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PREFAOE

--- In making avallable in English the present article by

R. Becker on Impact Waves and Detonation, there 1s here pre-

I sented with complete bibllography noi only an excellent orlt-

icel resume’ of previous ‘experimentsl and theoretical inves-
tigations of the Berthelot Explosive Wave but also the most
notable recent contribution that has been made to the subject.
" Among the numerous thermodynamic and kinetic problems
that have arisen in the gpplication of the gaseous exploslve
reaction as a source of power 1n the internal combustlon en-
gine, the problem of the mode or way by which the transforma-
tion proceeds and the rate at which the heat energy is dellv-
ered to the working fluld became very early in the englne's
development a problem of prime importance. It was Nernst who
firet made it clear 1n sn address entitled "Physico-Chemlcal
Considerations Concernlng the Process of Coﬁbustion in Gas .

l Engines," glven before the General Conference of German Engl-

neers held at Magdeburg in 1905, that the thermodynamics of
the gas engine dld not rest, as 1s assumed in the case of the
steam engine, upon the thermodynamics of a gasesous working
fluid of constant composition; but that A thermodynamic refer-
ence cycle of maximum work epplicable to internal combustion
eﬁéineé mist be referred to the theriiodynamic cycle of the
chemical transformation taking place within the cylinder, viz.,
A=RT1nK.
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At the ssme time he also polnted out that the rapid energy re-

-1éase within the oyiinder raised other important problems be-

sides that of the thermodynamics of the chemical reaction.
These questlions had to do with the hydrodynamics of the fluid,
the profound effect of impaot waves and thelr propagation
through the burned and unburned gases. He showed how many of
the phenomena connected with the combustion of the explosive
gases observed by Berthelot, Dixon, and others found adequate

explanation in hydrod}namio laws of fluids. This ilmportant

. phase of explosion phenomens was made the subject of extended

;nvestigation by Jouguet and Crussard with results that have
been very generally accepted. The work of Becker here given
is a notable extenslon of these earlier investigations, be-
cause 1t covers the entire range of the exploslve resction in

gases — normal detonatlion and normal burning.

The successful practical working of the gas engine depends

upon an explosive range usually designated as normal burning.
The National Advisory Commlittee for Aeronautics has supported
investigations into this phase of the reaoction and would hers

'call attention to some of the results of this work that seem

to supplement in some measure the analysls left incomplete in

- the work of Becker. Reports of this work on the kinetics of

the gaseous explosive reactlon at constant pressure may be
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found in the Oommittee's_Technical Reports* Nos. 176, 380 and
“sos. | o

Of particular interest in this connection as indicating
a relatlion between the two known modes of explosive transfor-
mation - normal detonation and normal burning - 1s the experi-
mental work of Wendlandt, "Experimental Investigations of the
Limits of Detonation in Mixtures of Explosive Gases," Z. f.
physik. chem. 110, 637 (1924). Also, bearing directly on the
subject of combustion may be mentioned "Velocity of Reaction.
and Thermodynamics," by M. E. Jouguet, Ann. de Physique 5, 5,
(1926). Also, "Thermel Equilibrium from the Standpoint of
Chemical Kinetlce and Photochemistry," Dby Wernér Kuhn, J. de
Ohim. physique 33, 369 (1926).

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS.

* A Constant Pressure Bomb," by F. W. Stevens. N.A.C.A. Tech-
nical Report No. 176. (1923) .

"The Gaseous Explosive Reaction - The Effect of Inert Gas,"
by F. W. Stevens. N.A.C.A. Technical Report No. 280. (1937)

"The Gaseous Exploslve Reaction -~ A Study of the Kinetlcs of
Composite Fuels," by F. W. Stevens. N.A.C.A. Technlcal
‘. Report No. 305. (1939)
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TECHNICAL EEKORANDUM NO. 5065.

- IMPACT WAVES - AND DETONATION.*
By R. Becker.

PART I.

Introduction

As Riemann (Uber die Fortpflanzung ebener Luftwellen von
endlicher Schwingungsweite, Gott. Ges. d. Wiss. 8 (1860), und
Rlemann's ges. Werke, 3 Aufl. §. 156. Vergl. auch Riemann-
Weber, Partlelle differentlalgleichungen, 5 Aufl. Bd. II,

8. 507) was carrying out the integration of partial differen-
tial equations for a one-dimensional flow of an idesl gas, he
made the discovery that a state of flow marked by constant
distribution of denslity and veloclty could pasé over to a state
of flow in which certain surfaces would form within the gases
at which the constant magnitudes - denslty and velocity — men-
tioned asbove would vary witﬁin finite limits. A discussion
concerning the further course of these disturbances cen only
follow after the differential egquations have been affected by
such conditions as will satisfy the equations of state for
.the gas on both sides of the unstable surface? These condi-
tions -lead to the statement %hat the 1aws"6f the conservation
of mass and of energy as well as the impact lew must not be

violated by the passage of.the gas through the unstable surface.
*From Zeltschrift flr Phyeik, Volume 8, p.331 et seq. (1933).

* Sucloce of &\St-an-\-'-.nu.:'hj,
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Riemann in hls trectment of the subject made the error of con-
sidering the energy equation unnecessary and introduced in 1ts
stead the ussumption that the chunges of state suffered by the
gases in passing the unstable surfoce was adlabatic. In con-
sequence, as Lord Rayleigh (Theory of Sound, vol. II, p. 41)
has pointed out, his equations do not satisfy the energy laws.
Leter, Hugoniot (Journ. de l'ecole polytech., Paris, 57, 58,
(1887), (1889) ) without knowledge of the work of Riemann,
gave an extended mgthematlicel anelysis of one-dlmensionel alr
movement in which the relatlonship with the energy laws was
clearly brought out. His treatment of the nnsighlgnguzinnné
(which hereafter will be designated "impact weves! or concen-
tration impulse) revenled the fact that by taking into account
the energy laws the changes of state suffered by the gases in
passing the surfaces of instobility did not follow the law of
(static) adiabatics but another law which he called "dynamic
adiabatics® ond which will be referred to in what follows as
the "Hugoniot=equation.®

Loter en extended treatment of the mathematicel side of
our problem will be given, following the work of Hadamerd
(Propagation des ondes. Paris, (1903) and of Zemplen (Unste-
tege Bewegungen 1n Flussigkeiten, (Enzykl. 4. math. W}ssen.

-Bd. IV, -3-Teil, 1 Halfte). In the mathematical nomenclature

we shall refer to s surface whose two sides differ in density

and veloclity by finite smounts, ae unsteble surfaces of the
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"first order." Unstable surfeces of the second, third, eto.,
orders are those whose flrst, second, etc. derivatives of those
magnitudes are instable in reference to space and time. Our
impulse wave 1s therefore an instabllity of the first order.

An importaent deductlion of the theory is the consequence
that concentration waves of finite over-pressure spontaneously
pass into steep compression impulses (sound waves) whose rate
of propagation i1a the normal rate of sound propagation in the
gases only for the limiting case of infinitelf small .compres-
s8lon; but wlth increasing intensity the veloclty of propsga-
tion may increase indefinitely. The fact that sound wgves
mey travel wlth veloclity greater than the ordinary speed of
sound, was firet demonstrated by Mach (Wiener Ber.-zg (1875)

75 (1877) 77 (1878), and his co-workers. He produced the sound
waves studled elther by an electrical spark or by a fulminate.
Martin (Z. f. d. ges. Schiess. u. Sprengstoffwesen, 13, 39
(1917) ) likewlse worked with a number of explosives for the
production of the sound waves studied by him. Eﬁﬁﬁgﬁ&;g&g} in
establishing a quantitative felafion between the brisanz of

the explosive and the veloclty of propegation of its sound wave.
Further, we have Wolff (Ann. d. Phys. 69, 329 (1899) ) to thank

for extensive measurements of souynd waves generated by heavy

e .- . 4 v
explosions. All of these measurements have to do with the case
of the free, spatlal propegation pf sound waves whose theoret-

lcal treatment has so far been unsuccessful. With the view of
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testing out the theory of one~dimensionsl movement 1in gases,
Vielle (Memorial ‘des poudres et salpetres, 10, 177, (1898-1900))
cerried out a great number cf experiments. He prevented the
spatial expansion of the sound wgves by producing the sound
within a steel tube. By thlis means he was able to observe the

" 1ncreasing "steepness® of the wave front and tc inorease 1ts
veloclty of propagation threefold above the normal veloclty of
sound.

Technical practice has presented us wlth two groups of
phenomena whose relatlonship to the theory of compressional im-
_pulses has only become known and made clear after long and
arduous experimental effort. The flrst group is concerned with
the flow of gases and vapors from openings of different forms
and 1s of speclal importance for the construction of steam
turbines. Extended analyses of these processes and the prob-
lems they present will be found by Stodola (Die Dampfturbinen,
Berlin, 1905), Prandtl (Handworterbuch d. Naturwissenschaften,
Bd. 4, Jene, 1913), 8chroter and Prandtl (Enzykl. 4. math.
Wissen. Bd. V, Teil 1 Heft 2). .

The second group of phenomenahcopnected with the theory

of compressional impulses arises from the repid chemlocal-trans-

_format}oqs of explosive'material. That the effeot of such an
explosive transformation on the surrounding alr is to produce
a. disturbance of the nature of a sound wave, has already bseen

referred to. But the spatial propagation of the area of explc-
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give transformation within the explosive gases (the detonatien
---wave)-1s in itself only a speclal case ;f a compressional 1lm-
pulse.

The "detonatlon wave® wgs first nbserved and measured by
Berthelot (Sur la force des matieres explosives, Paris, (1883)
C.R. 93, 18, (1881) ). Its close relationship with Riemann's
theory of compresslonal lmpact was recognlzed by Schuster
(Philos. Trans. London (1893) p. 153); while Chapmen (Phil.
Mag. 47, 90 (1899) ) was the first to deduce frem the princi-
ples enumerated by Rlemann the complete fundamental equations
leading to the determination of the rate of propagation of the
"detonation wave." An extended analysls and dlscusslen of
these equations accompanled by numeriocal experimentel values
was later carried cut by Jouguet (Jour. 4. Math. I, 347 (1905)
3, 5, (1906) ) and by Crussard (Bull. de la soc. d 1'ind. min-
erale, Saint-Etienne, 6, 109 (1907) ). Their results shcwed
satlsfactory and far-reaching agreement between the experi-
mental values obtained by Dixon (Phil. Trans. London (1893)
and (1903) ) and the values caloulated by them. An investiga-
tion carried out by Taffenel and Dautrische (C.R. 155, 1331
(1912) ) in which they sought to demonstrate the theory of com—
p;gssiopal impulses numerically aerapplied to so0lid explosives,
caﬁe to érief through-their'efioi-in usiné'én approximated form
of van der Wasl's equation of state as an expression represent-

ing the real condltlon of gases at any concentration. In a
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short communication (Becker, Z. f. Elektrochem, 33, 40 (1917),
%. f. Phyelk 4, 393 (1981) I brought together a few consider—
ations which in the simplest way and without any assumptions
concerning the state of the reacting components led directly

to the equations for detonation. I was able to show by the use
of an equatlon of state based on the experimeﬁta; values ob-
tained by Amagat (Becker, l.c) +that these equatione led to
reasonable values for the rate of propagatlion of the detaonatlion
wave even in the case of solld explosives.

The theory of compressional impulses therefore seems to
resti upon a well established mathematical basls which 1s fur-
ther supported by extensive experimental results. But in splte
of this, from a purely physical stgndpoint, its present form 1is
unsamisfactory. The initial given conditions required for an
expression of state (density, pressure, velocity) existing on
both sldes of the surface of 1§:€;ti{i¥ are indeed suffiolent
for a thorough macroscoplc description of the phenomena; never—
theless they glve us no insight into the actual processes in-
volved ln the transformation. It is for instance not made clear
why in a detonation wave the compression no longer remalns
adiabatic but follows the Hugonlot equation instead. In order
to arrive at a purelyJEhysioal theory some 1nsight is required
of the mhcroscoplo structure of the wave front. In what fol—
lows I shall show in Section 1 by simple means and by figures,

in Sectlon 2 by mathematical treatment of the same processeé
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how the surfaces of instabllilty originate-if it is assumed

_that the fiuld 1s free from friction and heat conduction. -

When, however, it is recognized and taken into account (Sec-
tion 3) that no substance exists free from friction and heat
conduction 1t must follow that a sharply defined surface of
instabllity cannot arige. The impact wave must have a finite
thickness. This statement was first made by Prandtl (2, f. d.
ges. Turblnenwesen 3, 341, (1906) ). If the differentinl equea~
tions for one--dimensional movement are affected with terms ex-
pressing the effect of frioction and heat conduction (Section 4),
there ls obtalned by integration without particular difflculty
noet only the Rliemann-Hugonliot equations for the macroscoplc

the equations
characteristics of impulse waves (Section 5), but/alsoc lend
some insight into their microscopic structure (Section 6).
The computation of the thickness of impulse waves will be 1l1-
lustrated by numerical examples.

A knowledge of the processes taking place within the wave
'front is alsq a necessary preliminary to a real knowledge of
the detonation wave; by carrying out the consequences of the
theory of instability one is led by compelling and unmistak-
able ways to values of deténation veloocity (Section 8 - See
N.A.C.A. Technical Memorandum No. 506, which is a continuation
of this report), and detonation pressure (Section 8 - T.M. 506);
yet 1t remains entirely unexplained how the initial components

agailnst the wave front are brought to a condition of activation.
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By application of the knowledge won concerning compressional

impulses an understanding of this process is somewhat assisted

although much yet remains to be satisfactorily explained {Sec-
tion 10 — T.M. No. 508). '

A. The Formation of Compression Impulses

1l A simple'method of treatment.- 1In order to represent
in g simple way how compression impulses may be formed, imagine
the device represented in Figure 1 -~ a long tube closed at the
left by a plston a, and filled with air. A small velcoclty
dw, 18 imparted to the plston. This movement produces in the
gases a Weak compressinn wave that travels from left %o right
wlth the veloclty of sound c¢ = Jr§-ﬁ5; At a glven instant
(Fig. 1, b), the gas to the right of the wave front remsins
unchanged and at rest, whlle the alr between the wave front
and the plston 1is adiabatically compressed by an amount 4P,
and has the velocity dw. The velocity of the piston is now
increased by the smount- dw whereby & second compression wave
is produced in thé gas and is propagated along the tube bshind
the first (Fig. 1, c). By repeating this process the velboity
of the piston is finally brought to the velocity w. There is
thus produced within the mass of gas in the tube a terrassed
form of iave whose p;Iticles to0 the left move with the velocity
W. Whém 1s the further history and fate of this wave? In the
filrst place 1% 1s piain fhat the stratum of the terrass to the .
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left has a greater veloclty relative to the tube than the

_strata to the right. Besides, the temperature and hence the

sound veloclty 1s greater in the strata to the left than to
the right. As a consequence the strata draw together and the
wgve front becomes steeper, (Figure l,e and 1,f). It must not
be overlooked what will happen when the steepness of the wave
front becomes infinite ( a condition to be considered. in Sec-
tion 2).

If, on the contrary, the platon is given a velocity to
the left a rarefaction wave will be produced in the tube as
may be easlly realized from analogy to what has been stated.
The rarefectlon wave will, contrary to the compression wave,
become ever flatter and flatter the further 1t advances in the
tube.

In conventional expositions of the subject (for example,
that of Riemann-Webder, voll 3) as also in Section 9'(T.M. No.

506) of this "Arbelt," a consideration of rarefaction waves

'will be excluded because they involve a loss of entropy and

because from the second law of thermodynamics they are impos-
slble of propagation. It will be shown here that from the

standpoint’ of pure mechanics they cannot develop. At the end

of the next paragraph, also in Seotion 9 (T.M. No. 508), 1t

'will be shown that both conditions (the thermodynamic and me-—

chanic) are really identical.
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3. A mathematical treatment of the same processes.- .An—
ticlpating applications to be made later, the differentlal
equations describing the unidimensional gas movement wlll be
so written as to include the effect of friction and heat con-
ductivity. .

t represents the very small thickness of any cross sec-
tion of the tube; x +the spatial coordinate measu;ed along .
the length of the tube; +t +the time; wu the velocity; p the
denslty; p the pressure.®* Then, as is customary, the change
in a characteristlc G of a materlial particle with time may

be written

al
80 <\\ A %}é =E_g_115 (1a)

The mass of the cross section layer ¢ 1s p £ . The momentum

p £ <E + %;-) p,, 1s the effective pressure in the direction of
the axls of the tube and perpendiculer to the surface of the

layer £€; A the heat conductivity; W a frictionm coefficient.

— Ciety 5o7 bret
Then, from elementary laws, ~ et W

e

Fu‘fdpn

= - _ﬁ"_;

>x
S (upt) = %gil! =% 2:;

*All computations to follow refer to a column of cross seotion
unlty.

. 3

Qe ey
Lt 57
. o
'
b
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in which

where [ 1s related to viscoslty, m as 1ndicated by the equa-

tion
b=xn (3)

which follows from the symmetry characteristics of pressure

tensors pjx. The three equations may then be writtan//,,

0. e
Be-RAG-ER) (o)
E-cRARFALD

Introducling the entropy 8, by the relation

14 = & - p 3¢

(3c) may be written .

T as _ (ﬂ.‘? .a_ Q.E), (3ct)

in which the change of entropy with time 1s given as affected
by friotion and heat conductivity. '

But for the present we wi}; nag}pc#rthe_e?fect of frio-
tion and heat conduction. Equation (3c!) will then read simply

8 = const.

*See Weber snd Gans, Report d. Phys. I, 1, p.349.
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That 1s, compression in the waves takes place cdlabetically
and for the cose of non 1dea;_ggs,

p=a? p¥ (4)
where a2 4is o constant and k = %E the retio of specifioc

(4

heats. With reference to equations (1) and (4) end with p =0
and A =0,

A - =

§%+u§%+pg—:-=0_ (58)
U, o, AU dp ap _
%1‘;‘”“%:"'%&‘3#:: 0 (5b)

The integrals u (x,t) and p (x,t) corresponding to the
gimple trectment of the process carried out in Sectlon 1, per-
mit of a much simpler derivation, with the aid of the theory

of characteristics, than that given by Riemann, Hadamard. To
this end consider a linear element (dx,dt) drawn in the plane

x,t (Fig. 2). 1Its direction is indicated by the equation

dx = ¢ dt

Any function whaotever es G (x,t) changes along thils 1ine by
the value dG = ag @ + g%? dt. From the expressions for u
and p in equations (5) we will select as function of G,
u=f (p) where £, primarily an undetermined function of

p, gives f'. Then, e

aAlu+ £ (p)] = g’*‘—;cp+f' %Ecp-l-%+f' g%)dt.
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By additlion and subtractlion of the expression

o T QU 2P
u-g—x-+f' ua—x,

the expresslon within the parentheses becomes
= u ou 4 9P p1 -
d(u+f) [{_%‘E"'uax"'axf (o u)} _
op P ., du'9—-u
+ fl{a__E.+u =+ é—ig—f,—}]dt.

From (5a) and (5b) the right side of the above equation

vanleshes when

£1 (@ -u) =3 %%..and u-p,
l'-p/%%zmd Q=u+/%§---
T e B /B

But this means, in reference to the problem in hand, thatVthe

F-ue /B

u+ S % %% dp = const. {8a)

that is, if
ft

curve

the expression

and along the curve .
ax _ dp’
VAR

u—j% / & dp‘bconst. (8b)

the expression
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The application of ‘this result to the problem as Bimply
discussed in Sectlon 1 i1s self-evident: In the tube of infinit;
'ienéfﬂg-£ﬁe position of the ﬁistonfét t=0 1is x=0 and
1t 1s at rest (Figure 3). Its position in succeeding inter-
vals is indicated by the curve C in the =x,t cooidinate figure,

as 1ts velooity constantly changes between the lnstant t =0

and t = 7, &and from then on it proceeds at a constant wveloo--

ity u,. If we indicate by the index s values referring to
Cc‘eluﬁ-x‘ ’

£,
3 tg® and ug = g tg

the piston, then, for

0 < tg<T ; x4

for tg>T txg=g T tg - % T and ug=g7T = U

Further, throughout the tube, let t =0, then u =20
and P = P and the curves constructed from (6b) fill the en-
tire space between the x—axls and the curve C. ©Since, now,
for t = 0O, u —_/'l %% dp has the same value throughout

P
the entire range,

u.-j%-/%%dp = const.

and besides, since for the curve (6a)

Ll /dp =
u+ /S 5 35 dP = oconst.,

» .. 8o must it also follow that along the (6a) curve u and P re-
maln constant. On the x-axis itself u = O. Therefore, through-
out the entire range the relatlonship between u and p will be
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e -
us=f d p (8)
7 5/ % .
- m e emm o e . - o .
At the piston and hence along the curve €, ug (according

|-

t (7) ) is given; and from (8) pg may also be known. We can
therefore draw through every point xg, tg. the stralght llne

x - xg = (% —ts)[us+('/_§%—>sj {9)

along which u and p have constant values ug and pg.

In the case of the plston motion (7) the portion of the
coordinate figure enclosed by the x—axis and the curve C will
be dlvided into three parts by the two lines drawn accordling to
(9) from the points O and T. For the lower portion u = O.
The middle portion wu varles between u =0 and u=1y. In
the upper portion u 1s finally constant = u,.

In gaseous media according to (4):

k-1

— 35 k-1
JB=o/Fe" wme v} [Rap-BrFed

If the veloolty.of sound at initlal conditions be given as

k-1
oo = o k poT

Then according to (8) ' ~

- 8 dp
v =g (/@@ - %)
' -
or lfﬁ_l_ l!a—% ) (10)
0 = L\ = u_ k-1
. ("’;) (pox Tteo—3
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Finelly the slope of the curves (6a) and (6b) is given by

u + /dp..=00+uk—;—l

u- / %% = —(cq - u-§—§—g)

This solutlon denies that u may possess at the instant

(11)

of orossing of any two curves of the (9) group, two different
values. The interseotion of two curves of the (9) group is
the complete analytical counterpart of the conditlions referred
to in Seotion 1, where one wave overtakes &nother. Positlon X
and time T of this colncldence are glven by the values of x
and t calculated from (9) together with the equatiom ob-
talned by differentianting with respect to +tg:

- g tg = tan E—EQL - tg g (k+ 1) ~ co,

where, by the help of (11) and (7) the magnitudes xg, ug, (ggg
are expressed as functions of tg. In this way there is ob~
talned

X=4kgts® + 00 T.

" The first position of instabllity occurs from the coordi-

" nate point of referemnce, tg =0 ot the instant

c 3 - c 3
To=-fgg' TF T and at the point x°=—§— T¥ T °
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If the pliston in one-half second is moved from rest to a

velocity of 100 m/s and then proceeds at that constant rate,

g:

90-"-‘

L3
i

4
i

so that the time and place of
wlll be
X

T =

For this example the pressure

and the increase in density

LI

Po

300 m/e?
330 mys
1.4

0.5 sec

100 n/s

the first surface of instability

453 m
1.38 seo

increase caloulated from (10)

1.51

1.34

In Flgure 3 the example just glven is represented graph-

ically. The course of the velocity u of the wave along the

axis of the tube x, 1s drawn for the intervals 0.3, 0.6,

1.0, and 1.4 sec. The figure

steepness of the wave form.

plainly shows the increasing

The mechanical produoction of a compression impulse accord-
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ing to the above, depends upon the condition that within an
adlabatic wave train those regions of greater demnsity strive
to become more dense at the esxpense of the less dense reglons.

That is the veloclty expressed by (6a),
&=+ /dp>

must lnorease with inoreasing denslty. If we substitute for

adlab.

u 1its value in (8) we have--the condition

/ dp
p (p /&5\ >0

If we substitute for( f e, 1 we obtain

oI

=3
&/ a0

or, finally, dap\ o
dvaédiab.

It is possible then to meke the followlng generalization:
In any given medium it 1s mechanlcaelly possible to produce only

compression or rarefied impulses accordlng as the value of

(g;;ldﬂisposit%ve or negatlve. Exactly thls same criterion
will be met with (Section @ - T.M. No. 506) in discussing the
thermodynamlo posslbility of producing compressional impulses.
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3. The necessity_of takling into account the effect of

friction and heat conduotivity. The conslderations set forth

in S8eotions 1 and 2 gave a solution of the problem only to the
instant at whioh instabllity in. the gases sppeared. A further
conslderation of the processes is made possible if there be
added to the Riemenn—Hugonlot line of analysis three equatlons
involving the magnitudes u, eaend p on hoth sides of the in-
stable surface. This extension of thé anglysls of the proo-
esses 1s ﬁade necessary 1f we are to secure the reasoning
against any possible violation of the laws of the conservation
of mass and of energy, also the impact law. These equations
are identical with equations (14). They will later on Treceive
extended consideration.

This procedure 1s free from objection - indeed, it seems
the only possible one - in so far as equations (5) are axio-
matically aoccepted as descrlbing what agtually takes place.
But from the sﬁandpoint of physlcs, this objectlon may be made:
Equations (5) hold only so long as frioction and heat conduc-~
tivity may be oconsidered negligible. But since no substances
are known to gxiet free from these charaoterlstics, these equa~-
tions must give results that are in error as soon as the tem-
perature decrease or the rate of change of volume exceeds a
certaln iiﬁit, Tﬁése values according to_ghe above congidera~
tions would appear to be oo significant to be neglected. The
application of equations (5) are not admiséible at this point.
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If we refer for a moment to the simple expositlon of the
process as giéen in Section 1, we wlll Dbe led to expect the
following: When the wave front has reached & certain steepness,
the counter forces of friction and heat conduction oppose the
tendency to further compressien. A conditlon will be reached
where these two tendencles compensate each other and from this
point on a quasi-statlonary wave form will be propagated along
the tube. )

Before seeking in thls sense an integration of the general
equation (3) we shall attempt to show in a wholly qualitative
way how the course of temperature change is influenced by heat
conduction. Let the line ABCD ;epresent the course of tem-
perature change in the neighborhood of a comprgssion wave. (Fig.
4). Assume the increase of pressure to be such that due to
adiabatic compression, the absolute temperature 1s lncreased
threefold; for example, from 300° to 900° absolute. The role
of heat conductivity will be the most significant among the
gas molecules at B and 0 - the positions of greatest change
in the_temperature gradlent. The gases flowlng from D may
gain in temperature about 300° and at B be cooled by a like
amount, At 500° they are affected by adisbatic compressionm
that increases the temperature threefold, that is, to 1500°.
By oonduction they lose at B 300°, thus prooceeding toward A
et a temperature of 1300°. At first slght the paradoxical re-

sult would seem to be that in consequence of heat confiuction
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an initiel temperature difference of 600° has been inoreased

4o 1000°}  But in truth, with the change in temperature dif-

ference there has followed a change in pressure and density
difference which are in themselves a source of wave formation
thrown back from the original wave front toward the plston.=»

In this way the actusl processes in the formation of éqmpres-
slon impulses are seen to be so complicated that at present a )

complete theoretical treatment of their formation seems out of

the question. Only after the limpulse wave hps become quasi-

.statlonary do we agaln find conditions more satisfactory for

theoretlical analysis.
From & conslderation of the above roughly quallitative dls-
cussion it is not to be wondered at if we meet with surprising

temperature differences in impaoct waves of high compression.
B. The S8tationary Compression Impulse -

4. Differential equations.—~ In this paresgraph we shall

investigate the characteristics of cogpressional impulses af-
ter they have assumed fhe form of s quasli-stationary wave.

We shall imagine that the coordinate system of reference moves
synochronously with the ocompression wave. In thls wpy the wave
may'be trented as actunlly stationary. We shall therefore in—
tegrate equations (3) for the case thaet the partinl deriva~

tives vanlsh with the time. Agcordingly, we substltute for

*These waves find their cnalogue in detonation in the "retona-
tion wgves" of Dixon and le Chatelier.
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%f’ u.§§; and write

- . . ap -, - ‘all.'=' Ch e e
u.§% tp AXx 0

au . 3. au
cufs+ 35 (o - “ax) 0
oE . ~gou\ugl ., a T
Pu3x (p ”ax)pg—i*'ax(x%i')

The first equation may be integrated at once and by that the
second. If we substlitute from the solutlion of the first and
second equations pu and p - %% in the third equation; it
may also be integrated. By the aid of the three integration
constants M, J, and F and by the substlitution of the density
p, the reciprocal specifioc volume '%, there is obtailned the
differentlial equations for the stationary compression impulse.

u = Mv (12a)
¥ g; (13b)

M v+p-J

E+av -3 W v -F=g 3 (120)

*: om these equations energy E and temperature T are seen

be given functions of pressure and volume. A second inte-
ation of these equations glves the desired contlnuous trans-
fbr of the megnitudes p, v,, u, 1in front of the oconocentra~
tion impulse, to their magnitudes p,, V5, u; behind it. The
relations that prevall between these slx magnitudes are at
once manifest by observing thet only within the wave front

dv aT
dx

itself do the expressions and r.c3 differ appreoiably
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from O. _For any polnt outside the wave froﬁt we may therefore

-write - - -

dle
]
=

il
<y

u=

— + 0P (13)
uﬂ

¢

If we compare eny two such positions with each other, we must

Y
have N
;;.:..
N u; Y,
N v (142)
Y 2 u,=2
R e RS p= —2-+ D (14b)
s Yl 1 va a3
‘St.
N .
u,2 u.,=2
\ié 'Ey + o+ D, W =E; + 5 +p; Vg (140)

These fundamental equations expressing the macroscoplic char-
acteristics of impulse waves are, as given, independent of
the magnitude of friction WK, and of heat conductivity A.
They are identical with the stipulations made in the 1lntro-
ductory treatment_for the conditions on beth sides of the
layer of instability, and could, in faot, be directly written
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there 1f it 1s also speciflied that for the case of a station-
ary “wave the transport per second of mass, impulse and energy

through any two oross sections of the tube are the same.

5. The macroscoplic characterlstlcs of compressional im-—

pulses.- Before carrying out the integration of equations (13)
we will gather some conception of the slgnlficance of equa-
tions (14). To this end we solve (14a) and (14b) for wu, ond
u; and substitute the values in (l4c). We then have

u?® = w2 Pp =D (15a)
P; - D
3 = 3 % 1
u? = v? Pk (15D)
E; —E, =% (p, + py) (v, - v3) (150)

Equation (15¢) is the Hugoniot equation which in the case of

impact waves - detonation - takes the place of the adiabatic
relation, d8 = O.

For smoll differences ¥z —~ E, end ¥, — ¥y, (150) be-
comes dE - p d v =0, - on expresslion identical with the

" adlgbsatic.
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The veloclty of propagation D, of the impact (detonation)
~-Wgve 1n .a medium at res} and the flow veloolty W s\et up in

the medlum behind the detonatlon'wave are expressed by

p —p a s - 8 2
- > (18)

/ Pg = D
W=1u - us=(vy - va) ?fﬁ:ﬁvi

The impulse (detonation) wave is determined by the initial con-

D

"

o
n

.

dition of the medium (p, and v,) as well as the pressure p,,
within the wave. Further, 1t 1s desired to find the factors
(D, W, T,, eto.).

First, we shall carry out the calculation for a perfect

gas where
PV = RT (17a)

Eg - E, = Oy (15 - Ta), (17b)

where Oy 1s the average specific heat between T, and T,°

absolute. Let b
3 0y :
i ;1 = —rv +1
and 0 g (18)
= -3
b1 D, ) |
Then Tp . _ m™+
L (192)
v P, mit, +1
—L —3 —2 ]
v oy —1_-,_—:- = - . (19b)
hence e+ 1
P = p v, 2 (196)
1 "1 "r:%:‘r_
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3
wepov (-0, (194)

A}

.

" ¥f the dependence of tempersdture on oy be neglected then
_k+ 1
k=TI

‘e

value of m becomes large as compared to ;Q, temperature T

= (for diatomic gases) 6. Henoce, a8 soon hs the

becomes progortional to pressure p. It is therefore necessa~
ry that ¢, be taken as a function of T.#* According to the
results of Pler (2. f. Elektrochem. 15, 536 (1909), also 16,
897 (1910) ) and Siegel (Z. f. physik. Chem. 87, 641, (1914) )
the specific heat of oxygen and nltrogen ocarried out experi-
mentally to 3000° abs. 1is

552" T - 4,78 + 0,45 x 10™° T T

from which we find
¢, = 5.82 + 0.46 x 107" 1T,.

Since the values given in the following table are carried out
for temperatures much above 3000° abs., the results given can
be taken as representing only the order of tﬁe magnitudes to

be expected. With the value given above for {, (19a) becomes
a quadratlic equation for T. Using this calculated value ths
other equations under (19) give the numerical results sought

for the fluid air. |

*Rudenberg, Artill. Monatshefte (1916), p.2337, has carried
through a computation assuming ©y constant.
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Compression Impulse in Air

o

B I : . . T  abs.
w=Pa I MY T2 D L = fr-1) 71 | agia-
P, I, Va absolute| m/s| m/s|P, v, | batic
3| 1.33| 1.83 336 452| 175/ . 1.83 330
5| 1.76 | 3.84 482 698 | 453 11.14 426
10 | 2.58 | 3.88 705 o78| 725 34.9 515
50 | 8.38 | 6.04 | 2360 | 3150| 1795 - 296 794
100 | 14.15 | 7.66 | 3860 | 3030 | 2590 699 . 950
500 | 44.80 [11.15 | 13300 | 6570| 5980| 5560 1433
1000 | 70.00 |14.30 | 19200 | 9310| 8560 14300 1710
2000 |106.20 {18.80 | 29000 |13900 [12310| 37600 2070
3000 |134.40 |2%z.30 | 38700 |15750 [15050| 66900 2180

Ooncerning the values gliven in the above table, it should
be stated that sound waves have been produced 1n air having a
rate of propagatlion around 13000 m/s. Thése waves were produced
1n_a1r by detonating substances. By enclosure in a tube the
one-dimensionel movement o} the wave was observed.* A wave of
thls veloclty should, accordling to the above table, heat the air
within it to around 30,0009, that is, to a temperature of the
order attrlbuted to flxed stars. In the last column of the te~
ble there is given the temperature that should result from'adiap
batlo compression slone and corresponding to a given pressure.
These values are seen to be only about 10% of the temperature
of the lmpact wave. The next to the last column in the table
is of interest in estimating the effect of an impact wave as
it strikes an obstacle (Rudenberg, 1 C. p 354). This foroce

*A report of these experiments will shortly eppear in Z. £f.
techn. Physik. 3, 153 (1933), also 3, 349 ¥1932)




N.A.C.A. Technical Memorandum No. 505 38

(totrl impulse 1) is made up of the static pressure difference -
"Pa — p;, and the welght of the flow of the mass of gas behind

the wave front P, W2.. With @, = =- ‘and the value of W from

Va
(16) t=(g -p)+e W=y -p) e

The effect of the impact of the detonation wave is therefore
greater than the pressure difference by the value of the concen-

v
tration factor .
-] .
A s8imilar caloculatlor may be carried out for the case of
liquids. For this case the equation of state for exceedingly
high pressures as stated by Temmann (Ann. 4. Physik. 37, 975,

(1912) ) is applied:

where C, b, and KX are constants.
The energy expression from the general equation is
dE=cvdT+(p-g-§—p) dv
E=oy T+KV (20a)

writing
p'! =p+X and v! =v-D> (21)

then with (30a) and the Hugoniot equation (15¢c)
a; (Ta - Tl) = '&' (p‘l + p'a) (vll - v'a)

and from (30) = = - e e
' p! vt = 0T

These equations are in form identlcal with the gas .equablions

above and their solution the same as given in (19). Hence 1f
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2 oy +1 = 3 op _ 1

!1= (0] ¢
Cotmr e e ot Py tE
p1+K
T r w4+ ¢ '
=T —1—2—-—-‘—1-
1 m 1+
v, -b _ n' + ¢,

p, +K m' ¢, +1
2 - v 3 23 1

D v, =B o1
Using the following values: R. Beoker (Z. f. Elektrochemie

33, 304 (1917) ) K = 2792 atm. G, 0.1001 g—°g—1r—;ﬁ-, b = 0,94 %‘mf

v, = 1.36 0—213 cp = 0.564 g—."g‘l—mi, the temperature increase

shown 1n the followlng table was obtalned for the oase of ethyl

ether. _
Da a = T Ya - TJ. D m/B
atmospheres adiabatlc impact veloclty
100 1.6 1.6 1260
1000 15.6 15.6 1445
10000 85 113 3680
20000 128 a1l . 3000
60000 201 594 5010
100000 2345 975 6430

In thls case 1t 1s to be seen that the lncrease of temperature
due to the impulse wave ig, up to a pressure of some thousand
atmospheres, not markedly different from what would be indicated
by adlabatlic compression. Only when very high pressures are

reached does the difference become marked.

8. The structure of the compression impulse.~ In order to

gain some knowledge of the structure of the wave front 1t 1s
necessary to carry through the integration of equations (13).
Oonceive first that the gas in the tube is such that its spe-




[
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clflic heat 1s indepeﬁdent of temperature. We introduce the con-

stants RS _
c . R _ k1, . k+1 1+ _;
E$=k(= l.4); 6=_3‘;—_3__.(_ 0.3); :1=-k—:]—_'——"6 ={=6)

The values glven in parentheses refer to dlatomlc gases.

Further,
E=0ny T and p v=RT.

To make the notation of the equations as simple as possible (13b)
is multipiied by % and (12c) by E{}%ﬁ;. In place of the un-

known factors v, p, and T, we substlitute for them proportional,

dimensionless magnitudes,

- v B =2 - RTMW
©=vI, =3 6 = = (24)
and further, let )
2 F X r _ B 1 _A
a + 1 ==2"= = A o= (85
s 0 Ty oy M )

Then equations (13b) and (13c) take the form

wtg-1=p &, (26a)
8 -6[(L-wf +al =2 $ ' .+ (28b)
0=w o _ (360)

With the exception of the physical congtants &, u', A', the
entire process 1s represented by the use of only one constant, c.
' The magnitudeés w,, 6,, ¢, &nd o, 8;, @, which at both
sldes of the wave f;ont, are obtajned by solving the quadratic
equa$ions, which by placing the left side of equations (36a)

and (268b) equal to O, gives
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=§_(3___).-{36+1+J1-45(5+1)a.} ...... (a7a)
0 =§‘(85—ﬂ"{1+3 (6.+1).¢F./15 48 (6 + 1)a} (a7v)

ne

e

¢,=§—(5—}_—1-)-.{11 [1-&6(5+1)u} (87a) -

The relatlonship between the evident magnitudes m = gf— = ga-
1

and the constant a« is, according to (27c)

a = 1 LU
(6 +1) (m+ 1)

The values (37) are easily represented on a ®, 6-plane (Fig. 5),

as lntersection points of the two parabolas,

)

-(F-w) +% (28a)
and

0 =286 {(1 -w) + a.} (281b)
(38a) is a parabola independent of 6 and a. With opening below
and with meximum, ® =% (6 = %‘) (28b), on the other hand, has
its opening above, 1ts minimum, ®w = 1l. The parabola (38b) is
displaced downward (without ohange of form) with decreasing
values of a. It is easy to recognize the followlng speclal
cases! polnts of contact pf the two parabolas for

@ = IT'{%‘-TT)' = 1.04; T = :-;3- =1 (1imit of infinitely weak

i 1
sound waves). (38b) intersects the peak of (38a) for

1 -8 P :
o= —3 _3. — ° -
& = —pp 1. ) 1.5. (The 1imit of infinitely intense

sound waves: & = 0; D = ®,)
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The course of a single particle aocross the wave front as indi-

" " "oated by the  w, 6 ocoordinate figure, Would correspond to &

curve whose differential equation as drawn from (26a) and (36b)
would be '
A g0, 8 -8{(1-w?®+al
p' aw w? _w+ 6 '

(29)

The curve of the integral of (39) should pass through the
points of interseotion of the parabolas, that is, through the
common points of differentlal equation.

For three speclial ocases the value of %% the integration
is easlly followed through:  In the first place, we see that
for the extreme values M'=0 or- A' =0, the curve of the
integral of (39) will be identlcal with the parabola (38a) or
(38b).

The first of these cases, namely, W' = 0, is the case
where the effect of friction is neglected. It glves in general
no continuous course of ® through the wave front; from (26a)

6=~ w? + w; and henoce from (26Db),

k'%%= (L + 8) (0w, - w) (Iw- wg) .

%% 1s therefore positlve for all values of ® befween w,

and wz. But when the gas particle moves along the curve (38a)
‘from I t6 II, the value of O, as we saw, at first increases
with increasing compression impulses (§T-> 1.5) ‘and then again
decreases. _The only way to escape this apparent contradlction
seems to be (followlng the suggestion of Professor Prandtl) to
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assume a continuocus ocourse from I only to that point II' of the
parabola (38&) at which the temperature 8, 1s just attained
(et o = 1 - W, ) and then that the volume from value 1 - Wy
jumps to ®; (wlithout change of temperature).
The second case (A' = 0) offers no such difficulty; for
from (28b)
=8[w? -3w +1+a]

and hence from (36a)

u) (0 - w,)

u'= (1+6) (30)
and hence, after integration,

x __ 1 @ 1n (¢ -w) -w; 1n (0 - Wy

BrEITFS ®, - O (302)

The thlird case presents 1tself when we make the assumption
by way of trisl and write the integral of (29)

6=Aw +Bw+0 (31)

The curve shall pass through the points I and II. If we inﬁro—
duce the value of © in (31) into (39), the right side of the
equation will conslst of a polynomlal of the second order 1n

w, which for w, and w,; vanishes. Both polynomials have
therefore up to one factor the value (w - @,) (W - wy). Binoe
this factor s identical with thet of w,- 1t is clear o see
that (39) by substitution of (31) becomes

Al - 4 -6
T.(ZAw+B)-wA+1
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which can only be so if

N AT .

gr3s=250 and B=0 (33)
on the other side, the points 6,, w, and 65, wy must lie on
(31) which also requires B = O. Then

8, - 65 | _ 85 w2 - 0, wy? f

A=m1= _waﬂ’ 0 . w18 _waﬂ
With the values (37), .
A=-—0 _ C= 6t 8 (33)
6 F 1 B8+ 1

If this value of A 1s introduced in (33) the statement may be
made: Equation (31) gives a solution of the problem only when

N 38 _ _mExTt S
[T R 1. 05
: 20 + 1

that 1s when )
! .
%,=1+25 (34)
?

This is the third speolal value for %r for which the integra~
tion offers small difficulty. From (31) and (33)

0= greT (1+o- o) :
from (36a)

‘.u-dw=m=.+Q:.-w e
dx ©

becomes, since the numerator is to the right of the zero posil-

tion of w, and w,,
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prde _ § +
dx ~ 36 +

-y -

(m-‘wﬁ:)f(‘”"‘lh) (35)

1
1

or, by integration

x 36 +1 w, 1n (”i>" w) - 0y 1n (0 - wy)
BT TE ¥ 1 W, - W,

(35a)

This Tesult differs from (30), where A' = O was introduced,
only by the faotor 3 § + 1.

The physical epplicatlion of this solution depends on how
nearly equation (34) describes the process for real gases.

From (235) and (23) we have the relations

A __©p _ 4
0 ov = ov oOF AN =% M op

also

.313. = 1.4 A 1.86 M oy (34a)

D. E. Meyer in his gas theory glves the wvalue of
A= 1.6 M oy

For alr the observed values are (A = 0.56 X 10 %,

N =1.7 X 10°* and oy = 0,17), ﬁ%: = 1.94. The value ob-—

tained by (34) is 1.86. It lies between the gas theory value

and the observed values for alr, 1.94. The solution given by

(35) may be taken as satisfactory.

7.  The thickness of the impulee wave.~ We shall consider

the value of @ as obtained by (35a) u function of x (Fig.
6), and draw a tangent at the point of steepest inclination to



x. The length 1 between the Iintersection of this tangent with
the horizontal, w, and w, we define with Prandtl, the thiok-

ness ! of the wave front. Then

1= (0, —Wwg) 3 (g—;)mu-

Acocording to (3B), -gg- has its maximum for wpgy =,/0; O
wlith a value e

174w - _8 + - Y
Y)Y - - bt O -
Hence
ot SR
_ B 36 +1 W3
b= % 571 = (38)
g -1

If the lnorease in pressure 7w = 2 glven then according to

(19)

w, v, m{-+1 2 u, p, m¢ +1
_— = = et . and M¥° = 2 _ . =_2 = .
o~V m+ g, v,2 v, t-1"

hence the wave thlckness

iy AV S VA -+.1/#=z';':=%——1
wr

For air at atmospheric pressure and 0°0

u=§n = 3,3 x 107* £
v = 33800 om?
1 . T 89

3
p, = 1.013 x 10° '657'55'

§1=6
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so that

{, +1 / \
wmpre = . - . = X -7
p,._l_tl_. : = 74 1077 om

T, also the lmpulse pressure R , iﬁ expressed 1n atmospheres.
For various velues of p,, the value of 1 from (36a) is
Impulse pressure p,, in atm. 3 5 10 100 1000 2000 3000
Wave thickness, 1 X 1077 447 117 66 16.5 5.3 3.6 2.9
_The value of 1 1s so small that 1t approaches molecular dimen- '
slons. According to the gas theory the average free path is

3 23400
8.3 x 10°° _
width of the wave front 1s for B, = 8 atm. already less than

cm
= 3.3 x 10°7/. From these it is seen that the

the average free path; and at something over 2000 atm. less
than the averasge dlstance between two molecules.

The above conslderation would indicate that the fundamen-—
tal equations under (3) do not describe the.actual processes
taking place within the wave front. These equations, based on
a physical continuum, have a real physical meaning only so long
aB the separate gas particles during s measuresble change in T
and v stilll represent a great number of impaots. As the re-
sults just glven show such a condition cannot exist within
an intense lmpact wave. The heating and compression is in re-
ality much more the effect of single extremely small molecular
| impacts. A descriptlion of the compressional impact wave that
shall tally with the actual process is only possible when based
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on
upon a consideration of these individual impacts insteed of/the

' Gonoepts P, v, &nd"T. ThEse magnitudes within the aree of the

wgve front can have little slgnificance.
Under these clrcumstanceg a solution of the problem might
be sought from the standpoint of the kinetic theory of gases,

. and as follows: A distribution function 1s defined

F(x, ¢, n, L),

es having the meaning that at the point x of the tube the
number of molecules (per unit volume) with velocities between
¢ and tE+déf, M and n+dn, ¢ and ¢ + d¢ is given
by

dN=Fdfdnd{="Faduo.

F must be so speoclfied that for x=—-e or x =+ 1t passes

into the Maxwell function

3 -
f:: = n, / P_#_n; e—him[(g_ul)a +n34 2 ] .

n, /3:_5 B m( ~u, )°+n24£2],

%
in which m n = p = denslty; '2;.;5 = RT = § And further, the

transport of mass, momentum and energy in the x-~direotlom, as

well as the integrals

o

‘-";“ ' _'_u _p . e e e m
nf {rdw I_!-l{’ P Mo %{wﬁ(ﬁa +n° + ) rd

must be independent of x.
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And, finally, the distribution, given by F, must be
statlonary as 1s the case acocording to Maxwell-Boltzmaonn
(Boltzmenn, Vorlesungen Bd. I, equation 114) if

b8l -/ // (MR -FF)gbdo, dabdce

in Boltzmennt!s notation.

The solutlon of the problem stated 1n this form would be,
ﬁowever, a very incomplete substitute for the treatment of
single lmpacts wﬁioh for intense concentrations would not maln-
tain a constant distribution function.

The structure of the ilmpact wave in liquids may be deduced
exactly as in the case of gases (Bection 5), for their macro-
scopioc characteristics. By the use of Tammann's equatlion of
state, the velues (20, 230a, and 31) give the fundamental equa~
tions (13b) and (12c) for the stationary impact wave,

M2 v o+ %$ - (J+KE-¥¥ b)=pX %;l
end
CyT + V! (J+K-M‘b)-%u"v'°-(F-b('.1+x-§ib))=§%—E
Let 0 . ¥
J+E-Xb=J" and F-b (J+K-37-Db)=F

GM:
the second by —=—xn

Multiply the first equation b
ply y o T

-

ond, as in the case of gases, let

M3 y _ CTMZ2, r_p+ K
w =v ;5 6 = Fizs ¥ =3

and for the constants,




N.A.C.A. Technlool Memorandum No. -505 ' 40

Vg o ri=fER W ep Mg
Then we will have | -
o' + é; - 1=y %ﬁt
o' - &'[(1 - ¥ +al=n & (37)
8' = o' w', -

These equations are in fact wholly analogous with (36) which
have already been discussed. In order to determine which inte—

gral (30) or (35) 1s to be selected, we have the observed value

L
of -%T which may be compared with the values in (34). For the

"third caese" we have

A 4
— 2 = e B3,
opn 7 = 1.3

For the case of ethyl ether 1t has been observed,

_ cal . - cal ., =
A = 0.00035 0, = 0.564 Ha-é.—, n = 0,0028

om 8 deg.’ b om 8’

hence

3%5 = 0,38 % 1s therefore about six times small-

er than the value indicated in (34). We would come nearer the
truth 1f we select the "second case,' (A' = 0), which according
to (30) gives '

do' . i} )
! —— == !
w3 (L + 8')

' - w';) (0" - wé)
mT

end the wave front thickness
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.m'.1 :
/ =y 4+ ]
i 1 W'y
lfi=§ TF+B" W, (38)
w' = 1

From equation (33) we obtein, as in the case.of.gases,

- . - ..“!.;‘-‘+.1+1
1, o ,t-1 /v - [t-1 '+ ¢
f1 = ¢ 7 - — (39)
p, +EJ/Ttw 1l [w g+l
. mo+ ¢
wherein, as in (233)
1+ 6 , D, +Kk
= =
—r— and _L—p1+K

By substituting the values glven above, we obtaln the values
for the thickness of the impaoct wave as follows:
Impact pressure p,, atm. 100 1000 10000 100000
Wave thickness 1 x 10 cm 53 5.3 0.65 0.14
The thickness of the wave front for the case where the

fluld is a 1liquid 1s seen to be of the same order as that of
gases. There is met with again in this case calculated values
for the thickness of impaot waves of intense concentration,
megnitudes that are smaller than th average distance between
two molecules which for ether is caloulated to be 0.55 X 10~ cm.
Continuum physics is in this case, as in gases, inadequate to
desorlbe processes occurring within impaot waves.

.~..(To be followed by Technical Memorsndum No. 506, contalning
Part II of this a.rtiole.)_
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