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SUMMARY

The presence of sound waves in one or the other of the fluid regions
on either side of a shock wave is made appsrent, in the region under
superpressure, by acoustic waves (reflected or refracted according to
whether the incident waves lie in the region of superpressure or of sub-
pressure) and by thermal waves. The characteristics of these waves we
calculated for a planej.progressive, and uniform incident wave. b the
case of refraction, the refracted acoustic wave can, according to the
incidence, be pSs.ne,progressive, sad uniform or tslsethe form of an
“accompanying wave” which remains attached to the front of the shock
while sliding parallel to it. In a~ cases, geometrical constructions
permit determination of the kinematic characteristics of the reflected
or refracted acoustic waves. The dynamic relationships show that-the

~amplitude of the reflected wave is always less thsm that of the incident
4 . wave. The amplitude of the refracted wave, whatever its type, q in

certain cases be greater thm that of the incident wave.
.

1. BASIC CONSIDERATIONS

1.0. Generalities

1.0.0 Subject of the reyort.- The reflection and the refraction of
sound waves by a shock wave are of interest not only in acoustics. These
phenomena msy also be utilized in aerodynamics to detect or measure the
development of shocks.

The present paper tests the theoryby application to a relatively
simple case: that of a plane and uniform shock wave separating two
regions in both of which the fluid is b pressure and temperature equi-
librium, exce~t for the acoustic ph~~~j the incident acoustic wave
is plane, progressive, and uniform.

*,,
R~flexion et r~fraction d’ondes acoustiques par une onde de choc.”

Acustica, vol. 5, no. 3, 1955,pp. 149-163.
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This problem haa already been treated in several publications.
Burgers (ref. 1) and Blokhintzev (ref. 2), on the one baud, have studied
analytically the case of normal-incidence in a fluid without viscosity.
They show that, in order to satis~ the boundary conditions, it is
necessary to introduce, in addition to the reflected or refracted acoustic
wave, a so-called “entropy” wave. This nonprogressive wave involves tem-
perature fluctuations. It is the asymptotic form of a thermal wave in
the expression of which the damping terms have been eliminated. The
results regarding this wave thus obtained apply therefore only in the
neighborhood of the shock wave.

Sauer(ref. 3),on the other hand, indicated the conclusions to be
drawn from Huyghens’ construction and demonstrated the existence of
incidence for which no refracted wave of a usual type (that is, a purely
longitudinal wave) can exist.

The purpose of the present report is to e-ne the points left
undecided by the preceding authors, nsmely: the behavior “ofthe thermal
wave at large distance, and the nature of the phenomenon if there is no
refracted wave of longitudinal type present. We have thus been led to
treat the problem in a more general form: we made an analytic study,
taking into account the viscosity aud the caloric conductivity,for
arbitrary incidence.

1.0.1 Basic hypotheses and approximations.- (a) In the calculation~
we shall consider the shock wave as a discontinuity. The thickness and

?4

the duration of the development of the shock are actually very small
compared to the wave lengths and the lengths of the acoustic periods. .

(b) The equations governing the shockwave in a steady state remain
valid in the presence of acoustic waves. The slowness end the small
smplitude of the acoustic phenomena compsred to the shock phenomena
justify this hypothesis; at least in the first approximation.

(c) In the expression of the,boundery conditions, we neglect the
small oscillations of the front of the shock wave about its mean position.
This is an approximation which is justified-in all acoustic problems.
Due to the fact that the,acoustic displacements are very small with
respec~ to the wave lengths, the errors thus committed we of the second
order.

%’hishypothesi,s is implicitly contained in Burgers’_calculation.
This author calculates the motion of the shock wave by a method which is,
incidentally,not applicable to the case of oblique waves~.then, elim3.-
nating in the boundary conditions the terms of the second order, he
achieves a simplificationwhich corresponds to cnirhypothesis.
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The bounm

..

conditions will then be expressed in point form, that
is, that the relationships eqressing them c&tain only-the ValU~S of
the quantities concerned taken from both sides of the houndsry (front
of the shock wave) at one point of that boundary.

1.0.2 Irreversibility of the shock wave and its consequences.- The
development of a shock wave is irreversible. Thus it is evident before- “
hand that it will not be possible to satisfy the boundary conditions if
in the two regions sepsrated by the shock wave only acoustic phenomena,
that is, adiabatic phenomena, sre titroduced.

As a result, the small motions produced by the meeting between a
shock wave snd an acoustic wave will be expressed in their general form
as it results from the work of Stokes and Kirchhoff, that is, taking
into account the viscosity and the thermal conductivity of the gases.

1.0.3Sep~ation of the boundary conditions.- Since these conditions
are in point form, one can divide them into two groups.

(a) Kinematic conditions which govern the nature and form of the
waves produced by reflection or refraction: When all.the waves concerned
sre plane, progressive, and uniform, these conditions may be put in t$e
geometric form of Huyghens’ construction. In the other cases it is
@ecessary to resort to calculation in order to determine the nature and

*he form of the waves produced. This is what is done for instance in
optics in order to treat the problem of total reflection and to obtain
the Cauchy wave.

.

The kinematic conditions simply e~ress the fact that on the
boundary surface, the development in space end time of the phenomena
associated with the reflection or the refraction is the same. Thus it
is not necessary to use, for expressing them, the theoretical relation-
ships which govern the shock wave.

(b) I@emic conditions which come into consideration only for
calculating the anrplitudeof the phenomena whose nature has been deter-
mined by the kinematic conditions.

We shall study these two groups of conditions separately.

1.1. Characteristics of the Shock Wave.

Boun~ Conditbns

1.1.0 Definitions, notation.- ~ designating the two
fluid separated by the shock wave we shall avoid using the

regions of the
terms upstresm
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.

and downstream which, in aerodynamics as well as in hydraulics, give rise
to ambiguity. If the shock wave .i.smotionless (wind tunnel, hydraulic
JUULP)Ythe region d-streu is under superpressure. H the wave is
propagated in a fluid at rest (shock tube, tidal wave), the upstream
region is under superpressure.

Thus our notation will.be

EO = region under subpressure, extending from S toward the positive x

El = region under superpressure, extending from S toward the
negative x

s = front (plane) of the shock wave separating the two regions, per-
pendicular to the axis of the x

We shall use three systems of sxes:

ox@z fixed with respect to the fluid in the region EO

OXlyZ fixed with respect to the fluid inthe region El

fixed with respect to the front of the shock wave S

With

~> O beingthe velocity of propagation of the front S in the fluid
contained in EO

~ >0 the velocity of propagation of S in the fluid contained in El
—

u the difference between the flow velocity of the fluid in El
and its flow velocity in EO

We have:

(1.1.1)

.

and ~-q.u (1.1.2)
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.

Finally we define:

Region

Pressure P.

Specific mass PC)

Absolute temperature To

Velocity of sound co

We shall take as
of the shock wave the

E. Region El

PI
(1.1.3)

‘1

c1

the independent vsmiable defining the smplitude
ratio:

‘~ decreases from 1 to O in proportion as
increases.

We shall use dimensionless functions
We give them below with their expressions
from the classical theory of shock waves.-

Putting

7+1
P=-

(1.1.4)

the amplitude of the shock

for describing the phenomenon.
as functions of ~ derived

Y=~= (IJ - 1)(1- g)
co

[(kl+l)E(ll+ E)]UZ

(1.1.5)

(1.1.6)

(1.1.7)
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(1.1.8)

al [1~.~=*. 1/2
Al<l (1.1.9)

Finally, we shall have to use the following functions in which
appear the derivatives R’ and Y’ of R and Y with respect to ~:

~Y’ .= -
(11- l)~+(ll+2)g-J -

(1.1.10)

2(W+ E)~P + WV+ Ejyz

( )( )12V+15X-1
J.-c —

p+lv-lR

( )kP-
~2

(P + U2E= -—
V+l l+pE)(P + E))

-1

.

()=i.l+(lJ+2)gjl+l 1/2

2(U+ g) l+pg

(1.1.11)

(1.1.12)

(1.1.13)

.

.

“
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Tables I and II give the values of these vsrious functions, most
frequently calculated according to rule which gives sufficient accuracy
for our present purpose.

1.1.1 Wave magnitudes.- The presence of waves with small amplitude
which have an acoustic origin causes in the regions E. and El sma~

variations of the pressure, the specific mass, and the temperature about
their mean values.

In order to represent themwe set:

G = 5P/P = relative excess of

s = 5p/p= relative excess of

0 = 5T/T = relative excess of

pressure

specific mass, or condensation (1.1.15”)

temperature

In the case of usual-acoustic waves, 6, s, and 9 are very small
and may be considered in the calculation as infinitesimals of the first
order.

With regard to the vibratory velocities, we shall have to consider
only the component u along ox.

1.1.2 Boundary conditions.- According to our hypotheses, the boundsry
conditions must express that the relationships (1.1.4) to (1.1.7)which
govern the shock wave are maintained in the presence of oscillations of
acrostic origin.

By differentiationof (1.1.4), (1.1.5), and (1.1.6)we obtain

(1.1.16)
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(1.1.17)

.

(1.1.18)

Iu order to obtain, starting from (1.1.7), a correct expression
one must take some precautions. One could be tempted - as we were - to
assume, as it is usual in acoustics that the presence of the acoustic
waves does not modify the sonic velocities ~ and cl.

This approximation remains correct in the interior of the regions
~ and El but &t their boundaries it csmnot be assumed~ the relation-
ship (1.1.5) contradicts it. Thus one must differentiate (1.1.7)with
the assumption that co is variable. One then obtains

m = cor)Y+ Y5co (1.1.19)

with NJ = U1 - ~, the difference between the compone~ts U1 and ~

of the vibratory velocities being given by

6Y = (Y’q = -(Y’ C51- ‘iO) “

On the other hand, co is given by the classical relationship

4 “ 73?()/Po

whence

28co/co = 5Po/Po - bPo/Po =ii$ - so

As we shall show later on in our problem, only incident acoustic
waves can exist in the region ~. The oscillation phenomenon is

therefore adiabatic which permits us to write -‘o /
= CDoYj hence

.

.

.

“
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The relationship (1.1.19)may then be written

.

.

It will be convenient to use this equation in the form

(1.1.20)

where I’, G, H sre the functions defined, respectively, %y the
relationships (1.1.5), (1.1.13), (1.1.14).

1.2. Waves of Small Amplitudes in Gases

(1.1.21)

1.2.0 Mathematical representation.- The mathematical representation
of this problem is a result of the work of Stokes and KLrchhoff. An
outline for it can be found in Iord Rayleigh’s book (Theory of Sound,
vol. II., section 247). We recapitulate it with our notation.

u, v, w components of the velocity of a psrticle

P specific mass of the gas at rest

s = 5p/p condensation

P pressure

& = 5P/P relative

T absolute

e = 5T/T relative

Y ratio of

of the

excess

gas at res%

of pressure

temperature of the gas at rest

excess of temperature

the specific heats

v coefficient of kinematic viscosity

k coefficient of thermal conductivity, accordhg to K3rchhoff
equal to 5v/2 .T-

C sonic velocity
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Equation of continuity

&/% + aujbx + av/ay + &?/& = o

Dynemic equations

&l+c% ( 1 a20——=
at )vA%z-— —

y ax 3 at ax

The logarithmic differentiation of
the equation of state

.

.

(1.2.1)

and similarlyin Y,Z (1.2.2)

the equation P = prT yields

~ss+o (1.2.3)

Since the motions are very small, the terms of the second order are
neglected. The total relative-temperatureexcess 0
excess OaJ resulting from the adiabatic compression,
stemming from the conductivity. Thus we have

ea = (7 - 1)S bet/at s ISA%

Hence we obtain finally the thermal equation

~e/bt s (Y - l)aE/at+ kA2e

is the sum of the
and the excess ety

n

.

(L2.4)

The calculation then is performed ds follows: We elimlnate &
utilizi~ (1.2.3).We then assume that the different variables depend
on the time only through the factor eht (h canbe complex). The
factor h therefore replaces the sign of differentiationwith respect
to time.

Equations (1.2.1), (1.2.2), and (1.2.4) then are mitten

&@x + bv~ay + aw/~z .+hs = O

hu - VA%L = -aM/ax, ad Shdk~ in yjZ

he - k429 . (7 - lb

(1.2.1’)

(1.2.2’)

(1.2.4’)
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where we have set

M= (c2/7 +W/3)S + (C2/7)e

We eliminate s between (1.2.1’) and (1.2.4’) which gives

&l/aX + aV/& + &@z = -(hO - ~20/(7 - 1,

(1.2.5)

(1.2.6)

and M is written

M=&~+$$)e-%~+$%)A~
(1.2.5’)

.

Let us differentiate equations (1.2.2’), respectively, with respect
to x, y, z, and add term by term. We take (1.2.6)into account and

eliminate M, using (1.2.5’)3 there remains

(1.2.7)

a particular solution of which is given by the form

e = EIQ1+ J32Q2 (1.2.8)

where

which

Bl, B2 are constantly and Q1 and Q2 ~ctions of x~ Y) z

satisfy the relationships

.

.

A*Q1 = ?J$21 &Q2 = “32 (1.2.9)

in which ~ ~d X are determined by the equation

(%Y -~+ (l+@](&)2+ .($+* u)= o (,.2..0,
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with u being the dimensionless number

a = hk/c2 (1.2.11)

The components u, v, w of the vibratory velocity then derlve~
except for the common factor eht, from the potential Q1 + ~. The

constants B1 and B2 are taken from (1.2.6)which gives

Bi = (7 - 1) ~2~ (i = 1,2) (1.2.12)
-h

i

The condensation si corresponding to Qi is

Si = ( 1)-nf h Cpieht (1.2.13)

The relative excess of pressure fii is obtained by=combination

(1.2.3) and (1.2.13)
of

(1.2.14)

1.2.1 Simplifications,
.-

separation of the ~ve types--(acousticand

UEz4” - In the case where the origin of the waves is acoustic, we
shall have h = h - b. In the relationship (1.2.10) which determines
the ratios m/h, h appears only in the dimensionless number a = kh/c2.
When this number is very small, the roots of (1.2.10) ass-me very simple
approximate values. In air, in cgs units, v = 0.146;thus k = 5v/2 = 0.365.
At the usual temperatures c is of the order of 34 x 103cm/s. Finally,
if we restrict ou?selves to the upper limit of an - already very ultre.n-
sonic - frequency of 80,000 cycles per second,”the circu~ frequencies m

6 -I,are smaller than O.~ X 10 s Under these conditions, laD/c2 2s less

than 1.6X10-4.

—

We are therefore justified in assuming that the number u will
remain very small as long as the dsmping factor

—
5 is not very large.

We shall therefore make-the correspondin gsimplifications,except
for verifying -

.
when the occasion arises - that the ctidition a << 1 is .

always satisfied. .
.
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The roots of (1.2.10} assume then the approximate values

m; = (h/c)2 ~ = 7h/k (1.2.15), (1.2.16)

The first gives us a velocity potential for an acoustic wave in
its usual form. The second gives us the potential for waves of thermal
conductivity.

In the case of plane waves, with the coordinate z eliminated by
a suitable choice of sxes, we shall be able to write

Q~=e
+m+X+py)

with a2+ j32= 1, in order to satisfy (1.2.9).

We then obtain the table of the following values:

(1.2.17)

..___

s I -(h/c2)Qeht I -(7/k)Qeht

e I -(7 - 1)s
I
-s

iii 7s

u *CUS

(1.2.18)
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E

;.9
0.8
0.7
0.6

0.5
0.4
0.3
0.2
0.1

0.05
0.025
0

1.3.Numerical Tables of the Different Fuictions

Introduced in the Calculation “

Table I

r

:.985
0.97
0.95
0.93

0.90
0.87
0.82
0.75
0.62

0.48
0.36
0

1
0.9
0.8
0.7
0.6

0.3
0.4
0.3
0.2
0.1

0.05
0.025
0

R

;.93
0.85
0.78
0.70

0.62
0.53
0.45
0.36
0.26

0.214
0.191
0.1667

J

o
0.0007
0.0031
:.00:9
.

0.029
0.051
0.085
0.144
0.254

0.351
0.420
0.510

R’

0.714
0.735
0.76
0.78
0.B3

0.83
0.85
0.88
0.91
0.94

0.956
0.964
0.973

Y

:.0756
0.160
0.26
0.39

0.53
0.72
0.96
~.38
2.18

3.27
4.75

w

Table II

o● 714
0.726
0.737
0.756
0.78

0.81
0.85
0.92
1.04
1.35

1.82
3.18
w

-=P-
1 1
1.094 1.00035
1.21 1.00168
1.36 1.0052
1.55 0.012

1.80 1.025
2.17 1.046
2.74 1.090
3.76 1.185
6*18 1.45

9.65 1.8g
u..42 2.56
W w

f-b

1.
1.046
1.10
1.17
1.25

~.36”
1.51
1.73
2.10
2.95

4.15
5.86
m

G

1
1.00035
I.00165
l.awl.
1.009

1.018
1.030
1.054
1.092
1.166

1.228
1.270
1.323

Al

&956
0.910
0.86
0.81.

0.76
0.70
0.63
0.56
0.48

0.431
0.405
0.378

.

.
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2. THE KINEMATIC CONIXCI’IONS

.

.

2.0 Statement of the Problem and Formulas

2.0.0 General forms - appsrent circular frequency fl and phase
velocity w at the front of the shock wave.- Let us consider ir..oneof
the regions E. or El m acoustic field incident on S which we shall

represent by the velocity potential

O(r,y,z,t) (2.0.1)

with @ and x having the subscripts (O or 1) corresponding to the
region concerned. -.

This field produces at the front S “a phenomenon which with respect
to the axes OXYZ fixed to S will be governed by the form

I.f(yjz,t)=“@(at,y,z,t) (2.0.2)

where a has the same subscript aa .~.

As a result of the fact that our boundsry conditions are in point
form, there must appear at S for every field associated with the
incident field by reflection or refraction a corresponding phenomenon
whose spatial distribution and development with time are governed by the
form $. This condition of kinematic order is independent of the p-c
conditions which derive from a particular choice of the equations con-
necting the values of 6, s, Uy El,taken fr~both sides of S.

Since we limit ourselves to the case where the incident wave is
plane> progressive, and uniform, we have

@ = eiu[t-(xcoscp+ysin@/~ (2.0.3)

with 9 being the angle of incidence.

The function v which represents the phenomenon at S then assumes
the form

lf=e
ifl(t-y/w) (2.0.4)
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where

$-11—= -Aco6q =1- A+(1+A)T2
m 1+T2

NACATM 1409

.

(2.0.5) .

w Q 1 - A COB q = 1 -..A+ (1 + A)T2 (2.0.6)—=zY%Yiu$=c sin ~ 2T

—

c, A, u, ~, T should have the subscript of the region which contains
the wave.

2.0.1 Condition necessary for a plane, progressive, and uniform
acoustic wave to be an incident wave.- Let us consider a mobile partic-
le M carried along by the waves and advancing on a sound ray. If M
approaches the S plane with increasing t, the wave is incident. If
it recedes from it, the wave is reflected or refracted.

With respect to the
the velocity at which M

In the region under

axes fixed to the fluid in the region considered,
is displaced toward increasing x is c cos ~.

subpressure Eo) the distance of M from S

is, except for a constant, (co cos

constantly regardless of what CPo
sequently, any plane, progressive,
an incident wave.

q) - ao)t. It decreases

may be since we have ~
and uniform wave present

therefore

> co. Con-

~EoiB

In the region under superpressure El, the distance from M to S

is, except for a constant, (al - c1 cos ‘?l)t.

Since al is less than cl, two cases are possible

(a) al - Cl cos cpl < 0 where q)l < arc cm Al (2.0.7)

Or lT~<~(l-Al)/(l+A~)
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.

.

The wave is incident.

(b) al - c1 cos CFI1> 0 where src cos Al < qll < x (2.0.8)

or Tl> (1- Al)/(1 +AI)

The wave is produced by reflection or refraction.

2.0.2 General relations.- The plane waves, whether acoystic or
thermal, axe governed by the form

—

—

eht-m(ux+~y) (2.0.9)

with

cG2+p

2 =1

and .-

m= +&/c acoustic waves
(2.0.10)

m= ~~~- thermal waves

On the S-plane which is displaced at the velocity a in the region
considered, the exponent of (2.O.9) must assume the form iSZ(t- y/w);
hence the relationships.

io=h -area i$l/w= J3m (2.o.11)

that is

a = (h - iii)/sm $ = i@nn (2.o.12)

CAp 2 = 1 gives

(=/$2)2 + (a/w)2 - (h/n - i)2 = O (2.0.13)

Replacing, in this equation, m by its value tsken from one of the
relationships (2.0.10), we obtain ~ equation which will determine h as

. a function of Q and w. We then tske m, a, and ~ from (2.O.10) and
(2.o.12).

.
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2.1 The Reflected or Refracted Thermal Wave

~erting into (2.O.13) the value m2 = yh/k gives

(,h/@2 - 2(Z + ya2/2kSl)h/fl- (1- a2/#) = O

.

(2.1.1)

whence

In order
negative real

to be suitable for our purpose, the root-must have a
part: a wave which vanishes when t Increases indefinitely.

As we have seen, the dimensionless number kSlla2 is very small. On
the other hand, (2.0.6)gives fl/w= (m/c) sin CP (where u, C, and Q
have the subscripts of the region which contains the incident wave).

Consequently, l@aw = (kw/ac) sin 9 3-sthe same order of magnitude

as kS1/a2,that is, very

If we then take the
(2.1.2), we see that the
the negative sign.

small.

approximate value of the radical of the formula
suitable root is the one where this radical has

In order to obtain an approximate value
radical up to the terms of the second order;
order disappesr and we obtain

kQ2a2+$h=-—
Y aW

of h~fl,we must expand the
the terms of the first

(2.1.3)

One can see easily that

remains always very small. The a~roxhuation made in order to separate
the thermal wave from the acoustic wave is therefore valid.

On the other
Consequently, the
dsmping iS S1OW.

hand, (2.1.3)shows that h iS
thermal wave is not perceptibly

real and very small.
oscillating and its

“

.
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From the value of h we derive

m= ifl~a2 + $/aw (2.1.4)

a=- & =‘Os“
(2.1.5)

‘=k=sin’t
The spatial distribution of the temperature excesses and of the

condensations is therefore sinusoidal. The wave is oblique. It is not
progressive and dies out on the spot.

As a result, this wave can originate only
movement of which it csmnot precede). Thus it
the region under superpressure El.

behind the S-plane (the
can be present only in

The absence of any thermal wave in the E. region justifies there-
. fore the method by which we have established the boundary condition

(1.1.20).

. The potential Q = (e-m uX+13Y) iS then written

Q = ei$Xx/a-Y/V) (2.1.6)

The quantities fixedto the wave then sre (see 1.2.13)

and the velocity components

kil
ut=-i~’t vt=’ # st

.
These values willbe useful for simplification

conditions.
.

(2.1.7)

of the dynamic
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2.2. The Reflected Acoustical Wave

I

.

.

In this case, the incident wave is, like the reflected wave, situ-
ated in the region under superpressure El. The relationships (2.0.5)
and (2.0.6), connecting the kinematic characteristics m and ~ (or T)
of the acoustic wave with the cticuhr frequency O agd the phase
velocity w which can be obse~ed at the front of the shock wave, are

(
simultaneously valid for the incident wave U@

)
~ly TI ~d the

(
reflected wave ~,

)~i~ Ti .

Eliminating -Q and w, we obtain -

71Ti =
(
1- Al)/(1 i-Al) (2.2.1)

%!_- ,

sin Q1 1 - A1)2+ l+A~)Tf

‘b 91 [1 - A,)(1 :Al)(l + @
(2.2.2)

al

(2.2.1) shows that to the incident wave

[

d(l - ‘1)/(1+ Al))
there corresponds indeed a reflected wave Ti - %)/(1 + %)]”

.

(2.2.2) gives the ratio of the circular frequencies (perceived by
an observer carried along by the fluid) of the incident wave and of the

.

reflected wave.

When CPl increases from zero (normal irrcidence)

(limiting angle of incidence), 71 increases from O

L&@ increases from (1 - A1)/(l + Al) to 1.

to

to

arc cos Al

1- Al
)/( )

l+A1,

Thus we have

l-& CD: sir-l@ 1 + Al

Due to the fact that any plue, progressive, and u@form incident
wave produces a reflected wave of the same type, Huyghens’ construction
is valid.
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2.3. The Refracted Acoustic Wave

2.3.O Generalities - seysxation of the two types of refracted waves.-
In order for refraction to occur, the incident wave must be situated in
the region under subpressure ~. On the other hand, any ptie, pro-

gressive, and uniform wave situated in ~ is an incident wave and will

give rise to the production of refracted waves.
-.

The phase velocity w of the phenomenon produced on S by the
incident &ve is given-by (2.0.6) .-—

~ = (% + 1)%-(%-1)
2T(3 co (2.3.1)

where

When the

from -m to
the followhg

angle of incidence q. varies from -rc to +YC, 70 varies

+0 w increases constantly and its variation is given by
table:

qlo -fi
/

-arc Cos 1 ~ o arc Cos 1/. i-a-c

The same phase velocity w can therefore be produced by two waves;

the incidence of the first lies between -m and 0, that of the second
between O and +fi,tith the first being lsrger in absolute value than
arc cos lib, the second smaller than that value. The corresponding

values of T, To, sad T& relative to these two waves, are connected

by the relationship
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‘OT6 = -(~ - 1)/(~ + 1) (2.3.2)

Finally, (2.0.6) shows us that the circular frequencies of the two
incident waves which produce on S the ssme phenomenon (eaualit~ of w,- . . “

and

the

of ~) are in the ratio

Thus, the acoustic
interior of the El

.L

phenomenon observed on S, and all the more in
region, may be produced indifferentlyby one

or the other, or any linear combination, of the two
described above. Not a single observation made in
differentiate.

The character of the refracted wave depends on

of the phase velocity w. If Iwl is greater than

refracted wave is plaae, progressive, md uniform.
r —

incident waves

‘1 can serve to

the absolute value

4“c: - af, the

~ Iwl is less

than {c$ - a$, one cannot make any plane, progressive} and uniform

wave in El correspond to it. The refracted wave then ass-s an

eqonential structure and we shall call it accompanying wave.

The sngles of incidence ~. corresponding to the value of w, at

which one passes from one type of refracted wave to the other, sre given
by

2 2
1- -a~+ao-c~

‘o = (2.3.3)
~+co

When
‘oI

is outside the interval defined by the above boundaries,

the refracted wave is pleme, progressive, and uniform. In the ~osite
case we obtain the accompanying wave.

Expressed as functions of the theoretical relationships which
govern the shock wave, the two limiting values of

‘o
sre written

.

.

r
.

W(1- g) dinztd(v+l)(l; E)
‘o = J=+- (GE-m

(2.3.4)
I.l+g .
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The values of the
figure 1.

corresponding

23

limiting singles are given in

2.3.1 Plane, progressive, and uniform refracted wave: $> c? - a~.-

The equation (2.0.6)applied to the two regions ~ and El which COn-

tain the incident wave and the refracted wave, respectively, gives the
relationship which connects ‘o

and T1

c1 - q+ (cl+ al)T~ co - ~ + (co + ~)T~= (2.3”.5)
‘1 ‘o

Since To is governedby the incidence ~o, T1 is determined by

an eqwtion of the second degree of which only the root, which is lsrger

than-~(c~ - aI)/(cI + al)) corresponds to
other root gives in El the incident wave

produce the refracted wave.

Thus we have

the refi~cted wave. The

which could, by reflection,

co - T - qc; - a;).:ao+ (co+ao)-r~+ ~o- ~+ (co+@o

‘1 = ( )2cl+alTo

(2.3.6)

which we may writej using the dhe~ionless fictio~ ~~ Al) r)

h~+(l+~)T:+ J(’ -%) +(’+ AO)+J2-$(’ -%)%
‘1 = 2+ALT0

(2.3.6’)

The value of the circuk frequency ml of the refracted wave>

perceived by an observer who is carried along with the fluid in the
region El, is then given by (2.0.6) whence we derive
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(2.3.7)

For sn observer fixed to the axes, carried along with the fluid
situated in EOJ there occurs a shift in frequency and the circulm

frequency perceived will be ~i.

(2.3.8)

2.3.2 Theacconpanying acoustic wave #<c~-a~. -We shall show

that the refracted wave may then be representedby a ~elocity potential
of the form

(2.3.9) .

‘1

must satisfy the general eqpation of sound A201 =
@@2%/at2 .

which involves the relationships

On the other hand~ on

exponent of 01 mUst t~e

~
:2

the

the

(iv

form iqt - y/w) whence

From (2.3.10) and (2.3.11) we then take

wl/.Q= l/(1 - A?)

J-1z-~-
W

.—-

(2.3.11)

(2.3.x2) -

.

(2.3.13)



m
NACA TM 1409

s

q,S2= -All(l - A;) .= -A1$@2

25

(2.3.14)

(2.3.15)

q’p = -c~/w (2.3.16)

~f=() (2.3.17)

The equation (2.3.13) shows that this type of wave exists only if

the phase velocity w is smaller than c1 ~~=J~j~onse--- ‘--

quently, this wave appears only in the case studied in the present
section. On the other hand, this condition of existence implies that
we have c1 > al. No wave of this type can therefore appesx in the ~

region where CO is less than ~.

Before describing the accompanying wave, we must verify that the

condition ●6 << 1 is satisfied, that is, that we have always k5/c; << 1.

Replacing Q in (2.3.13) by its value taken from (2.0.6), we obtain
$

,

kb 1-
— . Alr

A;- (V/C1)2
sin Cpo~ (2.3.18)

C2
1 1 - A? Cn

-L u
.-

kzD/c$ is very small;

have a very small k5/c$.

Al and 1? lie between O sad lj thus we

In order to tie the characteristics of the wave evident, we shall
teke the axes oXY whose origin o is carried along with the S-plane
smd is displaced toward increasing y at the velocity w. We therefore
set

X=xl-alt Y=y-wt (2.3.19) –
—



The potential al then takes the form

,, Jw)x+wiy.
=
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(2.3.20)

which is independent of t.
.-

The wave is therefore motionless with respect to the ues oXY.
cx/c~

Its amplitude decreases as e if one moves away--fromthe shock
wave (toward the negative x). This wave constitutes therefore a
phenomenon which runs behind the shock wave while sliding at the same
time transversely at the velocity w. These characteristics justify
the name we gave it: accompanying wave.

Let us define its structure in detail. Toward increasing Y the
phenomenon is spatially periodic and Its wave length is

which was, besides, evident in view of its origin. Toward decreasing
X the phenomenon”is spatially of a damped pseudoperi6dic nature. Its
wave

qx-+
wave

This

length is

.

(2.3.22)

The planes of
q’Y = const.
the angle X

equal phase, or pseudo-wave planes are given by:
They form, therefore, with the S-plsme of the shock
given by

tsax=

formula permits a very

The rate of dsmping of

-, I/q . -(c2f ~af)klw (2.3.23)

simple geometric construction of that angle.

the wave toward.the negative X is

(2.3.24)

.

.

.
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.

.

It is zero for the limiting
w decreases.

For w = O, we have on

Q/w = Cq-Jsin

values w =
‘m=

It increases when

the one hand Q = O, on the other

~o/co and COS PO ‘ co~ao

c~/c~then assumes the value

which may be expressed as a function of the v=iable ~ which defines
the sarplitudeof the shock wave, and of the wave length A. = 2fic~
of the incident wave in the region EO

(2.3.25)

h order to calculate the characteristics of the accompanying wave
from those of the incident wave, it suffices to replace Q and w in
the relations (2.3.12) to (2.3.16) by their values-taken from (2.0.5)
and (2.0.6),nsmely

Q = ~ (co - W ‘0s ~o)po

)-
W= (.0 - ~ cos qo)/sh

complicated. It is unnecessary to write themThe formulas obtained we
here explicitly.

2.k.

90 J

Geometric Constructions

2.J+.o IIuy @ens’ construction (fig. 2).- With the plane of the “
figure being motionless with respect to the region under subpressure
~, S end S’ are the positions of.the shock-wave front at the times

t = () and t = 1. me dist~ce SS1 is ~:
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Let us consider in the region

progressive, and uniform wave which

at the time t = O. At the time t

~, to the right of S} a plane>

intersects S at the point ~

= 1, this wave will intersect S’
at a point D and its potential prolongation will be tsmgent to a
circle Co, with the radius co and the center ~, entirely situated

to the left of S’ since c<a.00

Assume B to be the foot-of a line through 00
perpendicular to

s’. BD will be equal to the phase velocity w observed on the shock:
wave front.

We can always make two tangents to the circle Co pass through D.

The figure therefore confirms that in the region E. two waves l., 1~

exist to which the same phase velocity w corresponds-on S. These two
waves sme incident because the point of contact of the &angents drawn
from D to Co is to the left of S: that is the region where
virtual.

‘o ‘s

Let us now consider the region El. me fluid flows there t~d

the right, with the velocity U. Aplane wave passi~- at the time
t = O through the point O., will, at the time t = 1, be tangent to.

a circle c1 with the radius cl, whose center 01 ii at the distance a
0001= U from O..

OIB is therefore the velocity al of

respect to the fluid filling up the region

cl, the circle Cl intersects the straight

and Ft.

the shock-wave front with

El. Since al is less than

line S’ at two points, F

The incident waves 11 are those whose point of contact with Cl
b to the right of S‘ (there where El is virt~l) j the reflected or

refracted waves touch Cl to the left of S’.

Let US IIOWaSSKnUe D to be a point on s! situated outside the
segment I?F’. l?lromthis point we may draw two tangents to (!l,one of

which corresponds to an incident wave 11 while the other corresponds
to a reflected or refracted wave RI.

Thus, if we
point D, and we
of the wave 11
of the waves 10

assume a wave Rl in Eljthis wave determines the
see that it can have been produced either by reflection
(situated in El) or by refraction of we or the other

and 1~ situated in ~.

.

.

.

.
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Finally, it appears that when the point D lies between F and
F’, there correspond to it two more possible incident waves, ~ and

IL in EO, but none in El since D lies inside the circle Cl.

.

The cross-hatched sectors of the figure show the angles of incidence
cpo for which this condition is realized. HWghens’ construction thus

does not permit us to know what is ha~ening in the region ~.

2.k.l Construction of the accomQanyingwave (fig. 2).- Formuk (2.3.23)
gives the angle X which is formedby the pseudo-wave plane (plane of
equal phase) of the accompanying wave and the S-plane. It lends itself
to a simple construction.

Let us draw the tangent from the point F’ to the circle Cl.

It intersects the straiszhtline O.B at G. O.G = 0TF’2/OIB = c12/a.-.
Since OIB is equal to-

J- A 1A AIL
al> we shill have

Since, on the other hand, Dl, situated between

point where the incident wave intersects
have BDl = w. Consequently

BG Ic:al - al-—= -
‘1

w

s’ at the

=tanx

Thus, the angle BDIG is the desired angle X.

of the straight line GD1, to the left of S’, gives
plane of the accompanying wave.

F and F’, is the

time t=l,we

The prolongation

the pseudo-wave

The construction thus shows very clearly the veriation in direction
of this pseudo-wave plane as a function of w, that is, of the position
of the point D1. .

Figure 2 shows these different constructions for a whole series of
incidence. The srrows placed on the traces of the various waves indi-
cate the direction of their propagation. The sketch corresponds to the
case where the shock wave involves an abrupt doubling of the pressure,
that is, where one has
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2.5 Use of the Acoustic Phenomena

of the Shock Waves

for the”Study

The kinematic conditions ere expressed by formulas into which
enter only velocity ratios: sonic velocity, velocity of the wave front,
flow velocity. They do not stipulate the validity of the theoretical
relationships which express these velocities as functions of the shock
emplitude,

Moreover, in the case where the shock-wave front is preceded or
followed by compression or expansion phenomena which entail variations
in temperature and in the flow velocity of the fluid, the acoustic waves
undergo continuous refractions. These phencmena, incidentally, are well
known.

Consequently, the experimental study of the kine~tics of the
acoustic waves reflected or refracted by a shock-wave front furnishes
a resesrch method which is probably not withQut interest for aerody-
nandcists. For undertaking it, we may consider photographic, even
motion-picture methods which show the form and the deformations of wave
fronts, or microphonicsmethods which detect the variations of frequency.

One will note that a lsrge amount of information can be collected
solely by the study of the reflection of waves”,that is, by means used
exclusively in the ‘regionunder superpressure El. *

3. DYNAMIC CONDITIONS

3.0.Elimination of Thermal Waves

Let us start from the relationships
namely

established in section 1.1.2,

‘1

-eo=2E$(~-imo) (1.1.17)

‘l-so= ~ ~ (al - Go) (1.1.18)

.

.

.

.
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Clul - G
-=~(co~-.$l

=?% 1
Y

(1.1.21)

We have seen that in our problem the region under subpressure E.

can contain only incident waves, representable by the velocity potential

Q
. e%~-(%@o+YosinQo) /cj

(3.0.1)

Thus we have

(3.0.2)

In the region El there is a superposition of an acoustic phe-
nomenon (letters with the subscript la) and a thermal phenomenon
(subscript lt).

The formulas (2.1.l’)give us for the thermal phenomenon

tilt = o
‘lt = -Sit

Ult = -i(kQ17al)slt (3*0*3)

In the acoustic phenomenon we have

(3.0.4)

and in all

.
&l =filt+fiw=fib el=elt+e= sl=slt+sk ul=ult+uk
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—
.

The equation (1.I-.18)thus yielde

.

at = -m(tri~ - q (3.095)

J is the function definedby the formula (1.1.11).
.

where

This relationship will give us the thermal wave-as soon as we have
calculated the acoustic wave.

Introducing this value slt into the third relation (3.0.3), we
have

Ult = i(W/al)J(~ - fio) (3.0.6)

This we insert into (1.1.21) which becomes .

(3.0.7)

We know that the numbers Kl a c/ I 1 ‘d ~/alcO ~e very small.
On the other hand,“table II in section 1 shows us that the function J
is always smaller than the functions G and H. Consequently, we can
neglect in equation (3.O.T) the -ginsry terms, that 5.s,the terms
stemming from the thermal wave.

Thus there remains a condition which involves only the acoustic
waves present on both sides of the ‘shock-wavefront S

(3.0.8)

3.1. The Reflected Wave

We have to consider in the El region two waves, one incident,
the other reflected, represented by their velocity potegtials

.

●
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.(3.1.1) - -

(3.1.2)

any wave. The

we then have

(3.1.3)

The E. region, on the other kd, does not contain
second term of the condition (3.0.8) is therefore zero.

Assuming the kinematic conditions satisfied (3.0.8),

o

The amplitudes of the waves are proportional to
The ratio of the amplitude of the reflected wave md

the factors Bah
of the emplitude

of the incident wav=, that is, the smplitude-reflection coefficient, R,
then is

G)/(cosQi - G) (3.1.4)

.

relationship (2.2.1) which connects

angles $ ~~) ~ Qij we CSlleliminate

Let us refer

tangents Tl,

and we obtain

to the kinematic

T~ of the half

( )_1-%2+.2
l+A1 1

R=

1-G—- <
,l+G (3.1.5)

1 -GT2
l+G 1(i+ AJ

+ Al) (incident wave).

is eqyal to O (normal incidence), R. is equal

G is greater t~ 1.to (1 - G)/(l + G), which is negative because
(See table 11, section 1.)

.

. For Q1 J(=arccos A1y Tl=+ 1- Al)/(l + Al) (Wting incid-—ce)y

Rlim is equal to -1.
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that
(and

Since we have

in the region

in this case ‘?i= 91)

where the two waves exe

ml
1

= al, this value signifies

superimposed on one another
which~ incidentall.y~is vanishing) their sum is zero. In other

. words, the-phenomenon involves only an incident acoustic wave which
stops at S, which is actually the case.

Thus, the coefficient of amplitude reflection is ~onstsmtly nega-
tive and,”in absolute value, increases from (G
~1 increases from O to arc cos Al.

Thus it will be possible, in practice, to
wave at incidence close to the normal only if
(G clearly lsrger than 1).

1)/(G+ 1) to 1 when

observe the reflected
the shock wave is intense—

3.2. The Progressive Refracted Wave

Let us represent the incident wave, situated in
potential

~, byits”velocity

tio~-(~cosqo+yosinTo)/ co]
00 = Boe

and the refracted wave, situated in El, by

Starting from the instant where the kinematic conditions sre
satisfied, the exponents of the exponential terms are the same on S.
The dynsmic condition (3.0.8) then gives

We shall compare the amplitudes of the acoustic
two-waves, that is, we shall form the ratio

(3.2.1)

pressures in the

.

.
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the value of which is given by (3.2.1):

where R is equal to Po/P1 and
.

(See table 11, section 1.)

(3.2.2)

—.

In order to calculate R, one must refer to the kinematic conditions
which give 91 as a function of Po.

We shall give below only the values R as functions of ~ for
Qo = O (incident wave parallel to the shock wave and receding before

the latter) and Q. = m (incident wave paxallel to the shock wave and ‘–

coming to meet it).

We have in the two cases (p.= x whence
-L

—-

lH-1
~o=o ‘o=yrG+l
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I R for

W=T=
1 0 1
99 .0002 1.094
.8 .001.0 1.22

.0035 1.36
:2 ● 0092 1.55
.5 .022 1.82
.4 .04=9 2.19
●3 ● Uo 2.79
.2 .332 3.92
.1 7.00
● 05 ;:% 12.5
.025 7.85 17.9

al m.o

3.3. The Accompanying’Wave

With the incident wave being represented in the foregoing
the accompanying wave is derived from.the potential

when the kinematic conditions are
(3.0.8}gives

satisfied, the boundary

The ratio R which interests us most is the ratio of the

mnner,

.

condition

(3.3.1)

acoustic

-PJq - %)B1 ydpressure irmaediatelybehind the shock wave pl =

of the acoustic pressure in the incident wave p. = -ip&&lo.

Taking the relations (2.3.12 to 2.3.17) into account,

R=
cos go - H i - %/9

Ill
(

iA1-G)- (%/%)(1/% - G)

we obtain

(3.3.2)

.

.

.

.
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and from the fact that bl~~ is eqpal to
obtain

Alj@ - @(c,,~)’ -1, we

lRl=H-~Q
‘J

A’ - ~’

(1 - *lG)’ + (G2 - 1)~1

where

For illustrative purposes we have performed the calculation of IRI
in the extreme case where w is equal to O, that is, cos % is equal

to 11%. We have then

H - lj~

l%=o=k~

For qo = arc cos l/~ we obtain

E = 10*9 0.80.70.60.5 0.40.3 0.20.10.05 0.0250

\R\=ll.o~l.151.311 .~1.71’.@ 2.663.%7.45 lko6w.8 ~

We see tha%, as in the”previous case, the acoustic pressures may
be increased by a s@nlficsd factor.

4. sumuRY

The presence of acoustic waves
which sepsrate the 6hock-wave front
phenomena:

.

OF RESUIWS

im one or the other of the regions
is manifested in the following

(a) ~the region under subpressure E. in which the shockwave
progresses at a supersonic velocity, no type of reflected or refracted
wave is produced.

.
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i

I
I

..

(b) In the region under superpressure El the encounter of an
incident acoustic wave (coming from the ~ region or the El region)

with a shock wave causes the formation of two waves ot different type.
One is an acoustic wave (refracted or reflected depe?.ulingon the origin
of the incident ~ve)j the other is a thermal wave.

(c) The thermal wave is not progressive in the first approximation
(that is, when the incident acoustic waves are of an ordinary amplitude).
It is therefore motionless with respect to the gas contained in the
region under superpressure and carried along by this gas in its motion
of overall flow. It then moves away from the shock-wave front. This
wave involves spatial periodic variations in te?gperat~e and in density
but no variation in pressure. It is dsaped slowly and aperiodically.

(d) When the incident acoustic wave is situated in the region under
supe~ressure, in that same region a reflected acoustic wave, of the
same type as the incident wave, is produced; that is, @- the case
studied here, a plane, progressive, and uniform wave.

Huygens’ constructionpermits obtainin&its kinematic characteristics:
direction of propagation, and wave length.

The amplitude of the pressure variations in the reflected wave is
al~s smaller than the smpl.itudeof these variations in the incident
wave.

(e) When the incident acoustic wave is situated in--theregion under
subpressure, a refracted acoustic wave is produced in the region under
superpressurejthe characteristicsof the latter wave depend on the phase
velocity w of the phenomenon produced on the shock front by the inci-
dent wave. The main characteristicsof the refracted wave are the
following:

(a) In the region under subpressure ~ there exist always

two Lncidences of plaue waves which produce on the shock front the
same phase velocity w and, consequently~ in the region under
superpressure El the same refracted wave (except for the smpli-
tude ratio).

The observation of the refracted wave in the region under
superpressure El therefore does not permit dist~ishing

,.
whether this wave has been.produced by one or by the other of
the two possible incident waves, or by a combination of both.

.

.

(p) If the phase velocity w of the disturbance produced on
the shock wave by the incident acoustic wave is larger than a
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certain limiting value W. (which depends on the intensity of the
shock), the refracted wave is of the ssme type as the incident
wave: pl.aae,progressive, and uniform. Huyghens’ construction
permits obtaining its kinematic characteristics.

The amplitude of the pressure variations in the refracted
wave may be, depending on the case (singleof incidence, shock
amplitude) smaller than, eqyal to, or larger than the amplitude of
these variations in the incident wave. All things being ewl~.
this amplitude increases with the shock smplitude.

The increase in an@itude msy become very important in the
case of intense shocks.

(Y) If the phase velocity is smaller than the Lbniting velocity
Wo, which corresponds to incidence situated in a sector the

boundaries of which sre functions of the shock s@litude, the
refracted wave assumes the form of an “accompanyingwave.” This
wave remains attached to the shock wave which it accompanies while
shifting p=allel to that wave at the velocity w.

The wave planes (planes of eqwl phase but not-eqqal intensity)
are oblique with respect to the shock. Their direction maybe
obtained by a simple geometric construction.

The wave smzplitudedecreases exponentially as one moves aw~
from the shock-wave front. lhmediately behind the shock wave, the
amplitude of the pressure variations in the accompanying wave
increases with increasing shock intensity. It maybe lsrger than
the amplitude of the pressure variations in the incident wave.

(8)Ins umnmryj the presence of acoustic waves in the region
under subpressure, in which the shock wave progresses, may mani-
fest itself behind the shock wave, on the one hand, by a field of
progressive acoustic waves which expand gradually in the entire
region under superpressure; on the other hand, by the appearance
of accompanying waves, that is, of oscillating disturbmces which
the shock wave csrries along behind it in its progress.

—

Both may, in certain cases, involve oscillations of pressure
very much larger than those that existed before the arrival of
the shock wave.

Translatedby Msry L. Mahler
National Advisory Comni.ttee

. for Aeronautics
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