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CLIMBING EFFICIENCY OF AIRCRAFT. *

By C. C. Walker.

It is often said that no great aerodynamic improvements

are in si:ht and that the efficiency of aircra,ft a,stransport

vehicles is only capable of ordinary steady development. ?j~hile

this is, no doubt, somewhere near the truth so far as aerody-

namics are concerned, it is, Perhaps, worth while to see what

margin there may be for improvement without looking very far

ahead or relying on the doubtful possibility of new discover–

ies.

The rate of climb at

importance in bombers and

ground level is of obvious and vital

commercial airplanes, but less so for

types which possess a great margin of power and have to develop

their qualities at heights. Since the weight that can be

transported is limited to that which can be safely taken off

the ground, the efficiency in the climb:ng condition becomes im-

portant. It is quite common to find that only 50 per cent of

the ‘orakehorsepower at maximum revolutions is being turned

into useful work in this condition, and if am improvement in

the efficiency of, say, 5 per cent could be secured, the im-

provement in climb would be much more than this owing to the

fact that the vower used in merely sustaining the airplane is—.
*From “Flight,“ January 27, 1927.
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constant and any increase in available power is a relatively

large percentage of that used in actually climbing.

If the brake hors@ower developed at tiaximum speed flying

level is taken as the basis, it may b e divided up as follows

when climbing:

(1) ~~inimum horsepower’ required to sustain level flight.

(2) Horsepower returned as actual climb.

(3) Owing to the c~mpromise between the aircraft and pro-

peller curve, the best climbing speed is higher than that for

minimum horsepower. The?difference is lost work.

(4) The extra drag in the slip stream, or whatever may

be included in this term. This is really an excess loss over

that incurred at maximum speed.

(5) The horsepower lost by the propeller in turning brake

horsepower into thrust horsepower.

(6) Th; horsepower lost (or rathet, not used) by the en–

gine losing revolutions when climbing.

It is best to regard Nos. 1 and 2 as useful work for the

present purpose, as a.i~lanes of different we;ght per horse–

power can then be compared easily. As regards No. 4, it might

be supposed that the same fraction of the thrust horsepower

would be lost by the slip ,stream impinging on obstacles at all

values of ~T/~ . This does not appear to be the c~.se,and is

probably due to the fact that the slip stream contracts more at

climb than at speed.
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Loss No. 5 is, of course, affected by the smeed range of

the airplane, since a propeller working ~.ta much lower forward

speed (climbing) than that for which it is desiogned, is corre-

spondingly inefficient.

The figures given illustrate the sort of value which may

be encountered in practice, and are taken from actual examples

of modern aircraft.

Figure I.- This shows that under 50 per cent of the m.axi–

mum brake horse~ower is ~ade use of on the climb, and that the

drop in revolutions accounts for 1.2.25per cent, which is an

unusually large amount compared with water–cooled engines.

This figure is, of course, susceptible of considerable varia-

t ion, as it depends on indl~ction,heating, etc. In the ca,se

given, the engine is capable of functioning satisfactorily at

heights and in low temperatures, and there is no do~-bt that

when the cooling is relatively less, as in climbing near the

ground, a smaller loss of revolutions could be secured by de-

liberately going out for it. It is probable that low–ceiling

airplanes, such as heavy bombers or passenger carriers, require

a special intake and induction system on air-cooled en,qines.

Fiszurea.– This illustrates a case in which everything is

favorable to efficiency on the climb – the speed range is low

owing to the weight per horsepower bein~ high and, therefore,

the propeller is still working under tolerable conditions on

the climb.
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The 2 : 1 gear reduction (the ‘engine is a 90 R.A.F.) not ‘
,..

only Permits a high propeller efficiency? but also ““”sufficient

diameter to keep the slip stream clear of obstruction even on

the climb. The. smaller drop in revolutions compared with

Figure 1 is, of course, partly due to the smaller speed range,

and any possible engi-netemperature effect can only be disen-

tangled from propeller phenomena if a large number of tests are

available. An examination of a,great number of tests of De

Havilland airpl.anes, extending over 11 years, shows that on

the whole there is a much greater drop in power on the clinb

in air-cooled than in water-cooled engines.

Figure ~.- This figure relates to a water–cooled, un-

geared outfit of fairly hiqh speed range, and shows the inev-

itably bad propel]-er and slip conditions, which are, however,

compensated to some extent by the s:zalldrop in revolutions.

As the speed range of aircraft is increased, the need for the

variable pitch p,ropel.lerbecomes more insistent, but if per-

formance at great heights only is required, where the speed

range is much centracted, this is not so i~uch the case. Never-

theless it may be found that when operating from temporary war
+L!,

airports exceptionally good “take-off” ;nd “cl%nb” qua?.ities

will always be useful.

A word is necessary, perhaps, as”to how the “horsepower”

requi~edL, shown in these curves, is arrived at. There “are, of

course, “manyclifferent ways of doing this, but the folloming

I
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seems to be more free from uncertainties than others. The level

,. speed and rate of climb are carefully ascertained for ground

level, and it is then assumed that the propeller efficiency at

speed a-riddrag of the wing surface alone is known (there is

much full scale, theoretical and other evidence on this point).

The intercept between the wing and total.horsepower is then con-

sidered to vary as the cube of the speed.

able curve is put in in the usual way. It

that the measured climb is less th?n would

The horsepower avail-

will then be found

be indicated by the

intercept between these curves and the difference is debited to

the propeller as “slip 1.0ss“ or rather, additional losses from

obstructions over and above those incurred at speed. This

somewhat crude method of displaying what is measured in rou—

tine tests has certain advantages when comparing many differ–

ent results.

There has always been some discussion as to whether engine

power varies more nearly as the pressure or the density. So

far as water-cooled engines are concerned, any one C?eal.ing

with a large number of tests of aircraft using the same engine,

must have notioed that the density theory gives somewhat incon-

sistent results in varying temperatures, and this seems to be

generally admitted. It also seems inherently likely that in a

water–jacketed induction system and cylinder the amount of

charge will be fairly independent. of the atmospheric tempera–

ture; in other words, that the (indicated) horsepower will vary
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as the pressure. As re~ards air–cooled engines, while the writ-

>- er has had no opportunity as yet of sifting available data, it

seems eqwlly likely that atmospheric temperature will affect

the amount of charge by affecting the temperature of the cylin–

der walls; in other words, that the pressure

applicable. If this is the case, there will

in knowing what brake horsepower is actually

law will not be
●

bc a difficulty

being obtained

under varying conditions of flight. Thus , if we suppose that

on some particular day in level flight at maximum speed, the

engine temperature is the same as during the bench test on

which the power curve was obtained, then if the airpl.~.ncis

climbed at about half the forward speed the engine must be

warmer than on the level test and the power output less than on

the bench at the se.merevolutions.

Some of the losses of power considered above moy seem to

b e rather small, but the climbing qualities of aircraft are

sensitive to small variations of power and the commercial qual-

ities ?.resensitive to the climbing qualities, so there is no

doubt as to the commercial, and in many cases military, impor-

tance of these losses.

The advent of either a variable pitch propeller or a two-

speed :e~r will ~et rid of loss numbers 3 and 6 in the figures

above, rnd produce the result shown in Figure 4, where it is

applied to and superposed upon the Fibwre 2 results. In this

case, the use of a water-cooled engine is presupposed, or
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alternatively, that there is no temperature-effect 10SS of rev-

olutions if it is air-cooled.-.

Now the conditions shown in Figures 1 and 3 are not excep-

tionally bad, and as the tendency to boost power by increasing

revolutions proceeds, the climbing efficiency there shown tends

to become more common and even worse. It may be repeated.that

the results shown with the antique power plant of Figure 2 are

obtained on an existing airplane and are due only to decent

propeller conditions, ant the further improvement of Figure 4

is obtained without looking very far into the future.

There is a tendency in some quarters to view Dropel.ler

performance only in the speed condition, and this may be re--

sponsible for the prevailing inadequate slip-stream areas.

We will now look

cases taken above and

three efficiencies of

in a quantitative way at three of the

will illustrate them by applying the

Figures 1, 2, and 4, to an imaginary com-

mercial airplane of

power plant,

Figure 5 shows

characteristics suited to the Figure 1

the power available in each case on an air–

plane having a power a’ndsurface

respectively, and carrying about

paying load with the power plant

cqoled, ungeared, radial engine,

loading of about 14.75 and 10,

4* pounds per horsepower of

of Figure 1, i.e., an air-

of fairly high revolutions.

The cu~e marked 2 relates to the engine with a 2 : 1 re-

duction gear, and that marked 4, to the same with a variable,,

.

—mm . . .
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pitch propeller.

The iates of

and 920 ft./rein.

climb in the three cases are 516 : 735 :

There are many different ways of looking at the advant~fle

gained between the two extreme cases: it is possible to retain

the advantage of a.large r~serv~ horse~ower, to ihstall an en-

gine of 7!5per cent of the pbwer and carry more load (at a

Yather lower speed), or to increase the total weight and retain

the original climb and “ge~ off.”

Space will not permit of going into these cases in detail,
of

nor of discussing the advisability or otherwise/adding to me-

chanical complications, but wheilit is seen that the imaginary

airplane considered above (which may be taken as a limitin:

“get off” case) could now set off wit’h th-esame facility but

with nearly 20 lb./HP. total weight, a figure which would mean

that in some cases the payin~ load per horsepower could he

doubled, tilemagnitude of the losses frequently incurred now

can be easily realized.

It is evident tha,tfrom the purely aerodynamic point of

view it would pay to have the nropeller revolutions so low

that the efficiency at speed would begin to suffer somewhat but,

,. of course, there are many practical considerations in these

things, and the object of this report was to indicate that we

frequently only make use of 50 per cent of the maximum brake

.——
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horsepower of the engine in taking a load off the ground,.that

=.. this 10’ssis not inevitable, and the effort to get engines of

low weight per horsepower by boosting revolutions is very lit-

tle use to bombers and commercial airplanes.
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