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TECHNICAL MEMORANDUM 1412

AERODYNAMIC FORCES ON A VIBRATING

UNSTAGGERED CASCADE*

By H. S6hngen

The unsteady aerodynamic forces, [based on two-dimensional incom-
pressible flow considerations], are determined for an unstaggered cascade,
the blades of which are vibrating in phase tn an approach flow parallel
to the blades.

INTRODUCTION

In the theory of axial turbomachines, the aerodynamic forces acting
on a vibrating cascade are of interest for investigations of vibrations.
These forces were determined in reference 1 for the-case where the
spacing of the cascade Is small. Information regarding an arbitrary
staggering does not yet exist; we shell investigate here the simplest
case of this kind, namely an unstaggered cascade with straight profiles,
the blades of which vibrate b phase. We do not presuppose to limit
our consideration to pure bending or torsional vibrations; rather, arbi-
trary periodic deformations of the blade are admitted and their lift
distribution is determined. This includes also the case where the flow
approaching the blades is unsteady. We do assume, however, that the
blades are not under static load, that the fluid is incompressible and
frictionless, and that the amplitudes of vibration are small.

LIFT DISTRIBUTION AND LIFT

Assume the
blades with the

approach flow toward the cascade to be parallel to the
velocity v. Let the velocity with which the blade

point x’ moves in the y’ directionbe givenby g(x’) x eiti. This
velocity is the sane for all blades. We visualize the blades of the

cascade as covered by vortices of the density y(x’)eifi. It must be
noted, in addition, that free vortices separate from the trailing edges
of the individual blades in proportion as the total circulation about

*
“Luftkr~fte an einem schwingenden Gitter.” Zeitschrift f-&

s.ngewandteWthematfk und Mechanik, vol. 35, issue 3, Mar. 1955,
pp. 81-88.

.



2 NACA TX 1412

the blade in question varies with the time, although with the inverse
8@J1. This is stipulated by the theorem of the conservation of circu-
lation in the total space. In a linear theory, for the amplitudes of
vibration to which we here limit ourselves, we may assume that these
free vortices move away with the basic flow. If we denote accordingly
their density by

()ivt-~

7oe (x’> z/2)

there applies at the trailing edge (x’ = 2/2) the relationship

d

J

l/2
‘W dxt + VyOe

iv(t-z/2v) = ~

z
y(x’)e

-2/2

by which the density of the free vortices is connected with
tion of the circuhtion about the blade.

(1)

the vari.a-

The vortices situated on the blades 7(x’) and the free vortices
70 have to be determined - with consideration of the relationship (1) -

in such a manner that the velocity component in the y’ direction,
induced by all the vortices together at the blade point x’, is equal
to that with which the blade point moves in this direction, that is,
equal to g(x’). A row
point x’ = O and each
whose yt component on

of vo&ices, which lie on the blades at the-
of which has the circulation y, induce a field
the blades at the point x’ is equal tu

gx ‘ —
Y e

- z Y&l Yrxf
ea -e-=

This expression is easily obtainedby superimposing the fields of the
individual vortices and by taking into consideration since this is an
axial-flow problem, that there can be no velocity induced far upstream of
the cascade, at development. This -es it necessary to superimpose
another transverse velocity on the summed row of vortices. Using the
expression given above, we then obtain as a boundary condition the inte-
gral equation

r

——
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1
f

1/2
.-
a 7(E’)

-z/2
e -e

for which we may also write

f

z/2
1-—
a, 7(E’)

-z/2

-i+ ‘
n)mev
7 J1/2

(

d~’ -

z~’ = g(x’) (2)

From this equation and equation (l), we have to determine the vortex
density 7(x’).

However, it is not so much the vortex density which is physically
interesting but the lift distribution 4(x’), that is, the pressure
difference between positive pressure side and suction side. We conclude
from the unsteady-pressure equation that between lift distribution and
vortex density there exists the relationship

P(x’) =
J

7(X’) +f+ “ 7(E’)dE’
-z/2

(3)

where

4(x’) = PW(x’)eiti

Thus, the lift distribution may be calculated as soon as the vortex
distribution is known.

In determining the lift distribution for the single blade, one
usually starts from the integral equation which is satisfied by the
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lift distribution. Thereforej we shall indicate the latter for the
present case. It reads

{z! P(,’)K(x’ - ~“jd,r
~ -1/2

with the kernel

K(x’) = -~

e“’ -e”

.. .

= f3(x’.) (lX1l <2/2) (4)

e:(x’-u’)
du ‘

Z!(X’-UJ) -&@I)
a
e -e

(5)

If we note that, because of (3),

7(x’) =P(x’) - i: ~x’ P(f ’)e v d~‘
-i:(x’-g’)

we can show that the integral eqwtion (4) is identical with (2) if Y.

satisfies equation (1).

However, since the kernel of the integral equation (4,)canbe less
easily seen through than that of (2), it appears more suitable to deter-
mine the lift distribution not directly by inversion of eq~tion (4)
but first to solve eqya.tion(2) with respect to 7(x’), with u as yet
undetermined constant 7.. Thus we obtain 7(x’) as a function of g(x’)

and 7.. If we introduce it into equation (1), a linear equation for To

results from which yO may be calculated as a function of g(x’).

Thereby 7(x’) also is determined, and the lift distribution can be
calculated..

For solving the integral equation (2), one’s first impulse is to
try to reduce it back to the Integral equation

1 1 F(E) ~E

i i

f

= G(x)
-l x-~ (6)

.

known from lifting-surface theory. For this purpose, we set

x =gxl

2
(7)
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and

5

.

*

with

T = 5rl/a B =si31h T

Furthermore, we stipulate that the primed

c = Cosh T

coordinates shsJl

(8)

always be
dimensional-quantities; those witho~t primes, in contrast, dimen~ionless,
as they result by means of equation (7). Coordinates with the sub-
script 1 shall always result from the coordinates without prties by ●

means of the substitution (8). ~ a manner which cannot be mistiter-
preted, we write

g(x’) = g(x) = d+

and correspondingly also, other functions. If f(x) is a given func-
tion, we always understand by fl(xl) the expression

..

Thus, the integral equation (2) then is transformed into

where Wl(xl) denotes the function describedby

and

is
is

al= V-L/2v

the so-called reduced frequency. Furthermore,
equivalent to

70=-i”~e
J

til
71(xl)dxl

-1

(9)

(lo)

the relationship (1)

-..

(U)
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From the integral equation (9), there follows, (reference 2)

1412

●

●

(=)

where the constant C at first may still be chosen arbitrarily. The
condition of a smooth outflow at the trailing edge requires that

(13)

Hence 71(x1) then takes the form

If we finally take into consideration that

J

1
c = 71(x~)dxl

-1

there results for the constant 70 the value

where

‘-M-2w“(X’)R‘1B(uJ,T)= ~

(15)

(16)

(17)

is a function which depends only on the reduced fre@ency and the geo-
metrical dimensions of the cascade.

Thus the problem is solved in principle. The function g(x’) is
given; with it, the constant 70 may be calculated from equation (1.6),
equation (14) then yields the vortex distribution 71(x1), and the lift

distribution results from
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.

(18)

It is now only a matter of writing this expression in a form more suit-
able for numerical calculation. It will.he seen, in particular, that,
whereas the influence of the function Wl(xl) - that is the influence

of the free vortices.- enters into the vortex distribution in a rela-
tively complicated manner, its effect on the lift distribution is of a
considerably simpler structure.

.

THE FUNCTION T(LD,T)

Before deriving a simpler representation of the lift distribution,
we shall give a series expansion for the function B(LD,T). From (10)
and (17), it follows that

If we interchange the integration sequence and tske

1 l+X1 (3xIT {rEl+l-1 1 - xl xl -El=+ ~-

there results

Furthermore it is convenient to split the function
parts. We let

and

B1(o,T) =:

into account that

11 d~ (19)

B(u,T) into two

(=)

7
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B(u),T) =
{

~ BO(LD,T) +

Particularly shnple representations exist
a/Z = W> that iS, T = O, so that we have
Since, ~1 = ~, we see immediately that

}
B1(LD,T) (22)

for these two functions If
the case of the single blade.

BO(U,O) = -iHJ%

where %(2) is the Hankel function. Furthermore, we can easily show

that

We shall now derive representations for these two functions which
are convenient especially for moderate values of a/Z. We have

If we understand by Q the path of integration represented in figure 2,
the integral taken over it W.iiishes. Since the expression under the
square root sign takes equal values on the two para~el paths, there
follows, with

cl)u.)’=;

*

dd

.

—
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However (ref. 3, p. 138)

e(il)’-in)tl

q’-
.~ -it+F’-in-’3’

(r’n+~ )
+ h’ r(-n - A’)

and therefore,

where

~=dEikJs .O=.
V=l ( 1vv+— *+ifD’ )

Because of II~ <1,this expansion converges so well for the spacing

factors customary in turbomachines a/z < 1, that is, T ~ m, that we

generally can get by with only the two first terms. The function B1(uJ,T)

may be calculated in exactly the sane manner, and we obtain

Therefore, for the function which, later on, will be the only one
of titerest

‘1 - ‘oT(LD,T) =—
Bl+ B.

(23)

which, for T = O, is transformed into the function known from the theory
of the single wing (ref. 4), nsmely,
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Hi(2)(CD)- iH$2)(u)
T(u) =

Hi(2)(u) + iH$2)(u)

there follows the representation

co

T -hT
ane

T(LD)T)= 1 - ‘h’ (1 - e-”) ~,+

II )

(24)
l+21&lJ’

1- 21
-2nT

1 + 2ti’
-fi%e

1

From this we wee that for spacing factors a/2 < 1 with an error of
not quite 1 percent we may set

1- T((D,T) = 2iw‘

1“+ 2ti’

LIFT DISTRIBUTIONAND LIFT

If we write the vortex distribution in the form

there follows (ref. ~, Al)

to71 El d~l =

(24’)

.

%

r

.
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with

where

11

W2(X1) = jx’w,(,,)u~ g2(xd=jx1q(E@, (27)

and C has the significance given above; namely

In order

function

c .~e
S+%o

(28)

to calculate the function W2(X1), we start from the

I‘1<1

For this function, Wl(xl>ti) = Wl(xl). If we first assume that ~a >0,

there applies

Hence it follows that

_ z ~-u
,aScl

If we let u ~ h, there follows

W,(xl) .J##ti(l

ln(l - xl) - (Sxl+c) ;W+l)d -

xl) -& (sx~+ c) WI(XJ

—
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If we further consider the integral relations~p
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with

o~arccosxl<fi

we obtain from (18) for the lift distribution the representation

70

dvl +

in which only the integral over the function wl remains to be calcu-
lated. For it there results

and we obtain,“because
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where T is the expression
ultimate representation for

13

defined by (23). There follows finally the
the lift distribtition

P(x) =;(sXl+ c)

dzf; ~~-d’l+

* ?I--f; PI - ;;’;&, “1 +

{ {z-s~-} (29)
:[1-T(o,T)] (sx~+c)

which for T ~0 is transformed into the representation known for the
single wing (refs. k, !3). For the lift we obtain from (29)

J’

2/2

J

1
‘(x) ~1 ~ eiVtA= &ax’= ;pvl+ —

-1/2 -1 sx~ + c

= pvl ;

{[

(1- T(u),T)) ~-
l+eT

g~;gl(xl){~ti.+

7

J
lg2(x1)(l - c - =1)

im
1 -) eivt

7
-1 (c

%

As an example
blades of the ring

of the deflection,

point moves in the

V+Sxl) 1 - X12 J
(30)

BENDllVGV~TIONS

of application, we shall consider the case where the
perform bending vibrations. If A is the amplitude

ti2V $eiti is the velocity with which each blade

direction of the Y’ axis. Therefore,

g(x’) .i&v+=8 = const

and hence there follows from the definition given above:
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If we enter these into (30), we obtain for the lMt the expression

A=
{[

fiPV2-A; b (1 - l?)
1 1 4-l— +028

}

lnCosh$ (31)
l+eT l+eT Z

which for T + O is transformed into

{
@J2 A aJ2- im(l + T(U))}

That is the value known for the single wing (ref. 4). If’wq assume,
on the other hand that T is large, andlimit ourselves to a linear
theory in a/t, we obtain, in agreement with reference 1

If we use for spacings a/Z ~ 1 the
the lift may be written in the form

<

12im (32)

approximation (24’) for 1 - T,

A=@J2A~
i }
h2f@,T) - 2iLDf2(UJ’,T)

with

.2bcosh:-f@’,T) T

4’+ :’i:+ eT)2

[

f2(Ui, T) = ‘T - ‘-T 1 -
eT

+1
( 1
1 + 402j~l + eT)

(33)

where these two functions assum the value 1 for a linear theory in a/t.
Hence we can see that for spacings m/Z ~ O.~, that is, for T values
~ .%c,the linear theory yields the left term which is proportional to
the velocity; thus the damping, with an error of not quite 1 percent.
In contrast, for the term which is proportional to the deflection, that
is, behaves like a spring force, conditions are consIderably more unfa-
vorable. This term is very inadequately included by the linear theory.
We must note, however, that in vibration cslculations this term is
opposed by a mechanical spring force which is generally very large com-
pared to the corresponding term of an aero@amic force so that the
deficiency has only a slight effect.

—.

b

Translated by Msry L. Mahler
National Advisory Cormnittee
for Aeronautics
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