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TECHANICAL, MEMORANDUM 1k1k

AERODYNAMIC RESEARCH ON FUSELAGES WITH
RECTANGULAR CROSS SECTION®

By K. Maruhn

The influence of the deflected flow caused by the fuselage (espe-
cially by unsymmetrical attitudes) on the 1lift and the rolling moment
due to sideslip has previously been discussed for infinitely long fuse-
lages with circular and elliptical cross section. The aim of this work
is to add rectangular cross sections end, primarily, to give a principle
by which one can get practically useble contours through simple conformal
mapping. In a few examples, the velocity fleld in the wing region and
the induced flow produced are calculaeted and are compared with corre-
sponding results from elliptical and strictly rectangular cross sections.

I. SYMBOIS (SEE FIGURE 1)

t =y + iz points in the plane of the fuselage cross section

T =14+ 1t = pej"8 points in the plane of the mapped cifcle

bR width of the rectangulsr contour (always teken as 2
in the examples)

hp height of the rectangular contour, k = %ﬁ

s circular length on the contour measured from + =1
in a positive sense (direction)

Vﬁt) amount of flow velocity in the infinite t-plane

ViT) amount of flow velocity in the infinite T-plane

aét) sngle of flow in the infinite t-plane

aiT) angle of flow in the infinite T-plane

*uperodynamische Untersuchungen an Rimpfen mit rechteckihnlichem
Querschnitt.” Jehrbuch 1942 der deutschen Luftfahrtforschung, pp. 263-
279. (Report by the Deutschen Versuchsanstalt fir Luftfehrt, E.V.,
Berlin-Adlershof, Institute for.Aerodynemics.)
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w(t) velocity potential in the t-plane

w(T) veloclty potential in the T-plane

Vys Vg veloclty components 1n the t-plane

P regional pressure _

p&t) pressure in the infinite t-plane

q(t) dynamic pressure, formed with Vﬁt)

Zg constant distance from the y-axis, or helght of the
wing

b span of the elliptical wing

A ratio of the span to the maximum chord of the
elllpticel wing

A aspect ratio of the elliptical wing, %;

B sldeslip angle

cr, value of the rolling moment

II. INTRODUCTION

In order to find the influence of the fuselage on the wing In a first
rough approximation, one determines the up-wash or down-wash field that is
created by the fuselage boundary flow in the region of the wing (the wing
momentarily assumed as being absent), hence the additional 1lift distribu-
tion, for example, and the additional moment of the wing. Of especial
importance in respect to the lateral stability, 1s the rolling moment Que
to sideslip csused by sldeslip of the fuselage. Research on_this rolling
moment due to sideslip has been done by a number of authors.t To simplify
the research, an infinitely long fuselage with circular or elliptical
cross section is generally treated. Inesmuch as some practical fuselages
exhibit rectangular cross section, it might be of interest to do research
on these contours, for which the fuselage is also taken as belng infinitely
long. The method of conformal mapping permits one, as will be shown in the
following discussion, to obtain practically ussble cross sections, without -
as compared with the elliptical contour - having to do much more work to

lSee Multhopp, H.: Zur Aerodynamik des Flugzeugrumpfes. Luftfahrt-
forschung, Bd. 18, Lfg. 2/3, Mar. 29, 1941, pp. 52-66. (Avallable as
NACA TM 1036, 1942.) Jacobs, W.: Berechnung des Schiebe-Rollmomentes
fiir Fligel-Rumpfanordnungen. Jahrbuch 1941 der dtsch. Luftfshrtforschung,
vol. I, pp. 165-1T71.
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determine 81l desired date. Comperisons with the results for the ellip-
tical cross section show that the influence of the corners, especially at
great helght, is noticeable and is clearly seen during the rolling moment
due to sideslip. Calculations that were made for some cases on the exact
rectangle present a general idea of what effect a further sharpening of
the corners would have on the velocity field.

IIT. EQUATIONS FOR THE PRODUCTION OF CYLINDERS WITH RECTANGULAR

CROSS SECTION THROUGH CONFORMAL MAPPING

1. General

The next task is to determine rectangular figures in the t-plane
(t =y + 12z) (see fig. 1) that lie symmetrically to the y- and z-axes,
whose boundaries, through the use of the equation

C [&3
- 1.2 .
1-,—;a;.<'r+co+,‘_+1-2 ) (1)

are shown as derived from the boundaries of the unit circle in the T-plane
(tr = n+ 1if = peiﬂ). If one now assumes - because of the symmetrical
qualities of the needed figures - that polnts in the t-plene lying
symmetrical to the axes are the same as symmetrical points in the T-plane,
then, as one can easlily see,

cg=cp=cy=...=0 (2)
&, ¢1, ¢z, G5, . . . Teal (3)
Equation (1) then reads
- 1, %
t-a(¢+-:r—+3+...) (&)
2

and gives the following parameter for the rectangle® in question

2In the following we use the term rectangle for the rectengular
figure with rounded corners to differentiate from the exact rectangle.
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a[}; ¥ cl)cos 9 + cx COB 33 + . . .] = g(9)

<
i

(5)

5]
i

a.BF.- c1>sin 9 - c3 8in 39 - . . .].E h(9)

It is sufficlent to regard these functions in the interval 0 S 49 = /2
because of the symmetry.

To reduce the mathematics involved, we now only use the case

Cp=Cg=...= 0. Thus, we consider the mapping function
Cl (] C)
t = a('r-l--—--i-—5-+--i 6
T 3 (€)

and especially the parameter

<
il

a[(l + cl) cos 9 + ¢z cos 39 + cg cOS 56J -
T
a[{l - cl) sin 9 - c3 sin 39 - c5 sin 56]

]
]

As 18 shown in this equation, one can get very usable results even in the
case cg = 0 (rectangle Rls; this means that only one more factor has
to be used than for the ellipse. Expressions with Cg ¥ 0 were examined
(rectangle R2) to see what effects further factors would have.

The present constants cq, c3z, and c5 were then chosen so that the
relationship k& = height: width = hr: br of a basic exact rectangle is

kept throughout, and so that in this rectangle (defined by egs. (7)) the
relationship fits as 1s best possible. The number a > O 1s only a scale
factor and determines the size of the figure in the t-plesne; if the
definite body width by 1s used in equations (7), because bR/2 = g(0),

the result is

bR

g = 2 (8)

1+ ey + c5 + c5

b
In the examples & 1s determined so that 7? = 1,
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2. Bquations Used to Determine c1,

Without discussing in detail the derivation, which is found in
part V, the equatlions used to find the constants of the desired shapes

are put together by using & given k-value

c c
1. Rectangle Ry: t = a.(r + -+ + —1>

(a) O0<rgl:

_ K

ey LA

CB’ and 05

(b) 1 £k <w (practical common value):

cy = -]l - 9c5

'l’3 T

2. Rectangle Ry: (t = a<-r + % + Eé + E%)
8
17

(a) 0<kr S

Cr = = %
2 64 + 89’

(b) % k< !‘BI (practical common value):
Cs:%:;i, cl=-25c5, c5=_l
(e) -J;BZ Sk <w:

5~ 8By + &ue’ 17

C = 5005 + l,
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Worked examples:

1. k=1 s = - L ¢ =0, a= % (square Q)

91
. - 2 1
R=l.5- 05—-———, Cl _E’ a—-8—l
2. k= 1: c5=0, cl=0, c5=-%, a=%

kK= 1.5: cg = 1%;, ey = - 2 ¢z = = L a-= 45

In the case k =1, Ry and R, sautomatically coincide with the

square Q. (See fig. 2 where the corresponding circle and the exact
square Qqoy are shown for comperison.) The cases kK = 1.5 are shown

in figure 3 together with the corresponding ellipse and the exact
rectangle Rgy. It can be shown that R; &and Ro will be an increasing

distance apart as &k exceeds 1.
IV. USE OF FIOW FREE OF CIRCULATION

1. Genersal Equations for vy and v, in Case of an

Expression of the Form +t = a<? + ;; + E% +.i%>
T T

If W(T) describes the velocity potential of the circular flow in
the T-plane, (T = peiﬁ), one arrives at the velocity field in the t-plane,
since w(t) is the veloclity potential existing there, from the equation

dv _ daw 1 :
dt  dr dt (%)
ar

Furthermore, if Vﬁt) and aét), (or VﬁT) and aﬁT)) (see fig. 1) stand
‘for the velocity and direction of the flow (relative to the negative real
axls) at infinity of the t- (or T-) plane, then

vi o e (] vE®) - (10)

is generally true if these polnts correspond to each other.
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In the speclal case

t=alr+ ks34 (12)
T T35

the veloeity components Vy and v, of the flow in the t-plane for
@Sot) = 0 (flow parallel to the negative y-axis) are derived from

Wwo_. .1 l+i]—‘+(3cl-l+cﬁcoszﬂ+(252-zc-2)coslhs-
W@ T TR TR S T T2 ) B
E-c—5c'086~8 (12)
p6

Vz %\_I- <l- cl+303>sin 29 +<_5f2..3_c§>sin L9 -S—CZS:Ln 69

v(®) p? o® B ot o®
(13)
with . s 5 15
ey2 952 25es (3clf=3 c3C5 ﬂ)c s 28 &
N=1 + + + 2 + - o
* ot p8 pl2 o® pt0 0
10c
2(50105 - Efé) cos 48 - 65 cos 63
B P
while. in the case a.o(ot) = :r/2 (flow parallel to the positive z-axis)
1l +
_vy_=_% ( 2cl+323)sin 239 +(3—iz+z;2>sin Ly +?—%§-sin 69
Vogt) P P p p P )

c 1-c c c Se Sc
2 _ 1 1 -4 l-33cos21‘5-3—2+—2coslh‘3——5cos6ﬂ
v(t) W ot P2 e® o o8 o6

[}

(15)
are obtained. If one wants to find Vy and vy in particuler polints of
the t-plane, one must, of course, first find the corresponding values
T = pe-'b3 by using the reverse of equation (11).
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2. Results of Calculations

(a) Velocity fields.- As proved by eguations (12) to_ (15), (for

k=1 and & = 1l.5) vy and v, on the parallels drawn3 at an interval

%?, %?, 223, %? on the y-axis were calculated for the
examples listed in part III; the results are shown in figures 4, 5, and
11 to 1. 1In figures 6 to 10 and 15 to 23, the results are compared
with the corresponding flow around an ellipse and (in some cases) around
an exact rectangle™. One can then readlly see that, excepting the
vicinlty of the corner, the veloclty fields of the rectangle and the Rex

(in this case Q and Qex) differ comparatlively little. The difference

in the fleld around an ellipse (or a circle) i1s greater. Figures 2L to 26
show the pressure distribution on the contours plotted against the body
length; in these plots, the effect of the corners i1s especially noticeable.

of z5 =0,

(b) Induced rolling moment.- The results from (a) were finally used
to determine the rolllng moment due to sldeslip caused by the boundary-
layer flow, exerted by inclined flow on an elliptical wing. This was to
be done by using the method mentioned in the introduction, in which the
infiuence of the induced moment on the wing is not consldered. The calcu~
lation was carried out for the following examples (c'g, = 5.5)%:

1. A= 12.7 A= 10 bp/b = 1/15 (High aspect ratio)
2. A=T.6 A=6 br/b = 1/12 (Medium aspect ratio)
3, A= 3.8 A=3 br/b = 1/6 (Low aspect ratio)

and was based on the equation

3In the determination of T from equation (11), it proved practical
to assume p and to calculate 34 through successive approximations from

Tq = b Tp = . Ei - EZ - Ez . . . Bince this did not depend on finding
1 a’ 2 a 7
T 1'13 %)

and v, at determined p%ints of these parallels.

hSee Birkley, G.: Two-Dimensionel Potentlal Problems for the Space
Outside & Rectangle. Proc. London Math. Soc., (2), 37, 1934, pp. 82-105.
Here the conformal mepping of the boundary field of an exact rectangle
on the outside of a unit circle is mede calculeble. The necessary calcu-
lations are of course considersbly more extensive than on our figures Rj
and Ry.

*NACA reviewer's note: c'g, may be defined as sectlion 1lift curve
slope.

Vy
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The results, shown in figures 27 to 29, were calculated for different
fuselage shepes for which the widths were assumed to be egual (bg = 2).
The results, excepting those concerning the cirele, were found through
graphicel integration, where in the interval -1 to 1 (fuselage width)

vzlv(t) = 0 was assumed for all high positions. The results show &

-]
gstrong influence on the corners, besides the great influence of the high
position. The differences from the ellipse (or the circle) are noticesble;
the rectangles Ry eand Rp, however, show only small differences so that,

in general, the simpler shape Rj should be gufficient.
V. DERIVATIONS OF EQUATIONS IN PART IIT

1. General

To achieve & reasonsbly rectanguler figure, one must assume (see
egs. (5)) that, for 0 <3 < xn/2,

g(8), n(s) >0, g'(d) <0, h'(d) >0 . .. (17)

ig true. In the end points of the interval, equal merks can be used.
We further want to avoid points of inflection on the needed contour;
then, because of

az _ n'(9)
dy g'(9)
d.2Z glhlt - hlgl!

ay® (g’

2
d y - hlgl! - glh!! (18)

dZ2 (hl)3

DEquation (16) is derived from the known equation for the rolling
moment of an elliptical wing, if one replaces the geometrical angle (of

Vg
attack) by —=.
vt
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of course
&' (n1(8) - (g (9) >0 (0<9<F) (19)
is proved.
The range of values of the numbers Cq» 03, « « « 18 subject then

to certain restrictions that result™from conditions (17) and (19); they
are defined by the flxed side ratio of the rectangle and through the
hypothegis that, for 9 = 0 and 9§ = /2, the contour will have flat

points.

64 curve yv(x) (or =x(y)) has a flat point of the nth order
(n odd) in x5 (or yg) if y (or x) is differentisble (n + 2)
times and y''(xg) =y'"'"(x0) = . . . = y(n+2)(xo) =0 (or
x"(yg) = x"""(y0) o = 0)) is valid. If in this case
the flat points for 9 =0 (or 3 = ﬁ/é) should enter, then through con-
tinuation of the differentiation started in equation (18), it is shown
thet because of

]
I
H]
Py
5
A
Pan
e

g'(0) =g'"'(0) =. . .=0 (or h'(g) =h"'(-;-')= . « . =0)
g =ﬁ =, «. =0
dzl3=0 dz3|9=0
or -d;z- =£1-3—z = =0
dy | g=X 3] 9=X
) 5 dy- 19 5

is always automatically satisfied if h'O # 0 (or g! g # 0) and that
with respect to equation (17), h'(0) >0 (or g'(%) < 0) is true. In

order that

.d.._z-y_ = ﬁ = = dn+ly =0
dz2|9=0 dzt|s=0 az2*1 |9=0
or ﬁ = .gli = « o = dn+lz = O
_x b gz dz2* gz
ay?| s L ay'|e=I il s
be valid, the relationships g"(O% =g!t11(0) = . . .=g®l(o) =0
113N - e /R o = n+lj/o) -
(or h (2) h (2) . e .=h (2) 0) must exist.
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As slready stated in part III, our representative equation (4) should
show the boundary field of the desired shape clearly conforming to the
circumference of the unit circle of the T-plane; this condition is ful-
filled when the constants cj, ez, . . . &are so taken that t'(T) 1is
different from zero in the entire boundary field.T Now one has only to
prove that the derived representative function will be sufficient to
accomodate this restriction.

One will naturally attempt to use as few factors as possible in
equstion (1) - that is, with flat points of a low order for § = O
end 9 = 1r/2. As was shown in part III, the expressions up to and
including c3z /1'3 and Cs /25* glve usegble values. To add further
factors would probably not lmprove the gquality of a rectangular fuselage
cross section; certainly such en extension would not develop any diffi-
culties and could be performed without complicetions in the following
way.

c c
2. The Rectangle Ry (t = a.(-r + -?.l + _%))
T

The equations brought forward from equations (5) for g(3) and h(s)
are:

g(3)

h(3)

a[(l +cq) cos 9 + cz cos 3-8]
(20)

a[(l -cy1) sin § - cz sin 313_]

We choose s flat point of the first order for 9 = 0; then, (see foot-
note 6) h'(0) > 0. Therefore

1l-cy =35>0 (21)
and further g!''(0) = -a[(l + cl) + 9C3] = 0, that is,

ey = -1 - 903 (22)

Tsee Schmidt, B. Harry: Aerodynemik des Fluges. (Berlin and Leipzig),
1929, p. 98.

*NACA reviewer's note: The expression should reed c5/'r5. (See
eq. (6).)
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must be true. Of course, g'—; o=I is then equal to O, which is the case
2
when g'(-g) <0 or
1+cy =35>0 (23)

This and the deduction (21) is correct, with reference to equation (22)
if

1
-3 <ez<0 (24)

1s true. The sti1ll avallable constant Cz 1s needed to determine the

necessary side ratio & of the rectangle. From equations (20) one
derives, taking equation (22) into account, at

_ EB _ h(g) _ . 1+ Se3

bR~ g(0) | bes (23)

or

1l
°3 % " 5Tk (26)

Finally, the field of values for c5 and, therefore, also for k must

be found, for which field the restrictions in equations (17) and (19) are
taken care of. For this purpose we write g and h in the form

g(d) = a[(l +cy - 303) cos 3 + )+c5 cos’ 13] (27)
27
h(d) = a[(l -cy - 5c3) gin 3§ + )+c3 gind ﬂ]
from which, with reference to equation (22), we get
g(3) = -hac3[3 cos 9 - cos> ﬂ] (28)
2
h(9) = 2a [(l + 5c5) sin 9 + 2cz sin’ 13]
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Further,
g'(9) = 12acy sind 9
3 (29)
ht'(3) = 2&{:(1 + 9C3) cos 9 - 6c3 cosd 13]
and
g1 (8) = 369.(:3 gin® 3 cos 9 (50)
30
ht'(d) = -2a sin 19[1 + 9ez - 18c3 cos® 19]
are true. To meske the functions g(3d), h(d8) >0 for 0< 3 <%
1
-2 <ez < 0 (31)

must be valid. (See eqs. (28).) Then g' < O is also correct (see
eqs. (29)), while the expression h' > O requires that, for all values

of 9 when 0<3d <§, the expression 1 + 3c3(3 -2 cos2 3) > 0, that
is,

¢z 2 - % (32)
is true. As one can easily calculate, equations (29) and (30) give
g'h'' - hig'' = -211-8.2c3 sin? '8(1 + 9ez + 2 cos? 19), . .. (33)
and one can see that condition (19) is satisfied if ez <0 and
1+ 9cz + 2 co:ss2 4 > 0; therefore,
- % Se5<0 (34)

is true. These equations also satisfy conditions (24), (31), and (32).
Condition (34) stands for the field of values

1Sk <o (35)
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for k because of equetion (25). Taking equation (22) into account,

1+ 9C5 303
2 Ly

T T

tt(t) = all + (36)

is true; therefore, in conslderation of condition (34),

1+ 995

2

[t (m)] 2eal1l - - BEB 2 a[} - (1 + 903) + 363] = -6ac3 >0

(37)

T

is found for |T| 2 1; the zero points of +t'(v) 1lie inside the
circle |7 1| = 1.
As one notices in further analysis, the assumption that the flat

e
point of the first order lies at 3 = %, at cp =1+ 9c3, and Kk = - ————é——

l+5C3
(in this case c3 = - Efi%gz). To satlisfy conditions (17) and (19)

0> cx 2 - % must apply here, which for Kk corresponds to the
interval O < k S 1.

From the preceding discussion it 18 seen that the unit circle can
actually be changed into rectengular figures of any desirable side ratio

c c
through the use of the representative equation t = a1t + ?; + —% .
T

Information ebout its practical use is glven by the examples in part IV.

¢ ¢z cs
3. The Rectangle Ry t=a(T +—+ < + =
T T35

(a) Two flat points of first order.- We now set:

g(3)
h(3)

al{l + cqlcoe § + cxz cos 39 + cs cos 58
[+ <) 3 5 (36)

| NSURROR § SR— |

a[(l - c1)sin 9 - c5 sin 39 - c5 sin 58

and assume one flat point of the first order for each 9 =0 and 3 = %5
this means the functions g''(0) = h"(g) = 0 must apply (see footnote 6),

or



NACA ™ 1h1lk

1 +cq +9cxg + 255 =0 1-cy +9e5 - 255 =0
under the restrictions h'(0) > O, g'(’é) < 0, that is
l—cl—305—5C5>0 l+cl-3C3+5C5>O
must be true. Fram equations (39)
cx = - 19-. ey = -25¢5

follows and with these values condition (40) is satisfied for

The still unused constant c is again used for the side ratio.
can see from equetions (38) and equation (41),

n=£._+_2£2 C=Ln-l
1-27c5 57 2Tk +

[ et

We now determine the restrictions to which ¢ and therefore &k

(39)

(40)

(1)

(42)

As one

(43)

(because

of equations (17) and (19)) are subject. A little calculation, in con-

sideration of equation (L41) » results 1n

g(d) = a[(% - 20c5) cos 9 - (—g- + 2Oc5> cosd 9 + 16c5 cos? »3]
h(s) = al:(% + 20c5) sin 9 - (g - 20c5>sin3 3 - lées sin” a}

g'(8) = -ha sind 19(% - 25c5 + 20(35 sin? -8)

h'(38) = ka cosd -8(% + 25¢5 - 20c5 cos? 15)

(k)

(&5)



16 NACA ™ 141k

g''(8) = -lLa sinZ 9§ cos 9 é.- T5es5 + 100cs 8in? 8)
(46)
h''(9) = -ha cos? 9 sin »S(l + 75c5 - 100cs5 cos® 6)
from which
g'h't - h' g'' = 16a2 sin2 3 cos2 6[% + 2005 - 375c52 - h0c5 cos2 ﬁ]

(&7)

is derived. One cen easily see that for 0 < 8 < g, g' <0 and h' >0
are definitely satisfied if

1l <« < 1

- 5s==20C = 5= )-|-8
5~ 2715 (48)
ig true. TFor these values g(8), h(8) > 0. The expression (47) 1is
positive for |cz| = %% in the intervel O < 3 <-g; because of the con-

struction of the quedratic equation in equation (47) on the right side in
the square brackets, this equation applies to the entire interval (48).
Restrictions (17) and (19) are hereby satisfied if cs 1s subject to
restriction (48); therefore, the side ratio is within”the interval

8 <
T Sk S %; (49)

which should take care of the field in question for practical fuselage
cross sectlons.

To discuss the position of the zero places of t'(T) before con-
cluding, we write our representative equations with respect to equa-
tions (41) in the form

2
t(-r)=a(1~- 5:5-i+32) (50)
Because of expression (48) we derive for |T| 21
. _ 25¢5 1 25| 1 1 1
't(T)I—&l+—T?-+;T-E-;32 =a(l-g--5-l—5 >0 (51)
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The zero places for t'(r) lle inside the circle |T] = 1.

(b) A flat point of the third order.- Another method of determining
the avallable constants consists of assuming one flat point of the third
order instead of two flat points of the first order for 9 =0 or 3§ =2

It will be shown that the side ratios not included in expression (49) can
hereby be derived; this case will be briefly discussed.

If the flat point for 3§ = O 1s used, then

1+¢g +9cx+ 25c5 =0 end 1 +cy + 81c3 + 625c5 =0 (52)
or
2
c3=-—32c5 ey = 50c5 - 1 (53)

is correct. Since restriction (40) is satisfied because of h'(0) > O,
gf(g) <0, the limits for cs

0 <eg< (54)

=
15

are hereby found. Taking into consideration equations (53), we have

-~

g(3) 163.05(5 cos § - -J%Q- cos? § + cos” 13)
s (55)

h(3)

2a [(1 - 1505) gin § - % cs sind § & 8c5 sin” 13:'
J

g'(8) = -80ac5 gind §

3 5 (56)

h'(9) = 2a.l:(l - 75c5) cos J + 100c5 cos” 9 - 1(-Oc5 cos {l
g''(8) = -L4O0acs sinh' 9 cos ? (57)
57

ht'(8) = -2a sin ﬂ[l - T5es5 + 300e5 cos2 § - 200c5 cost 19]

and

g'h'' - h'g'' = 160a.2c5 s:i.n}+ 3 (l + b cos® § - 7505) (58)
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and without much trouble one finds that for

0 < eg é-%% (59)

restrietions (17) and (19) are satisfied. In respect to

-8
K = 2___922 or cg = 3 (60)
6405 6hr + 89

this corresponds to the k-intervel

.lEZng (61)

with which the connection to the right side of equation (49), is
established.

The representative function then i1s

-1 2
o(r) = a(T Q51 2es _2> (62)

Therefore, with |T| 2 1, keeping condition (59) in mind,

1l - 50¢ 25c 5c
14 5,2 2%

2 L 6

T T T

for(m)l ==

2 - - - -

= s.[l (l 5Oc5) 25c5 5c5] >0
(63)

is correct. If the flat point of the third order lies on the point § = Z

v

= = 23
cl = l + 5005 c3 - 3_ 05
_ 6’4-05 3K (6)4-)
T T3 ¥ 89e; o 5T T + B9k



NACA ™ 141k 19

is found with the restrictions

1< 8
_77_5.=c5<0 or O<ic§l7 . (65)

Translated by Peter R. Kurzhals
National Advisory Committee
for Aeronsutics
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Figure 6. - Velocity field, comparison between circle, Q and Qex.
2z0/hg =0 ) = 00, 90°.
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Figure 8.- Velocity field, comparison between circle, @ and Qgx.
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Figure 12.- Velocity field for rectangle Ry in flow; off) =00°.
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Figure 18.- Velocity field for rectangle Rg in flow; aff) = 00,
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Figure 14.- Velocity field for rectangle Rg in flow; a(t) = 90°,
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Figure 17.~ Velocity field; comparison between ellipse, Ry, and RZ'
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Figure 19.- Veloclty field; comparison between ellipse, R1, Ry, and
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Figure 20.- Velocity field; comparison between ellipse, Ry and Ro.
2z0/hg = 0.75 off) = 0°.
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Figure 22.~ Velocity field; comparison between ellipse, Ry, Rg, and
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Figure 23.~ Velocity field; comparison between ellipse, R4, Rg, and
Rex- 2zg/hr =1 a(g) = 900.
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Figure 24.- DPressure distribution in the first quadrant on the contour
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Figure 27.- Numerical coefficient of the rolling moment due to

sideslip induced by the fuselage on an elliptical wing, depending
on the vertical position of the wing. '
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Figure 28.- Numerical coefficient of the rolling moment due to

sideslip induced by the fuselage on an elliptical wing, depending
on the vertical position of the wing.
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