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TE!EFFC!3?CIPLESOF TORBIIIJNl!HFAT

By H. Reichardt

1. INTRODUCTION

The literature on turbulent heat transfer

T@LNSFER*

has In the tourse of years
attained a considerable volume. Since this very complicated problen-has
not as yet found a complete solution, further studies in this field JB5.y
be expected. The heat engineer must therefore accommodate himself to a
constantly increasing number of theories m-d formulas. Since the theo-
ries generally start from hypothetical assumptions, and since they con-
tain true and false assertions, verified knowledge and pure suppositions
often being intermingled in a manner difficult to tell.them apart, the
specialist has difficulty in forming a correct evaluation of the indi-
vidual studies.

The need therefore arises for a ~resentation of the problem of tur-
bulent heat transfer which is not initially bound by hypothetical as-
sumptions and in which the already known and that which is still unin-
vestigated can be clearly distinguished from each other. Such a
presentation will be given in the present treatment. .

The following brief remarks may be made with regard to the develo~- .

ment of the theory of local ‘heattransferal The first to recO@iZe
the int5mate relation between heat transfer and flow resistance was
O. Reynolds (ref. 17). The considerations of Reynolds hold, however,
only for fluids with special properties (according to present termin-
olo~, they are fluids whose Prandtl number is 1).

* “Die ~dlag~ des ~bulenten W&rmeiiberganges.r’Archiv f. die
gesamte Warmetecbnik, no. 6/7, 1951, pp. 129-142. ,-

...

%is is taken to mean the direction of investigation which has for
its object the derivation of the law of heat transfer from local flow
processes. In contrast to this is the semiempirical method of similar-
ity considerations as developed byW. Russelt. This model investigation
dispenses with the knowledge of the individual processes. However, for

.

this reason it is in the position to supply simple practical formulas
even in complicated cases.
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The first practical useful formula for turbulent heat transfer was
k

derived in 1910 by L. Prandtl (ref. 12). Prandtl, like Reynolds, started-
from the assumption that heat and momentum are transferred by the same w
turbulence mechanism. For simplifying the computation, the friction
layer was divided into two sections: the turbulent boundary layer itself,
and a thin layer close to the wall, whose flow was aesumed as completely
laminar.

The Prandtl formula was found quite reliable for the representation
of heat transfer of fluids with small Frandtl numbers. On the other w
hand, it is impossible to represent the measured heat-transfer coeffi- aJ

cients of fluids with high Prandtl numbers by the Prandtl formula (a P

correction is assumed which is adjusted to the experimental data).

The reason for this discrepancy for high 3?randtlnumbers lies in
the too greatly idealized flow relations in the friction layer. Actually
there is, of course, no completely turbulent boundary layer and also no
completely laminar wall layer, but a continuous transition from the tur-
bulent flow to the viscous flow in the immediate neighborhood of the
wall.

By dividing the friction layer into three sections (namely, a tur-
bulent region, a laminar-turbulent transition zone, and a laminar wall
layer), as was done by Th. v. K&n& (ref. 7) and H. Re~chardt (ref. 14),

a

a considerable improvement in the theory could therefore be attained. .
There still remained, however, certain contradictions which resulted
from the conception of a completely leminar layer at the-wall.

d

..

In order to remove these discrepancies, the author, in a later pa-
per (ref. 15), assumed an entirely continuous decrease of the turbulent
exchange to zero near the wall. The results of this computation are
contained in the present paper. In addition, still more general formu-
las are given that form the basis for a later investigation of the effect
of the temperature dependence of the constants of the material on the
heat transfer. Also considered in this paper is the turbulent heat
transfer for extremely-low Prandtl numbers.2

—

2. DERIVATION (3TGENERAL FORMULA8
.

(a) Definitions and Assumed Expressions ,=

The considerations will be restricted to those cases “forwhich no
unsteady changes of temperature occur at the wall to which the heat (or
cold) is transferred from the flow. The wall is furthermore assumed as
smooth.

-.

2At the suggestion of Mr. B. Koch.
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If the temperature of the
are only slight, the heat flow
practically the same direction

wall is constant or its spatial changes
and momentum flow at each point x hav’e
as y (or -y) perpendicular to the wall.

The transfer of the momentum and heat is, on the one hand, effected
through the molecular motionj and on the other hand, through turbulent
exchange. The parts determined by molecular transfer will be denoted by
the subscript m and those produced by turbulence denoted by the
subscript t. For the flow densities of the momentum ‘c and the heat
q we therefore write

7= ‘cm +Tt = Tm(l +T.#Tm) (1)

q=~+q~= C&(l +

The following equations apply for the

(2)
.—

individual partial flows:

(3)

‘o = vobh)o (3a)

%= A dT/dy (4)

%3= ~o(dT/dy)O (4a)

.
and

‘t = cp%qdT/dy (6)

Through these formulas the coefficient of viscosity I.Iand of heat
conduction h, as well as the exchange magnitudes for the momentum AT

and for the heat %, are defined (u and T denoting, respectively,

the time mean value of’%he flow velocity and the temperature at the dis-
tance y from the wall; Cp is the spebific heat).

The subscript
borhood of the wall
cal with (Tm)O and

O refers to the wall. Since in the tiediate neigh- ‘“ “’
only molecular transfers are possible, ‘CO is identi-
qo is identical with (~)0, while (’rt)o and (qt)o

do not exist.

3The exchange magnitude ~ canbe
coefficient, the magnitude cpAq as the

coefficient.

denoted as the turbulent friction
turbulent heat-transfer
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The following equations are obtained from equations (5) and (3i
w.

and from equations (6) and (4), respectively:
z

‘@m = A.JIJ (7)

qJqm = Pr* Tt/Tm = ti*A.Jp (8)

where Pr* = Fr Aq/~ denotes the “generalized

14). Further, from equations (2) and (8) there

qm 1
—=uor-u+q

Prandtl number” (ref.

is obtained

(9)

In order to be able to represent the temperature distribution and
the heat transfer as functions of the flow magnitudes, still another re-
lation is required that conhects the dimensionless heat flow q/q. with

the dimensionless momentum flow T/TO. ___Since these two flows do,mnot ‘
deviate strongly from each other h the neighborhood of the wall’(where
the main part of the heat transfer occurs) - at the wall itself we ac-
tually have T/To = q/q. = 1 - the following.expression.suggestsitself:

c&= (1 +k)+o (10)

This equation defines a magnitude k which is small in the neighborhood
.

of the wall and may therefore, to a first approximationj”be neglkcted. .

The expression (10) was found to give reliable values for computa-
tions involving medium and high Prandtl numbers (refs. 14-and 15). It
can, however, as will appear below, be successfully employed also for
small Prandtl numbers (for which k is no longer small a-scompared with
1). —

From the above definitions and assumed expressions there will now
be derived the required equattins for the temperature dlstiibution and
the heat transfer. The flow magnitudes ~/v, R*, and %/’co are here
to be considered as “given magnitudes.” In order to a&wre the general
validity of the formulas to be derived, no spec~al assumptions in regard
to the flow magnitudes will be introduced in this section.

.
---

(b) Formulas for Temperature Distribution

From equations (2), (4), (4a), and (8) there follows
*

()dT =XdT
-QAOFO
qo

# + ~’ A-T/P) (11} “
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which is
tance y

gradient

advantage to introduce a dimensionless temperature difference

T- To =
,.‘, a =—

@ -<.

referred to the maximum temperature difference @ at the dis-
=r(hence,0ci3<l for O ~.y[r< l). For the temperature ‘“-— “-

*
) there is obtained fro~”~”~uation(11)

If eq~tion (10] is used, there is

(12)

further obtained from the above
.

. .—

This equation represents the dimensionless temperature as a function
of the dimensionless distance from the wall y/r. The factor of propor-

()

dil
tionality w- o is obtained from the condition that for y/r = 1

dwe have = 1.

A first approximation of 4 is obtained by setting k equal to
zero, A equal to Ao, and ~ equal to +. Under the integral there

then appear only the magnitudes TITO, ~[p, and Pr, considered as ini-

tially given.

For computing a second approximation of $, an equation is rsquired
for the heat flow appearing in the numerator of equation (13). This
equation is obtained from the continuity condition for the heat in the
case under consideration. For example, in the case of the fully devel-
oped flows in a pipe or in a plane rectangular channel.,the following
relations hold:

-. ..——. .-

%(’-9=‘ -J%’-w+’’”+-$d’~lr)‘““-
(pipe)(14).

.
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where q = u/U (ref. 14, p. 316).

NACA TM 1408

w

(channel) (1S) .

Substituted here will be the value of # of the first approximation
of equation (13). The approximation of q/q@ thereby obtained, yields
a sufficiently accurate computation of the temperature distribution and
of the heat transfer.

Formula (13) is particularly adapted for computations with small
Prandtl numbers. For high IYandtl numbers for which the integrand be-
comes very small at even small distances y/r, it is more convenient to
represent the temperature (at least as a first step) as a function of
the velocity.

For such representation there is required the velocity as a function
of the distance from the wall. This relation is to be obtained from
equations (1), (3), (3a), and (7):

(16)
*

m

After introducing a dimensionless velocity Q = u/U, which is referred
to the maximum velocity at the edge of the boundary lay& (at the dis-
tance y/r), the following equation is obtained for the velocity gradient:

Conibiningequations (12) and (17) and employirigequatio& (10) yield

(17)

(18)

The proportionality factor (dd/d(p)o is obtained from the condition that

for Q = 1 we likewise have d = 1. As regards the practical carrying
out of the computations, the procedure with equation (18) is exactly the
same as with equation (13)(see above).

4

For the particular case Pr*= 1, equation (18) to a first approxi-
mation gives the equality of $ and q. “

I
I
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(c) Formulas for Heat Transfer

7

It hasbecome customary to express the heat transfer by dimension-
less parameters. Generally used is the so-called Nusselt number, which
is defined by the formula

(19]

where d denotes a characteristic length, (for example, the diameter of
a pipe) and ATU is the temperature difference between the wall and a
so-called mean flow temperature,

sf

ATU = ~
f%

ATudf

o

which refers to the quantity of heat f flowing through the flow cross

( ~~udf).section ~ =

Since in the present paper all temperature differences are referred
to the maxim temperature difference @ at the distance y = r, it is
convenient to introduce a dbensionless temperature”difference,

—

4U =ATu/@
-..

Setting further d = 2r and ~ = ~(dT/dy) ~, there follows from equa-

tion (19) .

()ddNut9u= 2 —
dy~r o

(20)

(7+da
dyro

follows from equation (13) for t$ = y/r = 1. The following

formula is then obtained for the Nusselt number:
-—

1

1“

Nudu = 2
kO (1 + k)~/~o

~ -X-l+FY%@
d(y/r) (21) ._

This formula holds for an arbitrary boundary-layer flow. In the
case of laminar flow, AT = O, so that the denominator of the integrand .—
is equal to 1. For turbulent flow also, this denominator can at
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.
least be set approximately equal to 1 if “thePrandtl number is extreme3y
low and ~/p is not too large (small Re number). The quantities q~~

and k are naturally different for the Mminar flow than for the turbu-
lent flow for vanishing Pr*~/ti (fig. 5].

The applicability of formula (21) is problematical, however, since
the variation of the heat flow q/q,o,for the case under consideration,
must be known; here again a knowledge of the temp.erat-tiedis~ibution
is required. Practically, therefore, the determination of Nudu is
based on the somewhat inconvenient computation of the temperature dis-
tribution which was presented in a formal manner in the preceding
section.

In order to he able to compute the heat transfer at the wall di-
rectly, a formula is therefore required in which only known or easily
determinable magnitudes appear. Such a formula could be obtained through
a transformation of equation (21) if it were possible-to introduce the
factor fi* into the numerator of the integrand. This, however,”is un-
fortunately impossible, because Pr* must be considered as a function
of the distance from the wall through the Wgnitude liqj~ contained in

it. Still another formula for Nu will therefore be derived in which
the desired factor Pr* appears in the numerator of the integrand.

For this purpose, equation (12) is multiplied by =~d:;by

cp~ k

substituting equation (10) and integrating, there is then obtained

For d = y/r

()‘ient &
the notation4

= 1 this is a determining equation for the temperature gra-

~ to be substituted in equation (20). Furthermore, using

(23)

J
a

1 ‘P%
4ConGidered here is the mean value ~ _ d+ for tbe total-

CPOAT
0

temperature range O < 4< 1.

A

u

G
a.
1=

“
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yields

.

This equation, in spite of its different form, agrees in content with
equation (21); if Aq/Ar is consideredas a constant, equation (21a)

transforms directly into equation (21).

The required transformation can now be made in eq~tion (21a) by
making the following substitution:

l+zidp=-*ti+( W*-11 + P.%+) (1 + A@)

Making use ‘ofequation (17) and settings

J1P.*(1 + A+)
1?= 1 + P.%+

o

kdq

yields, from equation (21a),

.udu=2(5)m.(*)o/[ +[-+ )

(Zia)

(25)

(26)

The form of this equation may further be improved by collecting
factors together. Since

Nuau qQu

2rFro(dQ/dy)o = P@pow
*

(27)

5For not too small distances from the wall for not too small F.
numbers 1 << ~/p < Pr*~/v, the integrand of equation (20) becomes ap-

proxhately equal to k. Since in the immediate neighborhood of the T
wall, or small values of q, k = O and the integrand thereby vanishes,
the latter can be replaced by k practically for the entire region of

n? —.
the friction layer (hence, the approximation formula c =

.J
L kdq).
0
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it is convenient to introduce a special heat-transfer parameter. A fur-
.

ther question to be considered here, however, is whather the new dimen-
sionless parameter is to be formed with u* or with U. n.-.

The employment of U has the advantage that a good connection is
made with older formulas.

,+
There will therefore be defined a “generalized

heat-transfer coefficient” u* through the equation
.,

U* =

whereby the heat flow at the wall
the temperature difference and of

In place of equation (28) we

1&=_
PI?(J

w)

P@po@u

is referred to the m&ximum value of
the velocity in the boundary layer.

can also tiite

(28a)

-.
t

or

Nut@m
a* .

ProRe
(28b) “

The expression Nu/(Pr Re) is frequently used in technical literature.
“

Since du and Qm lie in the neighborhood of 1 (figs. 7 ahd 9), G* is

of the same order of magnitude as Nu/@r Re).

Using equation (28) gives, from equation (26),

that here 1/(1 +

equation (21) the

+& ) (29}

differs from equation (21), among other respects, in
Pr*A.Jp) = ~/q is integrated over Q, whereas In

corresponding integration is made over y/r. Since

and, on the other

—

‘nd‘ *
decreases with the distance from the
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- for logarithmic velocity distribution d
*

is proportional to
dyr

l/y - it follows that the integrand of equation (29) decreases at a con-
siderably greater rate with distance from the wall, than the correspond-
ing integrand of formula (21).

For this reason, in using formula (29) only the relatioris””inthe~!
.— —.

imnediate neighborhood of the wall need be known if the Prandtl number
is not too small. It is, therefore, a particular advantage of formula
(29) that the knowledge of the results of the universal wall friction
law, in general, is sufficient for its application. A..furtheradvantage ‘
is that formula (31) for F& = 1 becomes particularly simple.

J’
1 ,,

The magnitude G = kdq occurring in formula (29) & only a
o

small magnitude wi~h regard to the main region of application of this
formula (medium and high Prandtl numbers). Hence, in spite of the ex-
isting gaps in our knowledge, the c-term can accuratelybe computed if
the flbw is sufficiently well known. For the case of the fully d~~eloped
flows in a pipe and in a plan~”rectangular channel, c has be%n deter-
mined by the author for various Fr and Re ntibers (these values are
given in fig. 8).

f

1
Since the integrand k of the expression c = kd~ differs ap-

0
preciably from zero only for the parts of the boundary layer that are at
a large distance from the wall, the individuality of the friction layer
under consideration is expressed precisely in the e-term. As maybe
seen from the smallness of the g-values, the individuality of the flow
in turbulent heat trans er plays only a small psrt if the Pr and Re num-
hers are not too small.8

*

s1
%1’heterm & = kdq depends on the ratio (q/q.o)/(~/zO)(see eq”

(10]). This ratio is”to a large extent determined by the tiundary con-
ditions at the wall (dq/dy)o, or (d~/dy)o. h the case of pipe flow,

(q/qo)/(~/~o)~ and~ therefore) k and cJ ‘s ‘elative= ‘rge’ ‘ince ‘n

account of the boundary conditions (dz/dy)O< 0 and (dq/dy)O> 0 the

distributions q/@ and Z/To deviate relatively widely. In the case

of the plane channel flow, q/qo and z/z. no (Continued on next page.)



12 NACA TM 1408

I
I

The principal problem of the turbulent heat transfer lies fn the

J’(
1

integral expression P&$-l) d~ of-formula (29). R is there-
~ 1 + w&/p

fore justifiable to introduce a special notation for this expression.
It would be of advantage if the factor (Pr* - 1) could first be taken
outside the Integral. Because of the local..variabilityof ~/A= and

of the temperature dependent l?r,this unfortunately cannot, in general,
be done.

Accordingly, (Pr* - 1) can be compensated only under the integral
sign, and for this purpose it will be divided by the factor (Prg - 1),

where l?rg denotes a mean value of the Prandtl number for the boundary
layer near the wall. With regard to a later application of the universal
wall friction law (see below) it is convenient, in addition, to replace
the velocity q by the universal velocity u/u*, where u* = -
and is the so-called shear stress vel city.

Ya
The fo~owing magnitude b

will therefore be defined as follows:

“

If

su/u*
(Pr* - l)/(Rg - ‘) d(u/U*)

b ~
1 + Pr%/p

o

(30) .

When this.expression is used, equation (31) is obtained from equation (29): *

(Aq/AT]m(u*/@2~* =
l+(Prg - l)b(u*/U) + s

(31)

longer differ so greatly, since in this catie{dr/dy)o <0 and

(W’W)O = 0. Hence, the &-values for the channel are smaller than the,

corresponding values for ~he pipe, as may be seen,@om figure 8.

In the flow at the flat plate, the distributions of q/~ and

T/T. coincide approximately over the weater part of the ~-region, be-

cause here we have (dr/dy)O = (dq/dy)O. From this it follows that the
&-values for the case of the plate are still considerably smaller than
the corresponding values of the plane channel flow. Hence) a general
neglect of the e-term for the flow along the plate should be permissible.

7a
This magnitude, which in previous papers was deno”%d ‘by a, has

been redenoted by b in order to avoid confusion with the notation pre-
scribed by the standard regulations (DIN 1341) for thermal diffusibility

.

a.
.
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representation of the turbulent heat transfer, the basic form of
Prandtl equation (see eq. (41)) is expressed clearly.m

order to obtain this customary form of the representation, the
heat-transfer coefficient G* would be formed with the maximum velocity
U (see eq. (28)). There is still the possibility, however, of referring
the heat-transfer coefficient to the shear-stress velocity u*, hence,
of forming a dimensionless qO/(~cpo@~ (as was previous~ indi~ted)”

We shall, therefore, consider briefly this heat-transfer coefficient.

Since the identity relation

% Mu
_—

wpo~ * = 2w@r

holds, we.may write

(32)

(33)

in place of equation (28). With the aid of formulas (31) and (33), the
Nusselt number can be directly determined without computing the teanpera-
ture.distribution. The practical application possibility of these for-
mulas is, however, connected with the condition that the product * Tr
does not exceed a certain limiting value (more details on this are given
in the section on the problem of the heat-conducting layer.

The validity of the formulas derived in the present section is de-
pendent only on the single assumption that the heat flow and the momentum
flow have approximately the same direction at right angles to the wall.
~is assumption is practically satisfied in all setups for which dis-
continuous changes of the wall temperature are avoided.

In order to apply the general formulas, specific assumptions must” ‘-
in addition be made on the magnitudes ~/AT, &/v, and %/zo, considered

as “given”. This will be done in the following section.

‘In previous papers there is found in place of (u*/U)2 the so-
called resistance coefficient ~, which is connec ed with

i
@[U by the

following eqy.ation: (u*/u)2 = ‘o/(@2) = 0.125 qm~.
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3. INTRODUCTION OF SPECIAL ASSUMPTIONS

(a) Ratio of Exchange Magnitudes ~~~

I

.- 1,
NACA TM 1408

Up to the year 1932, in which Fage and Falkner (ref. 5) observed in
the wake of a heated cylinder the various possibilities of the propaga-
tion of heat and momentum, the general idea has been”held that the tur-
bulence-mechanism for the momentum transport and for the heat transport
are identical. The tests carried outby Fage and Falkner at the insti-
gation of Taylor showed, however, that the heat is more strongly propa-
gated than the momentum. This result supported the so-called vorticity
transfer theory of Taylor (ref. 19), in which different mechanisms are
postulated for the mass or heat transport and for the momentum
propagation.

The stronger propagating ability of heat as compared with the mo-
mentum transport was also confirmed later in free jets. According to
the investigations so far available, the ratio of the two exchange mag-
nitudes in free turbulence is given by ~/~ = 2.

These results had as yet no”effect on the theory of heat transfer
in turbulent friction layers. In this connection, there were considered
the velocity and temperature measurements of F. Elias in a turbulent

.

airstream along a heated plate (ref. 3, 1930). From t~ese tests a far
reaching congruence was obtained of the temperature and velocity pro-
files in friction layers. This result was looked upon-as a conflrma-

.

tion of the previously held conception of the identity between momen-
tum exchange and heat transport.

This conclusion from the measurement results of Elias was, however,
in error, as was shorn by the author in the year 1940. From the agree-
ment in the dimensionless (p and d profiles (or from(dd/dq)O = 1),

the agreement of ~ and & holds only under the assumption that

Fl?=.1. In the tests of Elias, who used air as the flow medium, Pr was
approximately 0.72. For this Prandtl number and for (dd/d~)o = 1, it

follows from equation (18), however, that %/AT = 1/0.72 = 1.40, that
is, a value considerably greater than 1.

Tests of Lorenz and Friedrichs (ref. 9), who measured the distrib-
utions of the velocity and temperature of an air stream In a heated
pipe, likewise led to a similar result. (Here the author obtained the
value A@. = 1.5from the experimentally found value (d~/dq)o= 0.97.)

These tests show,
layers is also greater

.
therefore, that the heat exchange in friction
than the momentum exchange. The ratio Aq/& ~ 2

.
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m

observed in free turbulence is, however, not attained in friction layers.
For this case we apparently have

d

(34)

This is supported by the following considerations:

me ~act that (~/~)m in friction layers is smaller than in free

turbulence permits concluding that the lowering of this ratio is a con-
sequence of the effect of the wall. Such an effect is naturally strong- ‘
er in the immediate neighborhood of the wall than at a point at a large
distance from the wall. If, therefore, the ratio of the exchange magni-
tudes is lowered.through the effect of a wall, it follows that ~/A=

decreases with decreasing distance from the wall (or increases with iri~ .
creasing distance from the wall).

The value of the magnitude that Aq/A= apparently approaches at a

large distance from the wall is 2, which is observed in free turbulence.
On the minimum value of ~/AV in the immediate neighborhood of the

wall, no experimental observations are as yet available for this region;
. therefore, a hypothesis must be asstied. The mst probable assumption

with regard to the neighborhood of the wall would be that only a single
exchange mechanism holds at the wall, at which, therefore, (~/@O = 1.

.
This leads us back to the old hypothesis of the equality of the exchange
mechanisms, but with the restriction”that this identity-
and momentum exchange is assumed only for the immediate
the wall.

There will now be considered the consequences that
hypothesis. The nkgnitude ~/AT appears in equations
where it is contained in the magnitude Pr* = Aq/k -“

of heat exchange
neighborhood of

follow from this
(31) and (30),
Equation (30)

will be considered first. Under the assumption of an explicit-wall fric-
tion law (for large Pr and Re numbers), the integrand of equation (30)
exists only for the immediate neighborhood of the wall, for which there
is to be set Aq = Az. In equation (30), therefore, Pr* can be replaced
by Pr., This is of great use in the further considerations.

The factor (~/A%)m, appearing in the numerator of expression (31),
,.—

is represented by equation (23). This formula may be simplified by 6et-
ting approximately % = ~. (on account of the weak temperature depend-
ence of the specific heats, this simplification should always be permis-.
sible). In place of equation (23) we can, therefore, write approximately

(23a)
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“

me factor (~/AT)m, therefore, represents a mean value of the ratio

of the exchange magnitudes over the entire-region of-the friction layer.
TM.s mean value is to be formed directly over ~ or indirectly over y~r; ●

the variable y/r Is introduced because ~/.. does not depend dfrectly
on %, but mustbe regarded as a function of y/r (or-of qry/r). (For a

preassigned Reynolds number, qr = ru*/v is a constant, as will be seen

later.)
~

‘(y/r) is as yet unknown, only statements
a

Since the variation of
A=

>:

of a general character can be made at first with reg~d to the mean value
of this ratio. For example, from equation

)

23) we My derive the result
that the condition (34) is satisfied if Aq A= has the limfting value 1

at the wall and the value 2 at the edge of the friction layer.

A further result is that the Prandtl number play= a part since d
and d#/d(y/r) depend on this number. There may first be considered the
relations for a large Pr where the temperature as is known is sufficient-
ly well balanced over the flow cross section (fig. 4). me temperature
gradient is, therefore, approximately zero over the cross section. In
the layer near the wall, however, d~/d(y/r) reaches considerable values. .

On account of the small thickness of this layer, however, ~/Az may be

treated as a constant, and according to the assumption may ~e set equal
to 1. There follows, therefore, from equation (23a)

.

(Aq/AT)IU+1 for

The value (Aq/~)m thus attains the

Prandtl numbers. On the other hand, from
as this mean value deviates more strongly

Pr+- .

assumed minimum value at high

equation (23a) it is seen that
from 1 the shamer the tenmer-

ature profile at relatively large distan~es from the wall-where Aq/&

approaches the assumed maximum value 2. According to our hypothesis,
therefore, the smaller the Prandtl.number, the greater the values of

(Aq/%)m to be expected”

An explanation of the questions raised here, also In particular the
question of the effect of the Reynolds number on (~/~)m, can be pro-

vided only by experiment. Of the test results thus far available, the
measurements of the temperature and velocity distributions undoubtedly
favor the previously presented view on the effect of the wall on the
ratio of the exchange magnitudes.
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Under the assumption that in the denominator of eqyation (18) we
can set F@ = Pr Iand with account taken of a new determination of c.
(ref. 15), there follows both from the test results of Elias on the flat
plate and from the results of Lorenz and Friedrichs (ref. 9) in the pipe
according to equation (18):

(~/&Jm = 1.3 for Pr= 0.72

According to the above considerations, this mean value,e
the relatively small Prandtl number of the air, appears:
gards its order of magnitude.

(b) Ratio of Friction Coefficients ~/p

on account of
plausible as re-

.—-

If we disregard the region of
ratio of the friction coefficients
the distance from the wall for the

m
For the fully developed flows

the boundary layer near the wall, the
~/P is an individual function of
case under consideration.

through pipes and channels, ~/v may

!4 be represented approximately by the following function (ref. 16):
u. —. -—

~ = ~ [0.5 + (z/r)2][1 - (z/r)2] (35)
. vq~

where z/r= l- y/r is the distance from the axis of the pipe or chan-
nel (~/p must be symmetrical with respect to the axis), and x is the

universal constant known from the mixing-length theory8 which hag an ap-
proximate value of 0.4. The effect of Reynolds number is expressed
through the factor Tr =ru?+~m The function (35) is platted in figu-
re 1.

As maybe deduced from formula (35) or seen from figure 1, ~/(~~r)

increases near the wall approximately linearly with the,distance from
the wall with the slope ..

k/(~Trl
-=?=-”’

On account of qr = ru*~ , it follows that for ~/p

. (36)

8See L. Prandtl:
.

Fuhrer durch die Stromungslehre. Braunschweig,
1949, pp. 118-1.19.
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wall, therefore, ~~p is determined by the dimensionless

the wall q = yu*/v, and the distance y~r no longer ap. - .

I
I

pears. It should be bofie in mind, however, that for~la (36) holds -
only for the “fully turbulent region”; that is, where A#p is suffi-
ciently large. The turbulent exchange vanishes, however, not only at

T = 0, but is actually already very small at a certain distance q.

With regard to these relationiin the immediate neighborhood of the
wall, the author has set up the following expressing (ref. 15): m

aJ

(37)

‘here 7n is a measure

The corresponding curve
stants X* 0.4 and ~n

tance for which ~~p =

Vl = Vn)”

for the thickness of the viscous wall layer.

is shown in figure 2 for the values of the con-
= 11, derived from flow measurements. The dis-

1 is ~ s ql = 10.8 (thus approximately
,

Substituting expression (37) into the relation obtained from ex-
pression (17)

(38)

.

.

there Is obtained for ‘c/%O1Othe universal velocity distribution u/u*,

which is likewise represented in figure 2. As may be seen from the po-
sition of the plotted test points of the author (ref. 15), this computed
velocity variation is experimentally confirmed at least for not too small

J ~-values (for very small q-distances the experiments are too inaccurate
to serve as a test of the theory).

For extreme ~-values equation (37) goes over into the following
function:

(37b)

Equation (37a) differs from (36) only in that-the surface of the wall ap-
pears displaced toward the fluid by the thickness ~n of the viscous
layer. -.

Where Tang X = @ - ‘-x
eX + e-X

.

P

10In the neighborhood of the wall where only the q-distance (and not
y/r) is in question, we can set -r= To.
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Since from equation (36) or (37a) there follows the well-known loga-
rithmic velocity profile (44), which was always observed for large q)
the expression (37)
of ~.

With regard to
tions can be made.
first approximation

corresponds to the experimental data for these values

the variation of &/p for small q, only suppusi- —
The turbulent longitudinal oscillations u“’ are to a
proportional to the distance q. l?romthis the re-

sult may be derived, for a two-dimensional oscillatory motion, with the
aid of the continuity condition, that the transverse oscillations v’ are
proportional to q2. Since ~ = ~~, it follows from this considera-

3.11 The expressiontion, if u’ and v’ are correlated, that A= “TI

(37) should, therefore, be physically questionable also with regard to
its variation for small q (eq. (37%)).

In the application of equation (37), however, at least for very high
Prandtl numbers, heat-transfer coefficients that were too high were com-
puted (see more detailed discussion, sec. 5). From this it follows that
the expression (37) for very small ~-distances gives too high values of
~/v. Probably the assumed correlation of the longitudinal and trans-
verse fluctuations does not exist in the immediate neighborhood of the
wall, and the power series for Az/p first begins with a term of the

fifth degree. The variation of &/v for the region q < 6 should,
therefore, be corrected and written

lh-om q>9 on
maintained (see
is shown by the

(%/dx = 2.7 “ lo-5n5
the original variation according to expression
table 1). In figure 2 the corrected variation
dotted curve.

—

(39)

(37) is
of +/p

Mis change of &/P has as a consequence a v~ocfty Profile (sho~
dotted) which hardly differs from the original profile (the deviation is
at any rate considerably smaller than the scatter region of the test
points). Although the change made in ~/p for very small q-values
hardly has any hydrodynamic effect, the thermal effect of this correction
at high Frandtl numbers is quite considerable, as will be seen from the
considerations in section 5.*

ll+Chethird power of q is the lowest power that can be considered.
The expressions of K. Elser (ref. 4) and R. G. Deissler (ref. 2) which
contradict it cannot, therefore, be corrected for the immediate neighbor-
hood of the wall (here they give exchange values that are too high).

~emark made during the proof correction:

In further investigations a new.expression (continued on next Page”)



20 NACA TM 1408

(c) Computation of Temperature Distributions and Nusselt Numbers
.

The formulas given above served for the computation of the tempera- ,
ture profiles of turbulent flow in a pipe. This computation was made on
the basis of equation (18) for different Prandtl numbers W (between O
and 1000)j which were locally invariable smd for the Reynolds number
Re = 3 x 104 (or qr = 800). For all Prandtl numbers there was thus as-
sumed a definite velocity profile (p,namely, the profile of the fully
developed flow for which T/cO = 1 - y/r.12 The constants of the mate-
rial Pr and were assumed as constant. ~

‘P P

The magnitude A#v occurring in equation (18) was determined for
q < 6 from equation (39), for ~< 30 from equation (37), and for

—

q> 50 from equation (35). The temperature distributions of the first
approximation (k = O) determined by graphical integration served for the
computation of the first approximations of
(14). ?

q/ according to equation
These distributions of the heat flux q ~, similarly obtained

by graphical integration, are plotted in figure 5.13

qAQ
From q/qO there is obtained 1 + k = ~ -andwith the*’aidof

- y~r)

this relation the %-profiles can be computed to a second approximation.
These second approximations of & which should not deviate much from
the exact solutions, are plotted in figures 3 and 4. ,_

By the same numerical approximation pr~cedure, there was also com-
puted the taperature distribution of the laminar flow with the aid of
equation (13)(the parabolic velocity profile was ass~ed here). The
profile obtained in this manner, shown dotted in figure 4, does not ap-
preciably differ from that of L. Graetz (ref. 6) and W. Nusselt (ref. 11)
computed by an exact method.

.

.

(39a)

was found to give good results for x = 0.4 and Tn = 7.15. The dis-

tance from the wall for which A.Jp = 1 is here found to be tll= 10.7.

For very small ~-values expression (39a) goes over asymptotically into

(39b)

12The numerical values of Q(y/r) for different Re numbers are
given in.reference 15.

13The heat flux first increases with y/r because the cross section
2fi(r-y)Ax,through which the radial heat flows, decreases more strongly .

with y/r than the radial heat flow itself.
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With the temperature distributions there were stiultaneously ob-

tained also the temperature gradients at the wall
()

d$
. dy~r o

, which accord-

ing to formula (2o) are equal to 0.5 NU4JU. Also du is obtained from

the temperate computation (fig. 9). Table 2 gives the values of Nudu,

du, and Nu, and in figure 6 log Nu is plotted as a function of log Pr.

As may be seen fl?omthis curve, the Nusselt number, with decreasing
Prandtl num~er, asymptoticallyapproaches its limiting value for Fr = 0,
which is indcated by a horizontal line (this value is about 5.22). The
dotted line below it corresponds to the value Nu = 3.77 of the leminar
flow (according to the exact computation of Graetz and Nusselt, Nu = 3.66).

Further, with the aid of equation (13) the Nusselt numbers were
computed for vanishing Fr for various Re numbers (table 3). The dif-
ferences in the Nusselt numbers are conditioned only by the difference
in the velocity profiles.~

4. THE EIROBLENOF HEAT-CONDUCTING LAYER

As regards the computation of b according to equation (30), funda-
mental difficulties arise through the fact that the ??randtlnumber (par-.
titularly for viscous fluids) depends on the temperature which greatly
varies precisely in the neighborhood of the wall. It is thus necessary
to compute with a Prandtl number. Pr* that depends on the distance q
even if it is assumed that ~ and A= are identical.

Here we shall not, however, enter further into these complicated
questions. The basic assumption of the complicated theory for variable
“constants” of the material is the solution of equation (30) for un-
changing values of these constants. In what follows, this case will now
be considered.

‘Added remark during proof correction:

At the conclusion of the above investigations a paper by R. N. Lyon
appeared on the heat transfer of liquid metals (ref. 20). Lyon computed
the heat transfer on the basis of continuity considerations, the assump-
tion, among others, being made that the temperature gradient in the flow
direction dT/dx is independent of the distance from the wall. The de-
rived formula is applied to the region of small Prandtl numbers, which
are characteristic of liquid metals.. The Nu values of Lyon’s theory
are larger throughout than the corresponding values of the present study.
For example, for the viscous flow, Lyon computes the value Nu = 4.36)

. whereas in the above computation the value 3.77 was obtained (and the
exact value is 3.66). The heat-transfer coefficients obtained by Lyon
are, on the average, smaller than his theoretical values. ——
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Under the simplifying

(30) with account taken of

@u*
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assumption that Prg = E& = const, equation
.

equation (9) goes over into
“

ru/u*du/u* %
l+ fiA~p=

du/u*
T

(30a)

do
. U()

A rough approximation for b is obtained by starting from the earlier
customary division of the flrictionlayer into a “laminar” wall layer and %
a “fully turbulent” principal layer. In the laminar layer, which extends 2
Up to the distance ha} ~/p = O, whereas in the turbulent region
(q > qb) we have ~/v + m. In this idealization the integrand of equa-
tion (30a) is 1 for the laminar layer”and O for the turbulent region.
There is therefore obtained from equation (30a)

where qa = u@ Is the dimensionless flow velocity at the bounding

edge of the lsminar layer.

If this expression for b is substituted”in equation (31), Aq/A%

set equal to 1, and the E-term neglected, there is obtained
.

“*=* (Prandtl equation) (41)

This, according to its physical content, i,sthe old equation of L.
Prandtl (ref. 12) for the turbulent heat transfer.

A bette,rapproximation for b is obtained by dividing the friction
layer into three zones: the viscous layer at the wall, the lsminar-
turbulent transition region, and the fully turbulent region, already
discussed in the introduction (ref. 14). We shall not, however, repeat
the discussion here, but in what follows we shall apply expressions (37)
and (39), which represent ~/p as a continuous function of the distance

T!” In actuality, there exists no completely laminar layer, some turbu-
lent exchange always exists even in the’hmediate neighborhood of the
wall. This exchange, hydrodynemi.tallyconsidered, may be very small;
but this does not mean that the minimum exchange has only a slight ef-
fect on the heat transfer.

.

At high Prandtl numbers, in spite of “practically;’VISCOUS flow in
the Immediate neighborhood of the wall, there takes place a predominantly -
turbulent heat transfer, as maybe deduced tiom equation (8). If, for
example, we substitute @p = 0.01 and Pr* = 10~ in this equationz

.
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there is obtained qt/qm = 10. In this case, therefore, the turbulent

heat transfer is ten times as large as the molecular heat transfer, al-
though the turbulent exchange A= is negligibly small as compared with

the viscosity V. From this example it is seen what errors are possible
if the turbulent exchange in the immediate neighborhood of the wall is
set exactly equal to zero.

This st~te of affairs makes It appear ’advisableto differentiate
between a “predominantly viscous layer” and a “predominantly heat con- .
ducting layer”. The viscosity is predominant in the region near the
wall o<~<ql if the distance 71 is defined by the condition that

Tt and Zm are equal there. On the other hand, the heat conduction is

predominant in the region o<~<q2 if the distance

terized by the fact that here qt = qm, or FIWiJp = 1

The defining equations for ql and q2 are therefore

: (T@ = 1

7-12is charac-

(see eq. (8)).

— —

(42)

(43)

From these equations it follows that the layer thicknesses ql and

~z are equal only for Fr* = 1, and that (~/v)2, and, therefore, q2

itself, decreases with increasing Prandtl number. At very high Frandtl
numbers 72 lies deep within the predominantly viscous region near the

wall. But with decreasing Mandtl number, the q2-boundary is displaced

faiYinto the predominantly turbulent region.14 At extremely low Prandtl
numbers, the heat conduction exceeds the turbulent heat transfer in the
entire region of the friction layer.

For the numerical determination Qf the magnitude b according to
equation (30a), it is important to know at which point y2/r the limit

q2 lies, so that it can thenbe decided which function for ~/p- to

substitute in equation (30a). Since y2/r = 72/qr, y2/r depends on ~r

or on the Re number.

141f, in addition,
gion, equation (43) may

the law for the
with the aid of

wall friction holds in this re-
equation (37a} be transformed into

This equation holds, however, only for sufficiently

(43a)

high Reynolds numbers.
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Universal values of -b, that is, not influenced by the Re number but
determined only by the Prandtl number, are obtained if y2/r is so small ,

(smaller than O.05) that within the limits of the heat conducting wall
layer &/p or u/u* depends practically only on q. For very small

FYandtl numbers, for which 72 according to equation (43) is very large,

this condition can be satisfied, however, only for very large ~r val-
ues or extremely high Reynolds numbers.

with

only

%lJl

This universal b was now computed for different Prandtl numbers,
application of formula (37), which represents A.Jp as a function :

of ~. This function serves to determine qJq = 2/(1 + Pr AJl); ;

was plotted, however,

By graphical integration, b

values of b are presented
function of log Pr.

not against q

in table 4 and

but against u/u* (fig: LO).

was then determined. These

plotted i? figure 11 as a

Before discussing the result of this computation, a more detailed
consideration wiJJ.be–given to figure 10, in &ich the ~/q curves are

shown. In this figure is also drawn a dotted horizontal line
—

qm/q = ~/2- Where this line intersects the ~/q curves of the individ- -

ual Prandtl lines, we therefore have ~=q/2 or ~=qt. These .
points of intersection therefore characterize the respective limits of
the region near the wall with predominant heat conduction. The abscissas
of the intersection points represent the velocity u2/u* at the bounding

edge of the heat conducting layer for the individual =andtl numbers. As
may be seen, u2/u* increases with decreasing Pr.

For large values of q for which

u/u* = * Zn q

the logarithmic velocity law

+ const (44)

holds, ~/q may be computed in a simple fashion. From equations (30a)~

(36), and (44) there follows:
—

(45)

This ~/q distribution, holding for very high.Re numbers and small “

Prandtl numbers,15 lies symmetrical to the-point (~/q.O.5; u/ui=~/u*),
●

15For

this value

example, for

there follows

Pr= 0.01 we have uz#u*= 19.4 (table 4). For

from equation (43a) or (Continued on next page.)
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*

ag may also be

.

From this

equation (43a)

x = 0.4, const

seen from figure 10. H$nce, for large Re and small Pr
*

J

U/u*

b & du/u*= $= (46)
q

o

it follows further, if equation (44) is applied to uJu*,

(footnote 14) used for q2, and the empirical values

= 5.5 and ~n = 11 are substituted: .

b “ U U*= 5.75 log (11 + 2.5/Fr) + 5.5 @r < 0.1) (47)2/

This formula shows that for very small Prandtl numbers, u#* or b is

approximately a linear functi~n of -log Pr. This is also seen fr~m fig-
ure Il.

For medium and small Frandtl numbers, the relations are more com-
y plicated. The ~q distribution no longer lies symmetrical to the

8. point considered, and a certain difference arises between b and u2/u*.

This difference is not large, however, (as is seen from &ble 4 and fig,
11) so that, for high Prandtl numbers also, we may set approximately

● b = u2/u*.

Since for small u/u* values u/u* = q, we may also write for high
Pr values:

For high Prandtl numbers, therefore, b is approximately equal to the
thickness 72 of the heat conducting layer.

—.

equation (44) (if we set X = 0.4) 72 = 261. This position of q should

lie very near the wall, that is, y2/r should be small since the univer-
sal wall friction law here applied holds only under this assumption. If,
in order to satisfy this condition, we set y2/r = 0.05, then there is

obtained ~r = 5220. To this value of qr corresponds U/U* = 27.8

and the Reynolds number Re = 27r~U/u* = 2.5x105. Furthermore,
●

~2 = U2/U= 0.70. For Pr = 0.001 the corresponding values are

u2/u* = 25 (compare table 4), T12= 2510~ ~r = 50)200) U/U*= 3305~*
Re = 3KL06, and Q2= 0.75.
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If we substitute

(31), the denominator

the approximation formula

of this equation becomes

l+(prg-l)qz+e

NACA TM 1408

b = “uZ/u* in equation
.

.

where Q2 =

of the heat
denominator

u2/u denotes the dimensionless velocity at the outer edge-.

conducting layer. By comparing this expression with the
of the Prandtl equation 1 + (I& - l)~a (eq. (41)) where qa

...
is the velocity at the boundary of the laminar layer, the following re- E
sukt is obtained: 2

The new theory differs from the classfcal theory, among other re-
spects, in the fact that in place of the velocity pa at the boundary

of the laminar”layer there enters a velocity bu3$/U,which is approxi-
mately equal to the velocity q2 at the boundary of the predominantly

heat conducting layer at the wall..

Whereas the velocity qa of the classical theory represents a
purely hydrodynamic magnitude, the velocity. bu*/U * Q2 depends also on

the Prandtl number, which is contained in the magnitude b E u2/u*. The

magnitude b is, however, determined exclusively through the Prandtl num- ‘
ber (that is, is independent of the Re number), only if’the Re number is
so large that the heat conducting layer lies in the immediate neighbor-
hood of the wall, where the universal friction law holds (i.e., all mag-

.

nitudes depend only on ~). This condition, which willbe numerically
formulated below, is to be observed particularly for small Prandtl
numbers.

Since at small Prandtl numbers and high Re numbers Pr m 1/%72

(see footnote J-5), we can under these conditions for the factor Pr ~r

appearing in equation (33) write
7-

(48)

Tf we now assume that the universal friction law still holds with suf-
ficient accuracy in the region and in the neighborhood of y2.= 0.05 r,

there follows from equation (48) with x = 0.4:
—

Pr ~r > 50 (49) ●

If this condition is satisfied, the given.b-valuesmay be substituted
in equation (31). The factor bu*/U s cp2 for such.smalJ Pr (or such .-.
large b) then also remains always smaller than 1.
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If in equation (49) ~r is further replaced by Re by means of the

. identity relation Re = 2qr(pmU/u*,there is obtained as condition for

Pr Re .,

Pr Re > 100 ~U/u*

Using the numerical values in footnote }6, there is then obtained ?

s
a
m

Pr Re > 2500 (50)

Accordingly, the univ rsal
z

b may be applied if, for ~ample, for
Pr = 0.1; Re> 2.5xlO , or for .Fr = 0.01; Re > 2.5x10 .

5. COMFMRISON OF TEEORY WITH EMPIRICAL RESULTS

A good part of the extensive ,~erimental material on~turbulent
AJ heat transfer has been eval~ated by the Prandtl fomula (41). It was

s immediately recognized that classical theory does not correctly repre-

y sent the expertiental facts, in that the factor Qa(which proper-lyihould ‘-”

B be a function only of the Re number) is also dependent on the Prandtl
. number. It was therefore considered as an essential ob~ect of experi-

mental investigation to determine the dependence of the magnitude Q@

. on the parameters F& and Re from tests.

The results of investigations in this direction by various authors,
in connection with turbulent pipe flow, have recently been evaluated by”
B. Koch (ref. 8). Almost all the authors make use of the original
(FYandtl) formulation that qa is proportional to Re-l”8. M. ten Bosch.

(ref. 1), however, assumes Qa = Re-O”l. This formulation is undoubtedly
the better one, because according to the very careful tests..ofJ.
Nikuradse (ref. 10) u*/U can be represented for the usual region of
Reynolds numbers by the equation

l&om the series of
will be chosen and

U*N= 0.125 Re-O”l (104 c Re < 106) (51)

empirical formulas, therefore, those of ten Bosch
used for checking the theory.

The formula of this author is [NACA note: See appendix.1

Va = B ~-0”185Re-0.1 (ten Bosch, empirical) (52)
.

where B is a coefficient which has the value 1.40 for the heating of
the fluid and the value 1.12 for the cooling of the fluid. This relation

.
is supported by numerous test results of
titular by the very careful measuraents

various investigators in par-
of G. Rohonczi [ref. 18).
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If we set ga = bu*/U in equatio~ (52), there is obtained from

equations (51) and (52) an empirical formula for b independent of Re:

b . 8B Pr-0”185 (ten Bos$h, empirical)

Since ten Bosch developed equation (52) from measurements at medium and
high Prandtl numbers, fomula (53) derived Prom equation (52) must be’.
compared with the theoretical b-values of the medium and large Prandtl
numbers. For this purpose the b-values obtained through graphical inte-
gration from table4 will be represented by an approximation formula.
This formula is ‘

b = lopr-o.30 (~<pr<zoo) (54)

A comparison of equations (53) and (54) shows that for 15?andtlnum-
bers in.the neighborhood of 1 the theoretical b satisfactorily agrees
with the experimental b (the mean value of the factor B, which lies
between 1.12 and 1.40, is 1.26). For high Prandtl numbers, however, the
theoretical b-values are too smll (for M = 100, for example, by the
factor 0.6), that is, the theoretical heat-transfer coefficients are too
high.

This evident deficiency of the theory for high ~andtl numbers
for which the heat conducting layer lies entirely within the viscous
wall layer, is only to be explained by the circumstance that the ex-
pression of equation (37)(which for the neighborhood of the wall goes
over into eq. (37b)), used for the computation of b, gives too high ex-
change values for the predominantly viscous region. For this reason,
as already stated tn paragraph 3, section (b), for the immediate neigh-
borhood of the wall (~ e 6) there was set up expression (39), which
gives considerably smaller values of ~/p (fig. 2).

If these corrected values of ~/p are substituted in equation

(30a) for the region ~c6, there &eobtained thecorrected b-values,
which are denoted by hk and which are likewise given in table 4 and

figure 11. As is shown by figure 11, the dotted bk curve lies above

the b-curve. At high Prandtl numbers bk is consideratelylarger th&
b, while the difference at medium Prandtl numbers is insignificant (for
Pr c 0.1 we have practically bk = b).

For the region of medium and high Prandtl numbers the previously
given bk values may be represented by the following approximation

formula: .

bk = 9.12 ~-0”20 (1 < Pr e 200) (55) .
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.
This formula agrees approximately with the empirical formula (53). At
any rate, the differences between equations (53) and (55) lie within the

● limits of the error range of the experimental results. --

A further correction of the assumed expression for the values of
A%/v near the wall at the present time would also have no significance-”

l-l
F
al
m

since the check of any theoretical fine details, in view of the uncer-
tainty as to ~f~ and themcertainties of the measured values, is

quite impossible. In addition, it is to be borne in mind that the mag-
nitude b (eq. (30)) is influenced by the temperature dependence of the
Prandtl number (and, therefore, accurately speaking, is no universal con- “-
stant)16, and.that this influence must be given theoretical treatment.

The assumption by ten Bosch and other investigators that the factor
B depends on the temperature gradient, in view of the structure of for-
mula (30), appears entirely plausible. Whether the problem, however,
can be so simplified that two B-values are sufficient (for heating and
cooling the fluid, respectively) is undecided.

6. SUMMARY

. 1. Under the assumption of a uniformly smooth wall, general formu-
las are derived for the temperature distribution in turbulent friction
layers and for the turbulent heat transfer. In these formulas the fol-.
lowing problematical magnitudes occur: the ratio of the turbulent to
the viscous friction (~/p) and the ratio of the exchange magnitudes for

the heat and for the momentum (Aq/A=).

2. In order to solve practical problems, concrete expressions are
required for Aq/A= and for A..#P. As regards the ratio of the exchange

magnitudes, it was foynd from available tests that Aq/~ in boundary

layers is lowered as compared with its value of about 2 in free turbu-
lente. It is then assumed that ~/A= with decreasing distance from

the wall decreases from the value of abut 2 at the outer edge of the
boundary layer to the value 1 in the inmediate neighborhood of the wall. —

3. For the ratio of the friction coefficients A#p in the various

regions of the boundary layer, formulas are available which the author
has developed in previous work on flow investigations (eqs. (35) and
(37)). These formulas express the fact that the transition from the

-—

. predominantly turbulent friction in the nucleus of the boundary layer to

.
‘b’Thegiven b-values hold, therefore, only for very small tanpera-

ture differences.
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?

the predominantly viscous friction in the tiediate neighborhood of the
wall takes place continuously.

.

With the aid of these formulas for ~ V, the temperature variation
{~ over the radius of a pipe (figs. 3 and 4 , the corresponding distri-

bution of the heat flow q/~ (fig. 5), and the Nusselt number (fig. 6)

are computed by an already tested approximation method for a wide range
of Prandtl numbers.

4. The continuous transition from the predominantly turbulent to
the predominantly molecular friction corresponds to a similar continu-
ous transition from the predominantly turbulent to the predominantly
molecular heat transfer in t-heneighborhood of the wall. The dimension-

less thic~ess 72 of the wall layer with predominant heat conduction

agrees, however, with the thickness ql of the predominantly viscous

wall layer only for the Prandtl number Pr = 1. For high Prandtl num-
bers the heat conducting layer lies deeply within the approximately vis-
cous layer; whereas the heat conducting layer for very small Rmndtl
numbers may extend over the entire range of the boundary layer.

5. A computation of the heat transfer at the wati according to a“
general formula (eq. (31)) is possible without preliminary computation .

of the temperature profile if the heat conducting layer is restricted to
the region near the wall in which the universal wall friction law holds.
This assumption is approximately satisfied if the product of the Rrandtl

.

number by the Reymolds number is greater than about 2500.

6, In the general formula for turbulent heat transfer (eq. (31)),
there occurs a factor bu*/U =Q2 which corresponds to the factor qa

of the Prandtl formula (41). mereas the magnitude qa of the classi-

cal theory denotes the dtiensionless velocity at the boundary of the
fictitious “laminar layer” and thus represents a pure flow magnitude}
~ is approximately equal to the velocityat the boundary of the heat

conduction layer; Q2 is not a purely hydrodmic quantity, since the

factor b depends on the Frandtl number.

For very large Prandtl numbers the magnitude b is approximately
equal to the dimensionless thickness 72 of the predominantly heat con-

ducting layer.

7. The magnitude b which is independent of the Re number, de-
pends on the heat-flow distribution q~q. This distribution (fig. 10)

was computed using the expression (37) for AT/p. The b-values thus

obtained (table 4 and fig. 11) agree for medium Pr numbers with the



NACA TM 1408 31

experimentally obtained values as is shown by the comparison with an
empirical formula of ten Bosch. For high Prandtl numbers, however, tio
small b-values, that is, too large heat-transfer coefficients, are ob-
tained by computation. From this it follows that expression (37) gives
too high values of ~/v for small distances from the wall (q < 6).

For the region q < 6 the values of ~fp were therefore corrected

in the direction of a still stronger decrease of the turbulent exchange
at the wall (eq. (39)). The corrected values thus obtained bk (table

-. —

4 and fig. 11) also for high Wandtl numbers, are quite well represented
by the empirical formula.

SYMBOLS

turbulent exchange magnitude, kg/m h

( )for momentum %t = ~ ~

(

dTfor heat qt = cpAq~
)

factor used by M. ten Bosch

factor used by H. Reichardt

specific heat at constant pressure, kcal/kg (°C)

diameter, m

flow cross section, m2

heat flux (~

kcal/mAh

radius of pipe
the friction

at the ~llj ~ molecular heat flow),

or channel (flat sides) or thickness of
layer, m

(absolute) temperature, ‘K

taperature difference between flowing medium and wall
(O maxhmm temperature difference), ‘C
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‘u’= m
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.

maximum value of the u-velocity, m/h

flow velocity, m/h

u-velocity averaged over flow

shear stress velocity, m/h

cross section, m/h

..

.

flow velocities (u or = mean velocity; u’ fluctua-
ting velocity parallel to the wall; V! fluctuating :
velocity at right angles to wall), m/h +

coordinates (x parallel to wall; y distance from
wall), m .

distance from pipe axis or from middle plane of
channel, m

—

Reynolds number

Prandtl number
.

Prandtl nuniberreferred to a suftable mean temperature
of boundary layer near wall

m

generalized Prandtl number

Nusselt number

generalized heat-transfer

-:

coefficient

coefficient

resistance coefficient

dimensionless distance from wall (~1 thickness of

predominantly

predominantly

viscous wall layer; q2 thickness of

heating wall layer; ~r = ru*/V)

—

.

...<
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j Subscripts:
.

0,

* 1

2

a

g

k

m

m

n

r

q.
.

t

.
u

T

:,,* maximum temperature difference, ‘C

dimensionless temperature difference (d= referred to

mean temperature, ~,1 to mean flow temperature)

constant of universal wall friction law

thermal conductivity, kcal/m h C

viscosity, kg/m h

kinematic viscosity, kg/m h

density of flow medium, kg/m3

du
shear stress (~ at Wallj %m = p ~y molecular shear

stress; ~t turbulent shear stress), kp/m2

Q = ‘/u~ Qm

wall .

boundsry of

boundary of

boundary of

= l#u

predominantly

predominantly

laminar layer

viscous layer

“heatconducting layer

boundary layer (near the wall)

corrected magnitude

molecular transfer

mean value

reference length

pipe axis

heat flow

turbulent transfer

flow medium

momentum flow

—— ._

.

.
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APPENDIX

DISCUSSION CONCERNING A CORRECTION TO ti TEXT

The following extracts from an exchange of letters between Dr.
Grigull and Dr. Reichardt are included in this translation at the request
of Dr. Reichardt.17

Dr. Grigull to Dr. Reichardt, March 4, 1952:

I recently received your latest paper (Arch. ges. W&rmetechn. 2
(1951) 129/42) which I read with great interest. I noted, however, that
the empirical values of ten Bosch which were used for:comparison refer
to the ratio ~a/um (eq. (52)), whereas you refer the Prandtl equation
(41) to u. The values often Bosch are, therefore, larger by approxi-

.

4

&tely the factor 1.2. If these values-are reduced, the computed b-
values will be found to lie between your original and the corrected

values (table 4). This means that your expression for the exchange
values is more correct than appears from your comparison.

bk-

1 would appreciate it if you check nV statements and let me know
whether they are correct. I am particularly interested :n this question,
because I am preparing a new edition of my text book (Grober-Erk-Grigull, -
Grundgesetze der W~rme&bertragung, 3rd revised edition, Springer-Verlag
1955) and would like to consider your theory in somewhat more detail
since I consider it very suitable for arriving at a generally valid equa- -
tion for turbulent heat transfer.

Dr. Reichardt to Dr. Grigull, March 13, 1952:

You are quite right in your criticism. I have overlooked the fact
that the (p of ten Bosch refers to the mean velocity ~, instead of

the maximum velocity U which I used. In my equation (53) there must,
therefore, appear the Qm term. Thereby the deviation between the

computed b-values and the experimental b-values at high Randtl numbers
becomes smaller.

17Personal correspondence with T. M. Hallman, Lewis Flight
Propulsion Laboratory, dated June 27, 1955.

}

.

.



NACA TM 1408

.

.

.

37

TABLE 1

0.2

.4

.6

.%

1

2

3

4.5

6

9

11

12

15

18

21

24

36

48

67

100

8.8X10-6

7.wlo-s

2.4X10-4

-4
5.6X1O

.001

.009

.030

.093

.209

.630

1.05

1.30

2.14

3.12

4.19

5.31

10.0

14.8

22.8

35.6

(A#u)k

9X1O-8

3X1O-7

‘ “2.1X10-G

-6
8.8X1O

-5
2.7X1O

8.6X10-4

-3
6.5xl.O

-2
4 ●9X10

.193

.630

1.05

1.30

2.14

3.12

4.19

5.31

10.0

14.8

22.8

35.6

..- —
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TABLE 2

[Re= 3X104; qr= 8001

NACATM 1408

Pr

La.minar
flow

o

● 01

.1

1

10

100

1000

2.18

2.50

3.74
(4.11)

12.8
(15.2)

63.2
(69.0)

226
(233)

593
(595)

1291
(1327)

0.578

.480

.515
(.515)

.647
(.647)

.807
(.807)

●950
(.950)

.989
(.989)

1.000
(1.000)

Nu

3.77

5.22

7.26
(7.97)

19.7
(23.5)

78.3
(85.5)

238
(246)

600
(601)

1291
(1327)

*

log Nu

0.576

.717

.861
(.902)

1.30
(1.36)

1.89
(1.93)

2.38
(2.39)

2.78
(2.78)

3.11
(3.12)

.

.
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TABLE 3

t
Re Nudu tlu Nu

3X104 2.51 0.496 5.05

3X104 2.52 .480 5.24

3X105 2.55 .470 5.43

3X1O6 2.58 .468 5.50

TABLE 4

Pr 0.001 0.01 0.1 1 10 100 1000

72 2510 261 35.6 10.8 4.60 2.18 1.05

~2~ 2510 261 35.6 10.8 5.17 3.24 2.20

U2/u* 25.0 19.4 14.0 8.84 4.50 2.07 1.00

(u2/u*)k 25.0 19.4 14.0 8.81 5.05 3.25 2.06

b 25.1 19.5 14.1 9.10 5.04 2.49 1.18

bk 25.1 19.5 14.1 9.19 5.56 3.47 2.20
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Figure4. - Temperaturedistributions
d of theturbulentflowin a pipe
overthedimensionlessdistanoefrom
thewally/r. Rq andPr as in
figure 3.
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Figure 6. - The Nusselt mnmber as a function of the
Prandtl number for Re = 3xlo4. With decreasing
Pr number, Nu approaches the limiting value 5.22
(solid horizontal). For laminar flow Nu = 3.77
(dotted horizontal).
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