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TWO-DIMENSTONAL AND ROTATIONALLY SYMMETRICAL
GAS FLOWS®
By F. Pfeiffer e:ﬁd. W. Meyer-Xonig

SUMMARY

By means of characteristlcs theory, formmlas for the numerical
treatment of stationary compressible supersonic flows for the two—
dimensional and rotationelly symmetrical cases have been obtained
from thelr differentiel equations.

INTRODUCTION

The suxiliary means for the theoretical treatment of stationary
ges flows at supersonlc velocity are the characteristics of the
partidl differential sguations governing the motion. The Bugemann
graphic methods! for the treatment of such potential flows is based
on the network of the characteristics M = const., p = const., in the
velocity field (u, v—plane) and the fact, that at corresponding
vpoints of the velocity and the flow field (x, y-pleme) corresponding
characteristics are perpendiculer o one enother. Guderley® has
extended the Busemenn method 4o two~dimensional and rotationally

*'"Die Charakteristikenmethode bei stationfren ebenen und robations~
symmetrlschen Gesstrémungen." Zentrale fiir wissenschaftliches
Berichtswesen der ILuftfehrtforschung des Generalluftzeugmeisters (ZWB)
Berlin~Adlershof. Forschungsbericht Nr. 1581, March 20, 19k2.

‘Busemann, A.: "GCasdynemik." Handbuch 4, Experimentalphysik
Bd. 4, 1. Teil, 1931, pp. 341-460, perticularly p. 421 and the
followling pages.

Zuderley, G.: Die cherekteristikemmethode fiir ebene und,
achsensymmetrische Uberschallstrémungen. Jahrbuch der Deutschen
Iuftfehrtforschung 1940, pp. I 522 — I 535.
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symmetrical, turbulent flowe. On the basis of physicel conslderations,
he defined the changes dA, dp which the guantities A and u
experience in an advance from cne point of the flow field to an

ad jacent point along a characteristic.

For cases more general than Guderley postulated, it 1s
possible to get the differential equations for the characteristics
by pure mathematics directly from the differential equations for
the gag motion. They have a very simple form, so that they are
also suitable for the graphic, numerical treatment of special

problems.
SYMBOLS

z, 7 rectangular coordinates in the flow plane

velocity vector ’

i<

u, v rectangular coordinates in the velocity plens

Wy 4§ polar coordinates in the velocity plans

0 density
P pressure
8 entropy
T ‘ absolute - temperature

CpsCy  Spocific heat at constant pressure, or at constant volume

a sonic veloclity

aX critical sonic velocity
1 heat content

io heat content at ¥ =0
a Mach angle

wt, ut, vt, at, pt, p! dimensionless quantities instead of
Wy, U, V, 8 P, P
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ABBREVIATIONS
U=mp':T=1-n(a‘2)s S"t-,s, Sx=%:°=sx-‘7:
A=t | x=3 R=%-7

]
gin « cos o Cr

I: THE TWO-DIMENSIONAL FLIW

From the fundamental hydrodynemic equations for compressible,
stationary flow>

(xhx = - & rad p ‘
(1)
div (px) = 0

for the velocity vector ¥, the pressure p, and the density p, the
followirg equations are obtained for two-dimensional flow with
velocity coordinates u, v

du du ., 19 ov d3v 19
Syt & “Fx”ay”'as?“’ @

P + 95— + uEE + (3)

In a2ddition for an ideal gas there occurs the eguation

p = ceSpK (k)

' c
where S = -35;, s the entropy, k = Es- the ratio of tho specific
heats, C represents a comstant, which is derivable from the
equation of state

§=RT (ka)

We’*stpr, A, G., and Szego G.: Partielle Differentialgleichungen
der mathematischen Physik, 1930, p 3.
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because of the First and second laws of thermodynemics (R

= O - C
= % v
T = sbsolute temperature). ILastly there is the equetion

35 3s
us= + v = 0 5)
ox dy (

which expresses the hypothesis that the entropy along each individual
streemline is constent. From (4) for the (variable) sonic velocity - &

82 = ¥ = ko5t = 1 = kBT (6)
ap [+

further

(6a)

If equations (2) are written thusely:

o, v v, o, ., 8238,
uax + va va + vay + 5 ax-+ S 0
Su _.__éu + 8 % ., 8238
uay + v 3y u + uax > 3y ¥k By o]

miltiplication by dx or dy and addition (with w2 = u2 + v@)
a2 . . g2 du _ 9
wdw.f..-_dp-f-g—d_s:ﬁ;dy—vu) ( ""'l)
) k dy

that is, for leminar flow the following prevails everywhere

wdw + %? dpo + %? s =0 (7)
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for turbulent flow, on account of (5), on each streamline

wclw+-a§-dp=0 (Te)

On each streamline p = Clpk (C1 constant) end a2 = %P-,

k
k-1
by integration for each streamline

2
therefore %— dp = d( :g-). Accordingly, it follows from (7a)

— =i 8
2 x-1 © - ®
or
2
5+ 1=1, (8a)
if 1 =c,T = -—k—-RT = -5'-'3-— is the heat content of the ideal gas.
D k-1 k-1

The constant 1o 18 in general, different from streamline to stream—
line, The condition (8a) also holds in the final form if the stream—
line passes through & compression shock®; first, only the region that
does not Include & compression shock will be considered.

Equations (2), (3), and (5), where % and %? in (2) ere
replaced in accordance with (6a), together with

"\
du Su _ oy ov
u = —dx + — dy, dv =~ dx + —
n - + By dy v = + By iy
r (9)
9p o 38 o8 '
=—dx + =4y, 48 = = —
CrERETGY x "y Y
from elight linear equations for éu_ -ai §_v_ é_": 92- éf-’-, §§-, _B_§_

7 3 f 3 3 3
with the matrix ox dy Ox dy 3 Jdy Ox Oy -

* Busemann, A., (See footnote 1) p. 433.
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du fu v Iy A a6 B . 38 -
% % &% % & & &%

- ;
" v 0 0 2 o 2 .o o |
0 0 u v 0 £ o 2 0
p 0 Q p u 0 0] 0
0 0 0 0 o o u v 0
ix &y O ) 0 0 0 0 du
0 0 dx - dy © 0 0 0 0 av
0 0 0 0 ix ay o0 0 dp
0 ) 0 0 0 0 ax  dy as

The characteristics are here defined as those curves on the integral
du ca JIv v OO
surfaces soughd, along which the dsrivatives el ;;, 3{’
. ) T T o7 SRV
Qﬂu ga’-%ﬁ’ do not result from these eight equations as dafinite, -
oy Jdr oy _
along which, therefore, discontinuities in these derivatlves are

possible. In order that the quantities EE, éﬂ, éz, 93, 29, éﬁ,
s 98 ox’ dy ox’ & o oy
>, < can be auwbiguous, the determinants of eight rcwe of this
%' 3y

matrix must equel zero., Setting these determinants equal to zero
furnishes the rour systems of characteristics (projoction of the
first counted twice)

3
udy =vdx =0

s =0 (streamlines)r ' (20)
2 dp _
wdw + a 5 0 J

. ]
(v2 - 8a2) dx? ~2uv dx dy + (u@ ~ a®) 452 = 0 '

;@)
dy ~vdx) @dv - fdu) + (\%E + -@1%) 82 fdx +vay) = OJ’

(Mach waves)
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As & result of the introduction of polar coordinates with u = w cos ¥,
v =w ein 9 in the u, v.plane and of the Mach engle & through

gin o = f—; there is obtained

wiv —vau = w8 ds, uwdu +vav =wdw

and from the first eguation (11)

- ia\/42+v2—a2
gy . X0 = tan (9 F a)

ax 82 — u2

For w> a, that is, for the case of supersonic flow, which 1is the
pregent problem, the characteristics become real. On account’ of

wdy—v4X _ ¥ tan o equations (10) end (11) become

u dx+ vdy
N
4y _
ix tan 9
ds = 0 > (108)
d.w+a.sina,%9-=0
p
ay _ -
70 = tan (3 ¥ a)
, > .
N as d  ds (1la)
+ b m— =0
sinacos a P

(These equations are still valid, if the equation of stete is in the
more general form p = g(p » 8) provided in the second equation (lla)
1 o £

is replaced by —d— =,
k a2y o8 )
The equatiogs are made dimensionless, as & result of introducing
w°= wwt, & =+w%!, p = %', where w° is any reference velocity,
p” eany reference density. After setting 1n p' =0 and g* = Pl

the characteristic equations become
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M g: g - -
ax = uen {
ds = 0 - f (10b)
dwt + a! sin o dg = 0 J
”
& - ten (97 ) -
> 11
o dd + dg + d5* =0
gin o co8

-~

with sin a = 9-’-'-.
wl

In the point-by-point -numerical determination of the glow
phese with the aid of the characteristics the Massau method™ is
made use of.

Let all the phase quantities at points 1 and 2 of the flow
be known and provided with the subscript 1 or 2. A point 3 of
the flow with ite phass quantities is obtained thusly: According
to the first equation (11lb) the position xg, y3 of 3 is obtained
from y3 —yi1 = tan (8 — o) (x3 —x3) and y3 — yo = tan {82 + ap)
(x3 ~ X5) graphically or numerically. From the second equation (11b)
aré obtained these equations as differences

- 1 (83 =931) + (o3 + S3x) = 0] + Slx

gin Q) ©O8 Qq

and

1
gin ap cos ap

(93-9p) + (a5 + 85") = 0p + 85"

From this (numerically) 9 3 end o3 ¥+ S3x. By means of the first
equation (10b)

¥3 — Im = ten 83 (x3 - Zm) "

SEncyklopidle der Math. Wissenschaften II, 3, 1, . 162.
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either graphically or numerically :oint m is reacned frcm

point 3 by going in the direction of the streamline related to 3,

m Yeing in ths connecting line 1-2, whose phase quantities are
computed by linear inmterpolation from 1 and 2. Then 83 = S, and,
therefore o3 also, is obtained. The third equation (1Ob) gives

t

w3l = wp' = - aly sin oy (03 - Op)

from which w3' follows.

Wwith this x3, y3, 33, 03, 837, w3' are to be had. For fu;ther
celculation a*; and a3 from a3® = kCeS3p3k“l and sin a3 = %73
are used. From the first approximations obtained in this way, 3
better values can be obtained by iteration after the menner of
Masgau; often estimated, possible extrapolated values can be used
for the first approximations.

In all cases graphic representatione can be given for simpli-~
ficatlon of the calculation, for exemple, because

1
1 - Zgi
wt

the ray system A = constant end o = constant from the origin of
the a', w! plane, or the system of straight lines S = const.
in a plane with log & end log p in the coordinate directions.’

A= L =
sin & cos «

A b3

NOTE
du ov
In an isentropic laminar motion, 4S8 = Q0 and 5 S_ = 0,
X Y
therefore, everywhere and
waw+ép?. =0 (7b)

The equations for the characteristicr systems (11a) become



10 NACA ™ No. 1211

Y = tan (97 a)
, dx + (12)

T 49 - cot ad¥ =0

If P and P! are two corresponding points in the x, y— and the
1, v-planes sndl two pairs of corresponding characteristics with thelr
tangent directions are drawn through them, then

w
tan ¥ = =T cot
awfav T
also
=90° 1 a

A= ‘3.+7=90°+ 'Biu.

By the first equation (12)

S=-8;.T.a. ‘

In addition, there is the fact that is the basis for the Busemann

graphic method for isentropic, laminar motion, that in two corresponding

points of the u, v-— and the x, y-planes the charaoteristics are
mutuelly perpendiculsr crosswise.

II. THE ROTATIONARLY SYMMETRICAL FLOW

Equations (2) result from equations (1) again by application of
cylindrical coordinates® and comsidering the rotationel symmetry
while the term pZ enters in equation (3) on the left side. In
addition to that, equations (4) and (5) are again valid.

In setting up the characteristics, instead of 0 in the
ninth coluwmn, third place from the top pf appeerse now and, as a
result, the characteristic squations become

® Frank, Ph.; and V. Mises, R.: Die Differential—und *
Integralgleichungen der Mechenik und.Physik I, second ed., 1930, p. 86
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udy ~vidx = 0 (vz—az)dx2-2uvdxd.y+(u2—a2)dy2=o |
ds = 0 fdy —vax)2 B + fiay —vax) pav —vdu) ?(13)
wd.w+a-2%9-=0 +(g§+-d?s>a2@dx+vdy)=0

With the polar coordinates w, ¥ iIn the u, v-plens and the
Mach angle o +there is obtained because of

';2 = 2E=.];(:tana)w§-a—dx<wcosﬂtan ('SIa.).-'-wsinas)
ac ndx +vdy X g2 x

3

cop d
X cos o cos (U F &)

8 - tany %=tan(@ T @)
as = 0 F—=9&8 _ ,do,dS, &x cos = 0>(138)
gin a cosa p k X cos a cos (79

dw+a gsinado =0

providing x # O.

ITI. SPECIAL CABE: TIDENTICAL i, FOR ALL STREAMLINES

Guderley7 restricts himself to the practically important specisl
case that 1, in equation (8) is the same constant for all stream—
lines, that 1s, there is a curve (not a streamline) in the region
of flow, which is intersected by all streamlines and slong which ip
has = fixed value.

It follows from equation (8) then

wdw + ada =20

and from this, because of

al = kCesp k-1

waw + a2 92 4 a2
——— . e k-1

7Guderley, {See footmote 2) p. I 524,

- - o — - — o ——————
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or
2
2 QB. 8'2 u—_—_&-—_—
vaw + a p+-k—d.s k(k-l)ds
in the entire region of flow.®B

with the resultant equation

d_p+§._§=_ 1 4s + 2 9'2
o k EIE-IS k=1Iw=

the second equation (1la) becomes, if, in addition, i1an (a'2) = 7

$-—-E-;}-d:3—dsx+dT=0 (11c)
sin a cos a :

As a result, the numerical work is eimpler then in the general
case.

Agein, all phase guantities at points 1 and 2 (fig. 1) are
known. The equations

y3=7Jy1=ten QL —a) (x3 -x)

Y3 ~ Jo = tan (35 + op) (13—x2) .

agein give (graphically or numsricelly) the position x3s ¥3 of
point 3. From the equetions (llc) expressed in differences

—'Al (193 —131) - (¢3 -Ql) =0

and,

Ap (93 -9p) - (#3 ~®5) =0

B - .
Croceo, L.: Eine neus Stromfunktion fiir Ale Erfoschung der '
ung der Bewegun
der Gase mit Rotation, MM 17, 1937, pp. 1-T, particularly p. 2 mins
equation (1")v. ’

-
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with A = k-1 and ST -7 =& becomes
sin o ¢co8 «

Ay 81 + Apdp + &y - 0o
M + A

03 = 9y = Ay (83~ 8) = 0+ Ay (95~ %)

By means of the streamline through 3, m 1s obtained, az in the general
case, and with S3% s T3' end a! Because of eguatlon (8)

the third equation (101?? is not needed %his time. Figure 4 furnishes

w3 and the quantities ag and. A3 needed for further caloulation.

For comperison with Guderley the additional term which is to
be pu* on the left side of the second equation (12) for the potential
flow, is determined in order to obtain the le,f,t hand side of the
second equation (1lc)

aina.coscr.dsx+esinor.cosa,da

+.49 - —) E—T 5

for the turbulent flow. This additional term is

— 8ln o cos g 2.8ln o cog o = - Bln o cos o 48
g asT ) gf““mt“%l k-1 Kk

dw d.w g2 _ ds
—co‘bq-—.-}-co{;a’ = COtG:T—"——‘-—-_-"' t
W (k - 1)k°v °°

-c:c:*bcz.-m—d.s9
we

~ 2
since ¢y (k —1) =R end & =
kR

In the rotationally symmetrical case there is & further additicnal
term; according to equation (13a) it is

SGuderley, (See footnote 2), I 525, equation {16a) end (16b).
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iz & S
X cos 55 T a)

Introducing

dz: -a.x2+ ~2—=.——-—lx-—-———
. / W coe (9 ¥ a)

it becomes

d';l- sin a cos

ag in Gudsrley 19 if 1t is borne in mind that there, as opposed to
our designations, y is used Instead of x and ¥ there 1s the
angle with the exis of rotationm, 90° ~43, therefore, in the case
of this report.

1T¥ . COMPRESSION SHOCKS

The treatment of a compreseion shock appearing in the two-
dimensional flow with the varigbles ysed in this report 1s given
for the example treated by Guderleyl .

For any point of the shock line let W bYe the velocity
(parallel to the x-exis), p the pressure, p the density to the
left of the shock lins, w (coordinates wu, v) velocity, p pressure,
p density, a sonic velocity to the right of the shock line,
let pos P, be thu prossnre and density of the flowing gas at
reat, a~ the (constant) critical sonic velocity and let

¥ _ -y P = W u

""=W'-’-=§' -—--—p' "—‘=W' _.,.:u’ L:v' .R-:p'
ax z PO ¥ po s ax 2 ax ’ ax L4 Po 4
P £ At & _ .t

-t L e = o8

po P s gX 2

"

10 Guderley (3ec rootnote 2), p. I 526.

1lGudsrley (See footnote 2), figure 14. -
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then the flow to the left of the shpck line is given by WY, -
and P! X pt follows from P! = ptX, ©Dhe following equations !
hold for passing through the shock line.

e .
vi2 = (wt - ur)2 L (14)
A+ 2 Ft )= u?
(wl k+1

(shock polar; it is the same curve here Por all points of the shock
line).

pt = B! + B! (W' —u!) ¥ _k_%-]ir (15)

2 _1lk .
iyt - ST ) (16)

. - f - at2 pt (17)
-p! - eSplk (18)

(Equation of state, 1f the ontropy is set equal to zero for Por Po-)

Point l: The direction of the velocity after the shock is
tengent to the profile at 1; as a result, from the shock polars
are obtained (fig. 6) wi', wy', vi', 9; and the direction of
the shock line at 1, perpendicular to AB.

Then with that, p ' from (15), ay!? 'from (16), p1! from (17),
&l ,

9; from (18), and o3 from sin q3 = —
Point 2: Point 2 is taken close to 1 on the shock line and all
quantities (except =xp and yp) are taken as at poiat 1 (fig. 7).

Point 3: The coordinates x-, ¥y3 of the point 3 which is the
intersection of the characteristis 2=3 1leaving from 2 with the
contour of the profile, are cbtained (graphically) by means of

12pusements (See footnote 1) p. 436.
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y3 = ¥o = tan (0 — ap) (x3 - xp)

Since 1-3 is & streamline, S3* = S;¥93 1s the direction of
the tangent to the contour at 3, T3 1s computed from

- A (133 -d9) = (SBJc - S%) + (T3 -T2) =0
with 'r3, a'3 is obtained from In (a'e) =T, w'3 from

2 2
I M B S
2 k-1 2k -1

- eand a3 with 1t.

Point 4: With W' and w's the direction of the shock line
at 2 1s esteblished (it still agrees with the direction-at 1). The
direction of the characteristics out from 3 glves, by means of

Ty = J3 = tan @3 + a3) (x - x3)

the point &4 (x;, ¥y) (graphically)es the intersection of this
characteristic with the direction of the shock line; 9y 1is
estimated end w'y, u'y, v'y are obtailned gresphically from the
shock polar; then, with that, p'), by (15), a'y ’r:y (16),

pth by (17), Sy from (18}, ay from sin oy =§-;-Lﬁ:
Ty fromTy =1n (at))?. |

Supplementing this,there is the sscond equation of the
characteristics from 3:

A3 (84 = 93) = (84" = 83%) + (14 ~73) = 0

from which a new ﬁk ig computed, with which an iteration is
carried out.

Proceeding from point 4 along a charecteristic of one family
to a farther point on the contour, the quantities at this point
are computed analogous to the manner at 3, from here proceeding
along & characteristic of the other family to a farther point of
the shock line and there computing the quantitisee analogous to the
menner at 4.
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As soon as the steps become too large, it becomes necessary to
interypose points; new points in the region between shock line and
contour are computed by the method in III. The related quantities
for the points of departure a, b are determined by interpolation
between 3 and 4 (fig. 8).

Translated by Dave Feingold
National Advisory Committee
for Aeronautics
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