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TECHNICAL, MEMORANDUM 1413

IMPACT ON A COMPRESSIBLE FLUID¥*

By I. T. Egorov

Upon impact of a sollid body on the plane surface of a fluid, there
occurs on the wetted surface of the body an sbrupt pressure rise which
propagates into both medis with the speed of sound.

Below, we assume the case where the speed of propagation of sound
in the body which falls on the surface of the fluid msay be regarded ss
infinitely large in comparison with the speed of propagation of sound
in the fluid; that is, we shall assume that the falling body is abso-
lutely rigid. In this case, the entire relative speed of the motion
which tekes place at the beginning of the impact is gbsorbed by the f£luid.
The hydrodynemic pressures arlising thereby are propsgated from the con-
tact surface within the fluild with the speed of sound in the form of
compression and expansion waves and are graduslly damped. After this,
they are dispersed like impact pressures, reach ever larger regions of
the fluld remote fram the body and became equel to zero; in the Ffluid
there remain hydrodynamic pressures corresponding to the motion of the
body after the impact (ref. 1).

Neglecting the forces of viscoslty and teking into account, further-
more, that the motion of the fluld begins from & state of rest, according
to Thomson 8 theorem, we may consider the motion of an ideal canpressible
fluid in the process of impact to be potential. -

We examine the case of impact upon the surface of & compressible
fluid of a flat plate of infinite extent or of a body, the immersed pert
of the surface of which may be called approximately flat. In this report
we dlscuss the first phase of the impact pressure on the surface of &
£luid, prior to the appesrance of a cavity, since at this stage the
hydrodynamic pressures reach their maximum values. Observations, after
the fall of the bodies on the surface of the fluid, show that the free
surface of the fluild at this stage is almost completely at rest if one
does not take into account the small rise in the neighborhood of the
boundaries of the impact surface.

1. ILet us consider the motion of a fluid in the coordinate sys-
tem Oxy, rigidly comnected with the solid body (fig. 1). In the
selected coordinste system, we have as the potentisl of the velocity of

*¥ydar o szhimsemuiu zhidkost." Prikladnsis Matematiks i Mekhanika.
Vol. 20, No. 1, 1956, pp. 67-T72.
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the motion ¢ -in the case of the two-dimensional problem - the fol-

lowing linearized equation (ref. 2):
3 —2
( _\/dap ) (1.1)

Here, c¢ 1is the speed of sound. The boundary conditions in the case
considered will be, on the free surface of the fluid,
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=0 for 'xl >a, y=20 (L.2)
on the surface of the plate,
%:y‘ for lxl <a, y=0 (15)

To the conditions required for a unique determination of the solu-
tion, we add yet another, the condition et infinity. Let us use the
principle of radiation and express the condition thet 1t is impossible
to propegate disturbances from infinity inside the flow; in other words,
the waves arising from the impact dissipate at infinity (ref. 2):

lim yff(i? + ivcp) =0 11m|ﬁcp| = Constant (1.4)
r— ® or r— o

We shall also lntroduce the stationary system of coordinstes 01 %1¥1 -
We shall place the axis O;xy on the free surface; the axls Oyy; inside
the fluld.

At the initisl instant of the impact, the motion of the plate is
debermined by the conditions

¥y, =0 yi' =v for t =0 (1.5)

2. We may continue the function @(x,y,t) to tthe upper half plane
and obtain the function ¢(x,y,t), which is analytic in the entire



NACA ™ 1413 3

plane with the exception of the cut |x { § a, vy =0 wvhereby
q’(x:Y:t) = -cp(x,—y,t).

We shall seek the partial integral of equation (1) in the form

o(x,5,t) = ¥(x,y)e P’ (2.1)

Substituting expression (2.1) into equation (1.1), we obtain

2 2
_a_.\_l‘r..a.fw._ﬂ—.*:() (2.2)
ax2 6y2 el _ 5

Assuming in this equation x = ax;, y = ayj, we can bring it into
the form

2 2 2p2
S¥ L9, 2y -0 v2=-aB) (2.3)
X2 oyt : c2

Here, and in what follows, the subscript 1 for the variables x;
and Yy is omitted.

The function ¥(x,y) must also satisfy the boundary conditions

¥ =0 for |x{>1,y=0 %yk=av for |x|<1,y=0
(2.4)

and also the conditions of the principle of radiation

limﬁ(gg+iw)=0 lim [\JT¥ | < Constant for r = {x2 + y25

(2.5)

We introduce the elliptical coordinates & and n (fig. 2) with
the aid of the equalities

X = cosh £ cos 1 y = sinh ¢ sin q (2.6)
This corresponds to the conformal transformation 2z = cosh { of the

plane z = x + iy into the plane { = ¢ + in. From the relationships
in equations (2.6), there follows
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2 2
X + Y

= cosen + sinzn =1
cosh®t  sinh2t

(2.7)

2 2 - -
X . ¥ = cosh®t - sinh®E = 1

cosgn sinen

To the lines & = Constant in the {-plane, there corresponds a
family of confocal ellipses in the z-plane and to the lines 1 = Constant
there correspond a family of confocal hyperbolas, orthogonal to the
Tamily of ellipses. It is easy to see that the region of interest to
us, |x|< 1, represents the degenerated ellipse ¢ = O, [n|<x. To
the region of the coordinate axis x> 1, there corresponds the degen-
erated hyperbola. 71 =0, & >0 and to x < -1, the degenerated hyper-
bola 7n =dx, ¢ > 0.

We may transform equation (2.3) after substitution of equations (2.6),
with the aid of Lamé's relationship (ref. 5)

2 2 2 2 2
0%y , 9% _ [o%v  9%w\laL (2.8)
o o \a® off)l% :
into the form
2
2_£.+ éfg + v2(cosh?t - cos2n)y = 0 (2.9)

d§2 on

Assuming its solution in the form w(&,n) = F(¢)a(n), we obtain, after
substitution of equation (2.9) for the functions F and G, the equa~
tions of Mathleu

2 - 2 g
G | (o - 284 cos 27)@ = 0 8&F _ (o - 28, cosh 2¢)F = O i .
2 . -
an ag
(2.10)
There
1 : a2 i ]
B, = =12 By = -6 8 = (e is & Constant) (2.11)
4 1C?
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As a result of the fact that « may assume any value, it is
necessary - in order to made the solution unique - that the function
G(n) in the z-plane should be periodic, with the period 2x. This
condition defines the multiplicity of eigenvalues m2n+l(6*) where

n=0,1,2, . ... The corresponding family of fundamental functions
forms a complete orthogonal system.

The function F(¢) must be expressed through the modified Mathieu
functions which satisfy the principle of radilation. In accordance with
what has been saild above, we shall seek the potential w(g,q) in the
form of an expansion in odd Mathieu functions of odd index

00

‘F(E)Tl) = 2 &Z&Plneéz];-z-l(g"e)sezn+l(n"e) (2-12)

n=0

Here, sey,, 1(7n,-8) is an odd periodic Mathieu function which is

the solution of the first kind of the first equation of (2.10) and is
expressed through trigonometric functions in the form of the series

0
ont+l
sepn,1(n,-0) = (-1)° }Z (-1)¥A5. 7 sin(2r + 1)q (2.13)
r=0
2n+l .
where A2r+l’ the expansion coefficients, are functions of 6. The

1
énil(g,-e) constitutes the combined Mathieu function,

expressed through the product of the Bessel functions of imaginary
argument in the form of the following series:

function Ne

Nepni1(85-8) = Eiggﬁf; ZE:'AE?:i[ir(Vl)Kf+1(V2) + If;i(vl)xr(vzi]

on+l
mhy’ e
(2.14)
Here,
1
(-1)™ 1
Plon = N ceE“*l(?fe)ce'En*l(Enﬂfe)

= ka=b
vy = ke
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ce2n+l(§,9) is the odd periodic Mathieu function, In&vl) is the Bessel
function of imaginary argument, and Km(vz) is a Macdonald function.

The function Neég_ l(g,-a) bas the following asymptotic

representation:

(1) . eV
Nes ' ~Ply o = . (2.15)

where v = 2k cosh £, whence it is evident that for £ - o the func-
tion (2.15) tends monotonically toward zero. Hence, it follows immed-
iately that the expression we derived for the potential (2.12) satisfies
the principle of radilation.

The function of the potential (2.12) satisfies the first boundary
condition (2.4) since, for 71 =0 and 17 = *r, the function sean+l(n,-9)

is transformed into zero.

For determining the arbitrary integration constant, 8op.1s We use

the second boundary condition (eq. (2.4)) which, in the elliptical coor-
dinate system, 1s written in the form :

o _ avsin g for |nj<=x, =0 (2.16)

SubJecting the expression of the potential (2.12) to the condition
(2.16), we obtain

av oin n = ) agnalers; (0,8)se, () (jnf<x) (2.17)

n=0

Here

(1)
Ne(l)'(o,_e) _ ONe i1 (8,-8)

Sarl 5t (2.18)

£=0
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We multiply the equation obtained by se dn, integrate from

-t to +%t and find

o
T (l) 7
a.vf s€op.1(n,-8)sin o dn = z 8'2:1-1-1Ne2n+l(0"9)f se2m_12('q,-e)dn
~5t =4 ~%
(2.19)
On the basis of the orthogonality of the Mathieu functions

x
f 332n+l( n, -8 ) sin 1 dn = (_l) nAl%lﬂ
=7

In conformity with the second condition of normalization of the
Mathieu functions (ref. 4),

T
f . 5eony1 (M, -8)dn =

Substituting the values of integrals found into equation (2.12) and.
solving it with respect to 8on41s WE obtain

2n+l

Bony1 = ( l)n 1 ay - (2.20)

éill(o"e)

Substituting, in turn, equation (2.20) into equation (2.12), we find

o (1)

N (5:"8)
v(g,m) =av ZE: (-1)7, 2 e?iK%(o 0) seppya(n,-8)  (2.21)
n=0 -

Taking into account formula (2.1), we introduce the velocity potential
of the motion of the f£luid considered in the form

s (1)
o(g,1,t) = a 2{: (-1)Pa; 221 Negn+l(§,-e)

n=0 ( ) (o -9)

e2n+l(n,—9)ve-Bt (2.22)
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The expression (2.22) is a partial integral of the wave equa-
tion (1.l) which satisfies the initial and boundary conditions that

we set up.

3. The data obtained regarding the flow of the fluid ensble us to
turn to the determination of the hydrodynamic forces. For this purpose,
we use lagrange's integral. Neglecting the welght and the squares of
the magnitudes of the absolute velocity of the fluld, we can find the
overall value of the hydrodynamic forces per unit width of the plate.
We integrate the pressure p =~ Pg = -podqydt along the length of the
plate and obtain - -

14

. a !
R¥* = -p, 9P gx or R¥ = poaL/\ 9% gin n dn, (3.1)
-8 Ot y=0 - Ot £=0
w (1)
N 0, "9 -
R¥ = pyra? X S )(Alzn"' l>2 2 (ve pt) (3.2)
el (0,-0) av
n=0 2n+1 -

Formuls (3.2) is derived for the case of a plate moving in an infi-
nite fluld. But according to the principle of symmetry, the values @
and dm/at above and below the axis of the plate are equal in magnitude
and opposite in sign. Hence, it follows that the force acting on the
plate upon impact on the free surface of the fluid is equal to half the
force acting on the plate in unbounded flow of the fluild:

o0 (1)
poxaz Ne (0,-8) P &
I e S L B
n=0 Ne2n+l(0,-e)

For simplification of the further notation we shall write

®  nell)

Le(6) = Z g (% 9)(A12n+l)2 (3.4)

n=0 Ne( ) (0:'9)

The diagrem of the function Le(8) i1s presented in figure 3. Let
us note that

1im Le{(6) = - for 8 - 0O 1lim Le(8) =0 for 6 —» o
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Thereby, in the first limiting case for © — O (which corresponds to a
transition to an incompressible fluid ¢ = =), the function Le(8) » =

like k2.

Carrying out the differentiation in formulas (3.3) and substituting
equation (B.h), we obtain the following expression for determining the
force of the impact:

= -1 2 _ -Bt)
R= -1ogeLe(e)y’ (v’ =ve (3.5)
Here, y' i1s the speed of motion of the plate during the process of impact.

In order to determine the parameter B, we substitute equations (3.5)
into the equation of motion of the plate which, in the case of weightless
impact, has the form my" = -R. As a result, we cobtain the transcendental
equation

ms= - %-ponaELe(e) (3.6)

It is not difficult to determine from this equation, for the given quan-
tities m, a, and pp, making use of the diegram of the function Le(8)

(fig. 3), the value of 6 and, consequently, the value of the parameter
B. (see (2.11).) Teking into account equation (3.6)% we obtain the

expression for the force R 1in the form: R = mﬁve"I3 ;3 we integrate
this expression and obtain

I = fot R at = w(1 - e-Bt) (3.7)

This relstionshlip permits us to determine the momentum of the fluid
for any instent of time during the first phase of the impact. Using
formulae (3.5), we can also determine the kinetic energy of the plate.

Figure 4 shows T T(t), the veriation with time of the kinetic
energy of the plate (m = 100 kg sec® m~t, & =1.10m, v = 5.0 m sec~L)
upon impact on water (c = 1,485 m.sec'l, pp = 102 kg sec m~+); on
ethyl alcohol (¢ = 1,170 m sec’l, Py = T9 kg sec? m'h); and on pentane
(c = 800 m sec-1, po = 6L kg sec? m~4%). Figure 5 shows for these same

cases the diagram of the variation of the momentum of the plate during
the process of impact.

Translated by Mary L. Mahler
Nationel Advisory Committee
for Aeronsutics
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