further disadvantage of the conformal
transformation method is that it is restricted to two-
dimensional flows so” that it cannot be applied, for exam-
ple, to impellers of nonparallel casing walls such as that
shown in figure 1.

The procedure to be described in what follows is in-
tended to fill the gaps in the two methods mentioned above.
We restrict ourselves essentially to radial impellers with
cylindrical blades since, as Pr&sil has shown (reference 2),
the flow about an arbitrarily curved surface of revolution
(for example, in a Francis wheel) may he reduced to this
normal form we have chosen by a relatively simple conformal
transformation. This method starts from the simple Hypoth-
eses of the older centrifugal impeller theory by first as-
suming an impeller with an infinite number of %lades. How
the flow is modified in pas$ing to a finite number of
hades is then investigated. The blade shape must be ad-
justed to this changed flow. For the computation of the
flow for a finite number of blades, the apprtiximation
method for isolated wings as developed by Munk, Prandtl
and Birnbaum, or Glauert (references 3, 4, and 5) is found
suitable. The essentinl idea of this method is to replace
the wing by a vortex sheet and compute the flow as the
‘field of these vortices. The shape of”the blades is then
obtained from the coildition that the flow must be along
the surface of the blade. If the blade shape thus obtained
deviates strongly from that first assumed (on the basis of
thh computation for an infinite number of blades) the com-
putation is to be ~epeatcd with the modified blade shape;
since the vortex sheets whose field is given by the flow
should have the same form as the blades~ Slight deviations,
howe’vcr, are without appreciable effect,as is known from,
the corresponding computations for isolated wings, If the
blades are not of a negligible thickness, the latter can
be taken itito account in the, familiar manner by the intro-
duction of sources and sinks.

2. Representation of the Field of Flow

for Parallel Casing Walls

It might be possible to proceed by computing the
field of a vortex which replaces a blade element b~tween
r and r + dr, adding the disturbance velocities of n,
such vortices ,corresponding to the n blades and finally

.,
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integrating over the blade length. This computation would
-. ““’’h~co&e~:%athe.r-.cme,r,somoe.;.;.h.owev@r, ~ince for each point’..-.,.

the vortices corresponding to the blade elements’ at radius. ......-

r would in general give rise to different disturbance -
velocities. Such computation would become particularly
tedious ‘when the flow’considered is not two-dimensional
as-””inthe case of a wheel’ with nonparallel walls like that
of ’figure 1. The computation simplifies considerably if
all the point singularities (’vortices, sources) are repre-
sented as vortices of sine wave periodic fluctuation con-
tinuously distributed over the circle circumference.* Such
periodic vortex sheets give rise to fields. with the same
periodic fluctuation about the circumference of a circle.
In figure 2, for example, is shown a periodic vortex dis-
tribution at radius R and the corresponding distribution
of the radial and tangential components of the velocity at
radius r. For characterizing the disturbance only the
maximum value for each radius need be determined, the de-
pendence on tho angle cp being directly given by the
periodic distribution.

If the velocity difference of the front and back ‘
sides of the blades at radius R iS equal to Av, the
circulation about a blade element of length ds is equal
to dr=dvds. If the element lies between the radii R
and R + dR, then dR = ds COS ~ where $ is the angle
between the blado tangent and the radius (fig. 3). For n
blades t}le n concentrated vortices of circulation d r
distributed over the circle circumference may be repre-
sented as continuously distributed vortices, of intensity’
rf per unit length by the Fourier series

,

(1)

where 6 = f(R) gives the blaile shape. Th~ objection
might be raised against this representation that this
series no longer converges and the point vortices can be
represented only approximately by breaking” off the series
after a few terms. This objection is without justifica-

% “tl,ori,however, since in the application of this series to
,. th~” computation of the disturbance’.’veloclties the series

thata rise are always cofivergent. (See equations (7), (8).)

*For the idea of replacing the discontinuous blades by
~ourier series ’of continuous periodic functions, we are
indebted’to an oral remark of Mr. J. Ackeret.
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If the Fourier series (1) is broken off after the
first term, it would mean that the concentrated vortices
on the ~;ings~!are uniformly distributed over the circle
circurnferenc~, i.e., that instead of a finite number of
blades we assume an infinite number. Therefore, if only
the first term is taken into account, this would corre-
spond entirely to the above-mentioned computation proced-
ure of the older, simple centrifugal impeller the’ory for
which the streamline pattern between the blades is assumed
the same throughout. It is the additional terms of the
Fourier series that bring out the more accurate conditions
at the various positions between the b-lades. The fact
that in many cases t~is old, simple theory, that is, the
sizgle first Fourier term, nevertheless yields useful re-
sults, leads us to expect that only a very few terms of
the Fourier series are sufficient to represent the flow
adequately. The better the agreement of the simple theory
the fewer the terms that will be needed. A larger number
of terms therefore will %e mainiy required only for the
neighborhood of the blade tips. In the region of the
blade tips, however, the neighboring blades play a rela-
tively small part, so that the conditions at this position
may be computed on th~ basis of the knowledge of those
about tile single blade and the effect of the neighboring
wings taken into account as a correction.

3. Nonparallel Bounding Walls

The method of representation of the discontinuous
vortices by continuous functions shows up to particular
advantage for nonparallel bounding walls (fig. 1). On
account of the circular symmetry of the bounding walls
tile d.isturbancc field also in this case shows the same
periodicity characteristics. It is necessary only to com-
pute the maximum disturbance velocities as a function of
r/R and n (Number of periods) for each shape of bounding
surface. This computation may proceed by first determin-
ing the relations for the two-dimensional flow. The ef-
fect of the radially varying distance between the walls is
to produce an additional increase in the radial velocity
components vr as a result of the narrowing, The tangen-
tial components of the velocities

‘w are not directly

affected by the walls since the distance does not vary in
the tangeiltial direction. They are, however, indirectly ‘
changed, due to the change in radial velocities by the con-
dition of freedom from vortices. If h is the distance
between the walls at radius r alld dh/dr, its rate of
increase with the radius (the inclination of the walls)
the radial increase in the radial velovity Vr at this
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position is*
D..._, ?V,r ‘Vr dh :

. ..-.:- ,,, . .,, .-,. . ,.=.. _- ..*- .-, ,. ,,.,,

~r
(2)

h dr “ “--‘-“-”’”--”-‘“

Th,is velocity change is superposed on the velocity field
of”,the’two-dimensional f,low in which generally ‘there is
also a velocity drop ?lvrn/3r.. These changes in vblocity

due to ,the inclination of-the bounding walls may also be
brought out by the introduction of sources and sinks in
the flow while maintaining the flow two-dimensional. The
strength of the required additional sources and sinks ,per
unit yolu@e is

avrl ‘r dh
E=—

d log h=-— —= _Vr
ar h dr dr

‘(3)

The significance of, these sources and, sinks can aiso
be made clear by the following consideration: The two-di-
mensional flow does not sati,sfy the boundary condition at
the walls. The fluid would pass through the bounding walls
(fig. 4) with a velocity component normal to the wall vn =

dh
Vr sin 6 = -vr ._— Cos 6. Through a surface element d~ of

dr
the bounding wall therefore a quantity Q=vndF=~

-Vr ~ dF COS 6 passes through, where dF cps 8 is the pro-

jection of the surface element in the direction of the axis.
If we now apply to this surface element uuiformly distrib-
uted sources of the total strength lI=Q, the normal com-
ponent Vn is exactly balanced. There arises only the dif-

ficulty that the effect of the sources and sinks is not uni-
formly distributed over the height h if the strength of
tho sources, or Vr . in a region which is not large com-
pared to h, varies appreciably. These sources may not
therefore be concentrated at the bounding walls but mustbe
uniformly distributed over the height h. There is then
obtained per unit volume the source strength given by equai
tion (3). .

*We assume here that the distance between the walls is
t small compared with their radius of curvature and that. the

inclination of the walls is small so that the flow between
them may be considered constant”on every l’ine”parallel to ““
the axis. If this condition is not sufficiently satisfied
(for,example, in the neighborhood of the axial inlet (fig.
l)), then the flow may be broken up into layers by the
method of Pr6sil and each of the layers separately treated,

I .
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Since tile initial disturbance lying on a circle r.
(vortex) of definite frequency gives at every other radius
a periodic disturbance velocity Vr of the same period

the sources and sinks required for the balancing of the
nonparallel wall will %e distributed according to the same
period. The added sources and sinks will change the ve-
locity distribution, but since they are distributed accord-
ing to the same period as the initial disturbance, only the
amplitude of the disturbailce velocities, but not their
position and period, will be changed, as already remarked.

By the above considerations we are in a position to
compute the flow for an arbitrary shape of the bounding
walls. Computation of.practical examples gives.,however,
the happy result that the shape of the bounding walls in
almost all practical cases that arise shows up only the
first term of the I?ourier series, that is, in the mean ra-
dial discharge velocity, whereas, on the higher terms~ it
has only a negligible effect. Since, however, the mean
radial discharge velocity may be obtained in a quite ele-
mentary manner from. the area of discharge 2 rnh, the
Fourier representation of the source distribution becomes
superfluous for practical computation. we must, neverthe-
less, carry out this relatively cumbersome computation in
order to show that in the majority of cases it is unneces-
sary.

11. THE FIELD FUNCTIOITS FOR THE TWO-DIMENSIONAL FLOW

Following the m.cthod outlined in the above section,
we consider the blades to be replaced by vortices and com-
pute the velocities induced by these vortices, the vor-
tices dr being periodically distributed according to
equation (1) on a circle of radius R at the points of
intersection with the blades. We must now compute the
velocity field due to such a harmonic vortex distribution.

Let the vortices lie on the circle of radius R,
their maximum intensity be V, the period of distribu-
tion 2 m/m, and’ the maximum values be displaced from the
zero position by (X + 2n/m) (fig. 5). The circulation
distribution over the circumference is accordingly

v= N cos m(cp - X) (4)

where m~l is an integer. At an arbitrary point (r,m),

I
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a tangential velocity Vm and a radial velocity Vr.,. are

produced,’”tlie ‘tie’loclti-e’s“haviggthe same period-as the
vortex distribution. At th”e circle of radius R the tan-
gential components must show a discontinuity, correspond-
ing .to the vortex distribution, of magnitude

A v@ = p cos m(cp - X)

The radial component Vr, from considerations of continuity
can only vary continuously. At infinity and at the origin
both VQ and Vr must tend to zero. Yrom these boundary

conditions and the requirement of a flow free from rotation
and sources, there are obtained the velocity components

.

.~~ ()
-m-l

“ 2 R
cos m(q-X) (r > R)

)

()
-1

wrm
‘w =

cos m(cp - x) (r <R)
‘:: 1

(5)

.

and

()
-m- 1

‘r = -E r
ii sin m(p - X) (r> R)

2

()

m- 1

}

(6)
r

‘r=-k sin m(m - X) (r< R)
2%

Having determined the velocity field of a harmonic
vortex distribution, we may now give the velocity field
due to the discontinuous distribution (l):

The part independent of the angle is effective only in the
external region. For the radial velocity, there is further
obtained

— .. . ..
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~r -An-l
A vr(r,cp) = - ~—

()
*R~r sin~n(cp - e) (r> R)

21-rR~R A=l s

We shall denote the inner blade radius 3Y ri

‘a (fig. 3).

and the

outer by The velocities @reduced by the

totality of vortices on the circles between the roots and
tips of the blades are then given by the relations*

‘a
n

f

ar-—
21-r a~.

r

r

r ‘r = -;j%w-’ns-’- ‘) d R
. 1-&R2xYn‘in’n(Q-’) ‘R ‘8)

r

*In the later computations the velocities always occur mul-
tiplied by r.
The series in equations, (7) and (8) may be summed. I?.

Staufer (Wasserkraft u. ~e,sserwirtsch. 31 (1936) p. 212)
has also replaced the blades by vortex distributions and
worked with the finite expressions. This representation
permits, however, of no generalization to wheels with non-
-parallel bounding walls.
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III. THE COMPUTATION? OF IMPELLERS WITH PARALLEL BOUNDIITG WALLS
% .,, ,. . . . . .- .,

WITH TH3! AID OF

The com]?utation
vortex distribution
spending blade shape

procedure is now the following. The
~r/?)R is prescribed and the corre-
is to redetermined. There is first

c~mputed from the ~revious simple theory the blade shape
which would correspond to a complete discharge of the water
or air through the blades, that is, to an infinite number
of blades. The blades then affect only the tangential ve-
locities

r

(this is the first term of equation (7)), i.e., we have

where r is the circulation of each blade and nr there-
fore that about all of the n blades. We assume that there
are no guide vanes, so that the fluid enters without rota-
tion. In the case of an inflow with rotation of circula-
tion rD the component VCO would become larger by

rD/2~r. Let the mean radial velocity unaffected by the

blades be Crm, then the relative path is determined by

-JL-17(r)-Wr
tan 8 = 2mr (9)t

crm

(fig. 3) where

d
d denotes the angle of the relative flow

path with the radius (for backward curved blades .* is
always negative (fig. 3)) : w is the angular velocity of
the impeller. Since it is convenient to compute with non-
dimensional magnitudes, we introduce

r*(r) = r’(r) ‘r ‘wv*=_ V* .
2mrawra’ r w ra$ P w ra
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Equation (9) then becomes

.

.5!

()r~lr* -
<

tan $ = (9a)

from which the mean flow path may readily he computed and
found to be

rdcp
tan T9=—

dr

so that r

I’or an infinite number of blades the mean flow path and
blade shape agree so that the function e(r) (fig. 3),
which gives the blade shape, is also determined.

With the aid of equations (’7) and (8) it is now pos-
sible to compute the additioll?l velocities for a finite
number of blad~s. Since, in the cases that practically
arise tern by term, integration ,is possible, we compute by
the modified formulas

AT* =
P ;1)%)-cc’s‘n(w-‘) ‘ qn~*(r)+n Z

‘a

‘i !

.-
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,> ... ..-. T . . . . . .

-Lv*. =
‘a

r. ~ri21’fg(:)-An’’ri.-~(@-’ad””-”-~

-“:l;’() ~ !.(8a)
‘a,. ~p = +An

sinhn(cp - e) dR
GR

r

and

r
&v* V* - nr *(r)
racpadd=~~

.

r— V* V*
radd =&r

‘a ‘a

Assuming that ar*/ar for ri and ra, that is, blade

root and tip, tends toward zero, the convergence is
assured and rapid. On the proper choice of ~lY/~r, we
shall have something. to say later.

After v: add and v; add have been computed, the

new blade shape is determined
r

f31(r)- 61(ri) =

f

tan $A dr
r

‘i

with

,-.,.

.

(10)

This deviates from the old shape, particularly at the root
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and tip. The velocity field is therefore computed anew
by assuming the concentrated vortices on the new blade
shape , i.e., in equations (7a) and (,8a) replacing 0 by
61° This method is continued until 6X1 ,agrees with

6n-l” Practically 63 will already deviate little from
62.

With regard to the numerical evaluation, it is to be
noted that, on account of the high exponents An, the in-
tegrands occurring in (7) or (8) have appreciable values
only about the point considered (r,~), so that in the
greatest portion of the blade region only few Fourier terms
will be required. Only at the blade tips where the vortex
distribution drops very rapidly is it necessary to take a
relatively large number of terms of the series (7) and (8)
in order to obtain accurate values of the additional veloc-
ities at the blade root and tip. This difficulty maybe
evaded in the following manner: The integrals are evalu-
ated, for example, if we consider the blade tip only, up
to a value ‘1 < ‘a where rl is so chosen that the

blade between ‘1 and ‘a is as nearly as -possible re-

placeable by a straight line. For the vortex distribution
between ‘1 and ray there is determined the center of

gravity, which we assume is at 5“ The tips of all blades b
except the one under consideration arc now replaced by a
single vortex and the effect of the remaining blades is
thus computed. At the blade itself the circulation distri-
bution is replaced by the function cd? as may cer-
tainly be dono with good approximation and thus the addi-
tional velocities are computed. The constant c must be
so determined that a good continuity is obtained with the
circulation distribution in the region r<rl. This pro-
cedure has also been applied to the example considered be-
low for shortening the computation.

I-v. IMPXLLERS WITH NOITPARALLXL BOUNDING WALLS

1. The Impeller Width Decreases According to a Power Law

In part I, 3 it WZLS explained that for the case of
nonparallel walls there are additional sources whose
strength is given by the relation

vr dh
l?J=———

h dr
(3)
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In the above equation Vr is composed of a portion v=*-
. -. correspon-ding to the discharge .flow~ .a por,t%on,,,,.,vra .C0:’-

responding to the vortex flow, and a portion Vr due

to the sources themselves. The determination of=the
sources leads, for known Vr and- Vra 9 to the solution

of an integral equation. Fo~ the case that the width var-
ies by a power law, that is, where the width is given by

h= c ~-g (11)

the computation of the flow may be more simply carried
out. We may avoid “the solution of the integral equation
if we proceed as follows.

We seek to determine a periodic velocity field which
everywhere has sources, that is, whose divergence is dif-
ferent from “zero, and which, in addition, possesses on a
circle of prescribed radius a discontinuity in the tangen-
tial velocity corresponding to a given periodic vortex
distribution. By superposition then may be determined the
velocity field which has vortex distribution of different
periods on many circles, as corresponds to the circulation
distribution of the impeller under consideration,

Let the unknown radial and tangential velocities have
the period m and amplitudes ‘r. and ‘coo

‘r =V sin mv =V
‘w Q. Cos ‘o

(12)
ro

(See equations (5) and (6).) For th~ field divergence
which is then also a periodic function, there is obtained

div x = Em sin mm=
[

~(vpocos mc$*~(rVro “sin mm)+= 1 (13)

Carrying out the differentiation and dividing by sin mcp
we obtain for the amplitude of the source

Em’= ~
[
Q (r Vro) - m Vmo

r br 1
Since the required flow is free from vortices, except on
the single circle of radius R that has a prescribed vor-
tex distribution, we have for r<R and r>R’
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or
a VCD~

Vqlo + r ar -mvro= o (15)

From equations (14) and (15) there is obtained 3Y elimina-
tion of the tangential velocity and its derivatives

2Em+r~= (l-m2)~+3q+ra2vr0 (16)
ar r ar ar2

In order that the sources correspond to the prescribed de-
crease in the width of the impeller, they must satisfy the
condition (see equation (3))

‘r. dh
Em=-——

h dr

For the case where the width h decreases to a negative
power h = C r-g, there is obtained

Em=$ ‘r. (1’7)

We have then from equation (16)*

or after rearrangement

a2~r
r + avr0(3- g)+~[(l-ma)-gl =0 (18)

a r2 ?lr r

*It may be readily seen that every other function h“
makes the solution of the differential equation difficult.
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This differential equation is solvable by an exponential. .. ...
su?)stitution .-.... .._.. . _

,,.,,-.,.

=ar P
‘r.

,,:
where u +nd P are constants still,t.o be determined.
For the constant S, there iS obtained

i.e., there is a solution for the amplitude of the radial
velocity

(vro)i = ai r

-Q-:) +-$ ,i
=~ir (19)

which vanishes for reO, a.niia solution

which is zero for r--+m Both of these solutions must
then be so assembled that the corresponding velocity field
has exactly the prescribed discontinuity in the tangential
velocity field on the circle with radius R. From equation
(14) , there is obtained for the amplitude of the tangential
velocity field

~ Vro

m %. =Vr+r —-rEm
o ar

and, further., making use of equation (17)

a ‘r.

m ‘P. = ‘ro
(1 - g)+r—

Zlr

l?or the difference of the amplitudes of the tangential
velocities on the circle with radius R, we obtain after
substituting the solutions (19) and (20)
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A (aa fla Rpa _ ~i pi R@i)
‘PO ~ ‘vWoi=m

Since at the position of the discontinuity of the tangen-
tial velocity, we have on account of the continuity of
the normal velocity

‘there is obtained

@a-Si ,dq -(’-5}R
v = aR@a= -

‘vC$loi m
aaR

C90a m

The difference v - ‘~~o i
represents the amplitude of

C90 a

the vortex distrilmtion

where n~ = m. There is then obtained the constant

r )

J
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For the velocities in the radial direction, we obtainm... ,, ,.,

n
‘ra =.—2RR

n
Vri=-=

,,

1

1

r+~2
4n2A2

@

r

‘:’uR

and for the tangential direction

sin

(22)

for anof (7) and (8),There was thus obtained, in place
impeller width decreasing according to a power law, for a
finite number of blades

‘a
n .ar

J
-z, a

“r
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and the additional radial velocity

r

r ar ~ pa+l

r Vr = -~
.

2’TT ~),=z
“..
‘i l%-(;) ‘1”’”(”-6) ‘R

.

n
-—

~::’ti(;)’=+’ ‘in’””- ‘) ‘:25)

2TT,

These relations (24) and (25) for hyperbolically decreasing
impeller width are employed in place of (7) and (8). Other-

wise, the computation proceeds in the same manner. The
mean radial velocity Crm for decreasing width is naturally

different from that for a constant width. ‘

It is to be noted that

‘%= -t -:)-/- 1

@i = :@g)+/~ ]

(26)

and, hence, for large n~

f3a+l=-nl +$- .*., )

1 (27)
~i+l=+n>, +~+...

From this approximation, it follows that the effect of the
decreasing width on the harmonics for impellers of blade
number > 2 is in general very small, so that the variable
width need be taken into account only for mean radial dis-
charge velocities cr = Q/2rnh, but otherwise the compu-

Ju
tation may proceed as though the walls were parallel.
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,. 2. Arbitrary Decrease “in Impeller Width.--. ,,,. . . ..,..,, , ,, ....... —
. . . . . .,,

For an arbitrary decrease in”the” irnp-e”llerwidth h (-r)
there are obtained in place of ,(18) differential equations
that no longer have asimple solutlon’i’ We shall therefore
determine indirectly the sources required for satisfying
the boundary conditions. The so”urce strength E is given
by the equation

vr dh
E=-——=-

h dr

where ‘r ~ corresponds

~ ~ (Vr, , + Vr3)+’ Vr (28)

to the pure discharge velocity:

‘rl = Crm” ‘r2 is induced by the vortex flow and is ob-

tained from equation (8) so that it is a periodic function
in cp and the portion ‘r3 is the radial velocity due to

the sources themselves. To solve equation (28) there is
assumed for the unknown sources a periodic expression of
the form

r
E=~

1
ao(r)+2 ; axn(r) cos ~ncp + bhn(r) sin Ancp1(29)

2Tfr A= 1

with the undetermined coefficients
ah

(r) and bAn(r).

The radial velocity induced by these sources is similarly
a periodic function in cp:

{[

r

n
v =—

2Trr
!

[
so(R)+ ~ ~n(R) (~) - ‘ncos h ncfibXn(R)($~-”n

‘3 . A=l
o 11sin AnCo d R

Substituting the values vrl, ,vra, E, and vr~ in equation

(28),the latter breaks up into an infinite number of equa-
tions corresponding to the number of harmonics and there is
obtained an infinite set of independent integral equations
for the unknown coefficient functions ahn(r) and

bAn
(r).

These integral equations may be solved by iteration. We
shall not, for the reasons given above, go into the solution
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of these integral equations, since it is only very rarely
that it becomes necessary to solve them.

V. COMPUTATION OF AN IMPELLER

In order to illustrate the method of computations of
centrifugal impellers, taking into account the finite num-
ber of blades and constant or decreasing impeller width,
we shall now consider an example. Let it be required to
design a centrifugal impeller (blower) which imparts to a
discharge of 600 m3 per minute a pressure rise of 200 mm

water (air conditioner for mine

Q = 600 m3/min =

‘tot
= 200 mm WS =

..

—
operation), that is~

10 m3/s

}
(31)

200 kg/m2

Let there be available a motor drive with ’720 r.p.m., cor-

2-rTn
responding to an angular velocity u.)=== 75.5 s-l. The

suction velocity may be assumed as cs = 25 m/s. If the

diameter of the impeller at the inlet is made equal to the
diameter of the suction pipe, there is obtained from
2

‘i ‘n Cs = Q for the inlet radius ri = 0.36 m. If it is
assumed in addition that the suction and inlet velocity are
approximately the same (crmi = cs = 25 m/s) there is ob-

tained for the width of the impeller at the inlet from the
relation Crmi X 2 ri n hi = Q the value hi = O.lg m.

The outer diameter of the impeller is chosen as 2 ra =

1.4 m, that is , ab~ut equal to twice the value of the in-
ner diameter. Tor constant impeller width the mean radial
exit velocity then becomes

Cr = 12.84 In//s(c:: = Cr /(ura = 0.243).m :.1 maCa ~.

The dcsireil ~.l~.~i-ec,scin pressure determines the required
total circulation*

*In relation (32) we have assumed that the efficiency q=].
so that friction losses are not taken into account. If an
efficiency of 75 percent is assumed, the impeller would de-
liver a ~ressure head of 150 mm of vatcr.
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. ,.. ,.., ,.,.

( 1 kg sec2 .
P*=- 4 )

. ~rom 4 p = 200 kg/m2, there follows
111

for the nondimensional total

nr
nI’*=

2n’raw ra

circulatiori

Ap=Z = 0.5?2 (33)

With these values, there is obtained from (9) for the case
of an infinite number of blades, for
the inlet

- u)r~ - Wri
tan di = — =

crmi Q

2 ri TT hi

the blade tangent at

= -1.1 (34)

that is, the angle $i = - 47.5°, and, from (9) and (9a),

for the blade tangent at the exit for constant wheel width

nI’ -
w ra

tan ~a =
2nra n17*-1

= * = - 1.8 (35)
c-
-ma. Crma

i.e.,
3 = -60.5°
a

The absolute inlet velocity Cri amounts t’o 25 m/s (see

above) and the relative velocity

Cri Vri
=“

‘rf?li “ = 37 m/s
COS $i” COS *i

The relative exit velocity is obtained as

% cri
‘rela = = 26m/s ‘ ~~

Cos a.a

and the absolute*

*It should be noted that for backward curved blades $ is
negative.

,-— .
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Cexit ‘~r~+ 2 ‘rel W ‘a ““$.
(38)

~r*

Cexit ./(*)’ + .:a”= 33 .,s
a

(39)

We shall design the wheel with 10 blades. In order
to deternine the blade shape, we must first prescribe the
variation of the circulation along each blade. Since we
are considering impact-free entry, the circulation at the
root aild tip of the blade must drop to zero. Along the
length of the blade the circulation may be assgned at will.
Having assigned the circulation along the blade, we deter-
mine the pressure variation, which is of decided importance -
for the behavior of the boundary layer and its separation.
Since, at the present time, however, these questions are
not ;“ct sufficiently cleared up, we shall be satisfied with
an estimate of the “~lade loading on the basis of a compari-
son with airfoils- In order to obtain approximately uni-
form loacling of the blades, we have assumed the distribution
n ~ 17*/~r, shown in figure 6. The distribution of the
circulation itself is then given in figure 7. With the aid
of equation (9a) and the one obtained from it there were
th~n drawn the relative flow paths for the case of an in-
finite number of blades (fig. 8). For an assumption of 10
blades, there would thus be obtained as a rough approxima-
tion (computed as though for an infinite number of blades)
the blade passage shown in figure 8. The circulation
about each blade amounts to 0.05’72 x 2 n ra x wra. If

the lift coefficient of the blade is estimated on the basis
of airfoil investigations, we have

,2X-’ ‘a w ra
Ca=—= 4Tr—— r*=4n ~~ 0.0572 (40)

v-t tv tv

It is not clear which value for V must be substituted
since the formula is itself ay-plicable only to a wing in
parallel flow. if we assume as a basis the mean value
between t“hc relative inlet and outlet velocity, we obtain
Ca = 1.57. If, however, the value at the flow-off edge
is considered as the determining velocity, there is ob-

*This equation can be written down immediately or obtained
from (38) with the aid of (35).
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tained ca u 1.9, The ‘a value is rather high but the.>. .,,.
cho”so-fi’””~i%etisionsof the’-wheel still. may..be c.onsid,er?,das
siiitable.

....-.

!Che radial and tangential additional velocities that
must be taken into account for a finite number of blades
were determined with the aid of equations (7a) and (8a) and
then from equation (10) the new improved blade shape SI
was computed (fig. 9). Since the shape Sl deviated con-
siderably from the shape So, there was determined a still
further improvement S2” (fig. 9). Thi,s shape lies so
close to S that a further continuation of the iteration
was dispens$d with.

The pressure distribution at the blade, a factor of
,

importance for the efficiency of the inpellcr insofar as
the nonaccounted-for effects of the boundary layer nay be
judged from it, can be determined with the aid of the
Bernoulli equation extended to rotational flows

2
p+: = Coilst + $ ~,’rz

‘rel (41)

The constailt is
‘tOti

.g c: + po, if we denote the

static “pressure at the entry to the wheel by PO* The

relative velocities at the pressure and suction sides of
the blade, which is assumed as very thin, differ at the
corresponding points by the amount of the vortex distri-
bution there, al’’/as (where s, the arc length of the .
blade, is measured from the inlet edge). Denoting the
mean value of the relative velocities at the pressure and
suction sides by ‘relm ‘ we obtain from equation (41)

for the pressure at the suction side Ps&

(42)

and for that at the pressure side ‘dr.“, .,,
2

=P22
(

I ar

‘dr - ~’toti
~wr-~ ‘relm )

(43)
-Zz

Figure. 10 shows the pressure distribution at the impeller.
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Since, in general, impellers are designed with de-
creasing width in order to obtain as constant a mean ra-
dial velocity as possi%le, we shall also compute the ex-
ample for the same discharge quantity and pressure rise
for an impeller with decreasing width.

Let the width decrease linearly with the radius from
inlet to exit, so that the exit width ha = 0.11 m (fig.
11). l?rom the continuity relation

Vr 2 m raha ‘= Vr 2 n rihi
a i

there is then obtained for the mean radial exit velocity

‘ra = 0.84 x 25 = 21 m/s

Tirst we compute the flow paths for the case of infinite
number of blades. The computation proceeds exactly as for
parallel bounding walls except that the change in the mean
radial discharge velocity as a result of the decreasing
width must be taken into account. We obtain the mean flow
path indicated in figure 12 by S3. We now take account

of the finite number of blades by computing the harmonic
additional velocities from equations (7a) and (8a) where
l,remay leave the decreasing impeller width out of account.
By carrying along two terms of the series, wc obtain the
blade shape Sa . To judge the suitability of the blade
shape , we detar~ine the load coefficient from equation (40).
We obtain the value 2.1 if we employ the exit velocity
as a basis for the approximation. The value has thus not
dropped in spite of the increase in the mean discharge
velocity. This is due on the one haild to the smaller back
flow of tho blades and on the other hand to the shortening
of the chords.

In order to find the effect of the decreasing impeller
width on the harmonic additional velocities according to
the discussion of section Iv, we computed the additional
velocities for the case of equal total decrease of width
but with the latter varying hyperbolically (h= Cr-g=
0.085 r-o” 74). The difference of the correction values
for ‘r and

‘w
in the harmonics was very small, as com-

pared with the linearly decreasing width,where no account
was taken of the decreasing width in computing the harmon-
ics. Thus there was obtained for the integral value of the
first harmonic in the formula for the circumferential ve-
locity (equation (24) made nondimensional corresponding to

,1 .-..-.. --——
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(7’s)) the value 0.0332 compared to 0.0337, the value that
>. waso.btained. wi.thou$ taking, account of the decreasing width

for, the harmonic addit~on,al vel’o’cities.” Since the fourth
decimal. is not quite certain, the value is practically the.
same. Similar relations were obtained for the radial ve-
locities. Siilce t’he effect of the decreasing impeller
width must be large for a small number of blades, we also
treated the problem for a wheel with 5 blades and one with
2. In the table below are given the integral values of the
first harmonics of the circumferential velocity.

“No. of
blades

10

5

2

First cosine cori”ection Tirst sine correction

Decreasing Constant Decreasing Constant
width width width width

0.0332 I 0,033’7
I

.1009 ‘ .1004 I
0.053 0.050

.119
I

.110

.306 i .286 I .164 I ● 145
I

.,

It may be seen that only for an impeller with 2
blades does afiy difference occur that is greater than the
computational accuracy., It may therefore be said that it
is not necessary in the case of impellers the number “of
whose blades is considerably larger than =~ to take account
of the variable width in the computation of the harmonic
additional velocities. This may also have been expected
from a consideration of equations (26) and (2’7).

VI. SUMMARY

For centrifugal impellers with constant aild with de-
creasing width, a procedure was developed which makes pos-
sible the computation of the unknown blade shaye for a
prescribed circulation distribution over the circumference.
It was found that the decrease in the impeller width es-
sentially affects only the mean radial discharge velocity.
The procedure fills the gap between the two often consid-
ered limiting cases, namely, that in which the impeller
is computed as though for an infinite number of blades

II ——. —
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(Ih_ilerequatioa) and that in which conformal transforma-
tion is applied; a procedure that is convenient only in
the case of a small number of blades. Since as yet oaly
the case of impact-free entry has been treated, only the
theoretically best operating condition can be computed.
As soon as; for example, the discharge quantity varies
the entry angle no longer agrees and every %lade is sub-
ject to the flow at the entry edge. The loss that is
therehy incurred may be estimated with the aid of the
methods of the airfoil theory. This will be discussed in
a succeeding paper.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.
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