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TECHNICALMEMORANDUMNO. 1.211

T8JICHARACTERISTICSMETHODAE’PIJEO

!FJCMUMENSIONALAND ROTATIONKELY

CM FLOWS*

TO STATIONARY

EmMmmxJ

By F. Pfeifferend W. Meyer+Mnig

By means of characteristicstheory:formulasfor the numerical
treatmentof stationaryco~essible supersonicflowsfor the two-
Mmensional and rotationallysymmetrical.caseshave been obtained
from theirdifferentialequati&.

The auxiliarymeens for

=ODUCTION

the theoreticaltreatmentof stationaxy
gas flowsat supersonicvelocityare the characteristicsof the
psM@ differentialequationsgove~ing the motion. The Busemann
~aphic raethodszfor the trea~ent of suchpotentialflows 3.s based
on the networkof the characteristicsh = const.,v = const.h tie
velocityfield (u,v-plane)and the fact,that at corresponding
pointsOf the velocity~d the flow field (x,y-plane)corresponding
characteristicsare perpendicularto one another. Guderley2has
extendedthe Busemann~ethodto two-dimensionaland rotatimmY

*“DieChSrakteristikennethodebei stat~o~~ eb~en und rotations-
symmetrischen Gmstrtmungen.” Zentrale fiirwissenschaftliches
Berichtswesender Luftf&tforschung~s Generalluftzeugmeisters(?MB)
Berllm4dlershof. ForschungsberichtNr. 1581, March 20, 194!2.

~Busemann,A.: %asaynamik.” Handbuchd. Experimentalphysik
Bd. 4, 1. TeiL,1931, pp. 341-460, particul~ly p. 421 and the
followingpages.

%uderley, G..:,Die charakberistikenmethodei%r ebeneund
● achsensymmetrieche~erschallstrbmmgen. Jahrbuchder Deutschen

Luftfahrtforsch~g1940,pp. I 522- I 535.
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symmetrical,tmbulent
he definedthe changes

.
NAti

fbW8 . On the basisof physical
&k, d~ whichthe quantities L
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considerations,
and u

experience in an E&ance from one pointof the flow fieldto an
adjacentpointalonga characteristic.

For oasesmore generalthanGuderleypostulated,it is
possibleto get the differentialequationsfor the characteristics
by puremathematicsdirectlyfran the differentialequationsfor
the gas motion. They have a very simplefomn,so that theyare
also suitablefor the graphic,numericaltreatmentof special
problems.

SYMBOLS

rectangularcoordinatesin the

velocityvector ‘

rectangularcoordinatesin the

flow plane

velocityplane

polarcoordinatesin the velocityplane ‘

density

pres+re

entropy

abeolutetemperature

specificheat at constantpre”ssure,or at constantvolume

sonic velocity

criticalsonicvelocity

heat oontent

heat contentat ~ = O

Maoh angle

wts u~, vr, at, pt, p! dimensionlessquantitiesinsteadof
w, u, v, a, F),p

*

,
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ABBREVIATIONS

a =zn P’, T =Zll (E+), s =r*, g=f, Q .#_T,

FI17W

l?rcmthe fundamentalhydrodynticequationsfor compressible,
Stationaryflows

(y~~ = - # grad p

1

(i)
div (p~}= o

,

for the velocityvectorY, the pressure p, and the density p, the
followingequationsare obtainedfor two-dimensionalflow with
velocitycoordinatesu, v

(2)

(3)

In additionfor an idealgas there occursthe equation

p = Cespk (4)

where s . ~, s the entropy, k = & the ratio of tho specific

heats, C representsa constant,whtc; is derivablefrom the
equationof state

~=RT (ki )

3VekStFti,h, G., aildSzeg6, G.: PartleMm DIfferential~eichmgen
der mathematischenPhysik,1930, P ● 34.

.
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becauseof the firstand SeCOd laWS of thermCdWWGs (R = ‘p - ~vJ

T= absolutetemperature).W8tly thereis the equation

J3s as=~
–’v&at

whichexpressesthe hypotheslethat the entropyalongeach individual
st~amline is constant. From (4)fczethe (variable)sonicvelocity.a

az = ~ = kCespk-l= $ = kRT (6) _.. -. -

further

If equations(2)are writtenthusly:

.*+

au
‘F +

mltlpllcatlonby

T?dw+

ti or dy

that is, for laminarflow the

wdw+

g.)dy k dy

addition(with W2

&ldy.vdx] (g-

followingprevai1s everywhere

(6a) .

●

(7)
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for turbulentflow,on accountof (~),on each streamline

(7a)

On each streamline

therefore $dP=

by integrationfor

wdw+$dp =0

p = CIpk (Cl constmt) and a2 = ~~

k
()

~d ;’.
k

Accordingly,it followsfrom (7a)

each streamline

w~ ~ a2
—=io

2 k-l
(8)

or

(8a)

if i=cpT=

The conet&t

k a~
_RT.=
k is the heat contentof the idealeast

in i% in Renere&differentfrom streamlineto StI?CEUP
line. The cond~tion(8a~also-holdsin the finalform if the stream-
line passesthrougha compressionshock4;fir~t,.only the regim that
doesnot includea compressionshockwill he considered.

Equations(2), (3), and (~),where
2

~ in (2)&e
I

‘d by
replacedin accordancewith (6a),togetherwith

*

(9)

zhaubhhap asasfrom eightlinearequationsfor —, —, —~ —-, —, —, —, —

with the matrix axayaxayhayaxay.

4 Busemnn, A .,”(Seefmmhmte 1) p. 433.



.

i

u v o 0 $ 0 G ““o @

o 0 u v o
a2 ~
To

o

P o 0 P u v o 0 f)’
I

o 0 0 0 0 0 u v v
dx moooooo fluI
o 0 0 0 dx *00 dp

I
o 0 0 0 0 0 dx Q m....—

The characteristicsare here definedas thosecurveson the integral
Al Cu k’ m Jp

surfaces souchbj along whichthe derivativesa--~==, ---j<—~ :-~
&CP.2J~ .&?.~

-. a c!? a<. q’ ax
o not resultfrom theseeightequatiormes dqflnite~-

by’ az’ by.
alongwhich,therefore,disconti”nuitlesin thesederivativesere

possible. In orderthat the’quantities
&hhaT?EaQ

& as ax’~z?aj’?ix’p
w ~ oanbe ambiguous,the determinantsof eightrows of this

matrixmust equalzero. Settingthesedeterminaiitsequalto zero
f“mnishe~the four ~,rdmms
firstcountedtwice)

Udy -v dx

ds

wdw+az~

of characteristics(projectionof the

=0

=0

=0

(streamlines)> (lo)

7
(~ - a2) dx2 -2UV dx dy + (U2- a2) dy2 “=O

I

(udy-vdx) $dv - &du) + ‘(.*+ %?)

(Machwaves)

) (H}

a2(u.dx+vdy)=0 !

J

.

.

.

.—
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. As a resultof the introductionof polarcoordinates
v= w sin $ in the u, v+plenesmd of the Maoh angle
sin a= ~ thereis obtained

u 5V -vdu=wz do, udu+vdv =wdw

and from the firstequation(11)
<

.

.

ax

For w> a, that is,

presentpro~lem,the
Ud ~-vti =Ttan a
u dx+v”dy

a2 - U2

for the case of

characteristics

equations(10)

ds=o

dw + a sin

Q.tan@T
ax”

.

7

with U = W COS fj
a through

supersonicflow,which is the
becomereal. On account”of

and (11)become

1
a) I

ail Q
?

7 +’-+
? =0

sin a cos a P

(lOa)

(ha)

(Theseequationsare
more generalform p

stillvalid,if the equationof stateis in the
— = f(p, S) providedIn the secondequation(ha)

~ Is replac8dby ~ af
~2p w )

.

w=
PO
the

●

The equationsare made dimensionless,as-aresultof introducing
w%’s a = w“af, p = pop~, where W“ is any referencevelocity,
smy referencedensity. After setting Zn’PT = a and $ = ~,

oharacteriiticequationsbecome
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&=tm (79TU)

In the yoint-by-point“numericaldeterminationof the glow
phasewith the aid of the characteristicsthe Massaumethod is
made use of. .-

(lob)

(llb)

Let all the phase quantitiesat points1 and 2 of.theflow
be knownand providedwith the subscript1 or 2. A point3 of
the flow with its phasequantitiesis obtainedthusly: According
to the firstequation(llb)the position x , ys of 3 is obtained
from y3 -y~ i=tan(4~-q)(X3-x~) m Y3-Y2=tan($2+cQ)
(x3- x2) graphicallyor numerically.From the secondequation(llb)
are obtainedtheseequaticmsas differences

and

I?mmthis (numerically)43 and U3 + S3X. By means of the first
equation(lOb)

,

.

Y3 ‘YIR = *~f13(x3 ‘Xm) j
.—.—. — -.---=- ----—.— —— .-—.-’ -. —..—. .

5Encyklov&iieder Math.WissenschaftenII, 3~ 1, p. 162.

.
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eithergraphicallyor numerictiy ;oint m is reamed.frcm
point3 by going in the directionof the streamlinerelatedto 3,
m being in the connectingline 1-2,whosephasequantitiesare
computedby linearinterpolationfrom 1 and 2. ‘Hum S# = %x and,
therefore U3 also, is obtained. The thirdequation(lOb)gtves

Wt
3 - Wm’ = - arm sin ~ (C3 - IJnJ

fromwhich w3r follows.

With this x3, y3, 43, u3, S
ir‘ W3’S =e to be had. For f~ther

calculationats and a3 fr~ =3 = ~ 3PSk-l and sin a3 = ~W!2
are used. From the firstapproximationsobtainedin thisway,

J

bettervaluescan be obtainedby iterationafterthe mannerof
Masaau;oftenestimated,possibleextrapolatedvaluescan be used
for the firstapproximations.

~ all casesgraphicrepresentationscan be given for simpli-
ficationof the calculation,for example,because

‘=~=fm%sin a cos a

the ray system A = constantemd a = constantfrom the originof
the at, w~ plane,or the systemof straightlines S = const.
in a planewith @ a and log p in the coordinatedirections.

NUI’E

&h an iS8ntrOQiC lemina motion, ds = O and — - Y = O,
ax ay

therefore,everywhereand

wdw+$dp=o (w)

The equationsfor the characteristic~systems(ha) become
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(12)

If F and Pf are two correspondingpolntein the x, y- and the
‘1,v=plwes and two pafrs of correspondingcharacteristicH @ th th-~r
tangentdirectionsare drawnthroughthem,then

also
Y .goo:a

By the firstequation(12)

In addition, there is the fact that is the basisfor the Busemann
graphicmethodfor tsentropic,lamlnarmotionjthat in two corresponding
pointsof the UP-T-an& the x, y~lanes the charaoteriskicsare .

mutuallyperpendicularorosswise.

11.T!BXROTATIOI’iAELY.HlOfETRICtiFLOW

Equations(2)resultfrom equations(1) againby applicationof
cylindricalcoordinatesand consideringthe rotationalsynmetry
whilethe term P$ entersin equation (3) on the left side. ln
addition to that, equations (4) and (5) are again valid,

In Settingup the’characteristics,insteadof O in the
ninth column,thirdplacefrom the top p$ appearsnow amd, as a
result,the characteristicequationsbecome

6Frank, Ph.J and.V.Mises,R.: Dle Differential-”vnd:-
Integralgleichungender Mechenikund,~yeik ?, secvndGil.,1930,p. 86.

,

.

.
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udy~v”dx = o (V2 _ *2) ~2 -

)

2uvdxdy +(u2-a2)02=o

dS=O (UdY-VdX)2~+ fi~dy-vdx} (@dV-vdu) (13)

~dw+a2~=0 +
( )
‘lQ+& a2@dx+Vdy)=0
P

With the yohr coordinates w, ~ in the u, v-plane and the
Mach angle u there is obtainedbecauseof

+#’’-”ti) 2U
-=

a Udx+vdy x
L

Ils.o

. dw+asinada=O

. providing x # O.

III. SPK!IALC!A!3E:IDENTICAL,$0 FOR ALL STREAMLINES

Guderley7restrictshimselfto the practicallyimportant special
case that i. In equation. (8) is the same constant for all stream-
lines, that is, there is a curve (not a streamline) in the region
of flow, which is intersected by all streamlines and along which ia
has a fixedvalue.

It folhws from equation(8)then

2wdw+—
k -la

and from this,becauseof

da=O

. .

~2 . kCespk-l.
a2ti=o

w“dw+a2&+—
k -1 .._._,... .—.–.-. .—. —.. -.———. .— .-. —-. .----

7Guderley,~See footnote 2) p. I 524,
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a2
wdw+a2~+~dS=. —

k(k -I)m

in the entireregionof flow.s

With the resultantequation

the second equatd.on (ha) becoms, if, in addition,zn (a~2)= T

k -1 ~_
T d$+dr=O (lIC)

sin a csos a

As a result, the numerical work
mse.

fe simplerthm in the general

Again, all phase quantities at points 1 and 2 (fig. 1) are
known. The equatims

Y3 - yl= tan (31 - w) (X3 - q)

again give (gmphicelly or numerically) the position x3, y3 of
point 3. l&cmthe equations (llc) expressed in differences

——

.

.

.

& (03-$2] -(Q3 -@2) =0

8&&co, L.: Eine neue”Strcm@tiktim!Fiirdie Erfo~h~g- der-Bewegung *
der C&e mit Rotation,ZAMM 17, 2937, pp. 1-7, parttculmly p. 2, . .
equation (llt)b.
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with A = k -1 and &-T=O becomes
sin a cos cc

By mans of the streauild:e :~ough 3, IL is oltained, aa in ths general
caae, and with S3X =

7
and al . Because of equation (8)

the third equaticm (lOb is ~ot needed& is *31ue. Figure4 furnishes
W3 and the quantities a3 and A3 neededfor furthercaloulatlm.

For commmison with Guderle~ the additional term which is to
be pu’ on t~ left side of the s~cond equati~ (12) for the potential
flow,is determinedin orderto obtainthe le%t hand
seccmdequation(UC)

side of- the

da
a

fm the turbulent flow. This additional. term iS

=- cota~dss
$

since ~(k-l)=R md~=T

lilthe rotationally synuwtric~ case t~re IS ~ further ~itim~
term; according to equation (13a) it Is

. —
%uderley, {~e footnote 2), I %5, equation {16a) and (16b ).

.
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Intrwhming

it becomes

as in Gudeu-ley ~~ if it is bornein mind that the~e,as opposedto
our designations,y is used insteadof x and O t~re is the — —

-0, th6refore,in the caseangle with the axis of rotation,90°
of thisreport.

m. CC)MPRESION “Slm’cm .

The treatment of a compression shock appearing in the two-
dimensional flew with the variables sed in this report is given

1?for the example treated by Guderle# .
.

For any pointof the shockline let W be the velocity
(parallelto the x-axis),~ the preesure,~ the densityto the
left of the shockline,w (coordinatesu, v) velocity,p pressure,
p density,a sonicvelocityto the right of the shockline,
let poj ~p he tl.oprossnreand densityof the flowinggas at
rest,q= zhe (crnstant)criticalecmicvelocityand let

——..-. --- %.
l“(luderley (Se~. footnote 2}1 p. 1 526.

‘~GudSzle2(seefootnote2),figure14.

,
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then the flow to the left of the shockline”is givenby W’,
8.na ZPxpt follows from ~~ = Plk. The following equations ‘2
hold for passing through the shock line.

&
viz = (w -u+

u? -=?

‘++_. ‘-( )kflfit ‘-
?J t

(14)

(shock polar; it is the same curve here for all points of the shock
line) .

%%F+’2=W+ (16)

(17)

p? = esp:k (18)

(Equation of state, 1? the entropy is set equalto zero for PO, P..)

Point1: The directionof the velocityafterthe shockis
tangentto the profileat 1; as a result,from the shockpobrs
are obtained(fig.6) ~?, U1l, VI*, dl and the direction of
the shock line at 1, perpendicularto AB.

Then with that, pl! from (15), al? from (16), plf from (17),
al~

01 from (18), and al from sin al = —.
W1f

Point 2: Point 2 is taken close to 1 on the shock line and all
quantities (except X2 and y2) ere taken as at poitit 1 (fig. 7).

Point 3: The coordinates X3, y3 of the point 3 which is the
intersection of the characteristics 2-3 leaving from 2 with the .
cuntour of the profile, are obtained (graphically) by means of
-.

l%usemann (see footnote ~) p. 436.
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Y3 - Y2 ‘t~(~2-~) (~3 -x2)

Since 1-3 is a streamline, s# = s~x~ 3 is the direction of
the tangent to the contour at 3, T3 is computed from

with T3, at3 is obtainedfrom in (a!2)=T, wt~ from

w? 2
3+
2

and a3 with it.

Point 4: With ~f and
at 2 is established (it still

~t; the directionof the shockline
agrees with the direction-at 1). The

&irectionof the characteristicsout,from 3 gives,by means of

34 -Y3”t~ ($3+~3) (X4-X3)

the point h (x4,74) (graphically)asthe intersectionof this
characteristicwith the direction of the shockline; 34 is
estimated and w?4, u?4, v!4 are obtained graphically from the
shock polar; then, with that, p’k by (15)S ar4 by (26)j

a?4
Pt4 by (17), 54 from (18), ~ from ~in a4 = —

. . W*4’
T4 from’r4=ln (ar4)2.

SUppkmSntingthistthereis the seccjndeuuati~ of the
characteristicsfrom 3:”

A3 (d4-d3) - (S4X-S3X) + (T4-

from which a new ~4 is computed, with which an
carrlod out.

T3) = O

iteraticm is

Proceedtigfrom pointk alonga chare.cteristl-cof one family “ .

to a fartherpoint on the contour, the quantitiesat this point
are com~~utedanalogousto the mannerat 3, from here proceeding
along,acharacteristicof the otherfamilyto a fartherpointof ,

the shock line emd therecomputingthe quantitiesanalogousto the .
mannerat 4.



As soon as the steps become too large, it becomes necessary to
interpose points; new points in the region between shook line and
contour are computed by the method in 111. The related quantities
for the points of departure a, b are determined by interpolation
between 3 and 4 (fig. 8).

Translatedby Dave Feingold
NattonalAdvisoryCommittee
for Aeronautics
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