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i NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1316

RESISTANCE OF A PIATE IN PARALLEL FIOW AT LOW REYNOLDS NUMBERS*

By Zbynek Janocur

SUMMARY

The frictional resistance of a flat plate in a laminar flow is
glven by the Blasius formula

1.328 1, & 2

N/Re 2

W =

on one side of the plate where 1 18 length, b is width of the plate,

and Re is %}. This formula was derived under the supposition of

constant static pressure along the plate (%§f= O) and of large Reynolds

numberg. In order to Investigate the range of moderate Reynolds numbers,
for example, of order of magnitude 10 to 103, measurements were carried
out by the author in the o0il channel of the Gottingen Institute for
Fluid Research at the suggestion of Professor Prandtl,

The results of these measurements, which Include Reynolds numbers
from 12 to 2335, are plotted in figure 10. It 1s shown that the values
of the r951stance coefficlent are higher than those given by the
Blagius formula. In the range of Reynolds numbers from 10 to 109, the
coeffliclent can be approximated by the formula

op = 2.90 Ro~0+601

10<Re <10°

with a mean error of 43 percent. ZFor Re>'lO3 the curve of the reslis-
tance coefficlent slowly approaches the line of the Blasgius formula.

*"Odpor podelné obtékand desky p¥i melych Reynoldsovych gislech."
Letecky Vyzkumny Ustav, Praha, Rep. 2, 1947.
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The lower limit of Reynolds numbers for the valldlty of the Blasius
formula can be extrapolated to approximately Re-2.104. The upper limit
is given by the transition to turbulent flow in the boundary layer at
about Re = 5.10°,

If the plate is not of an iInfinite span, but has a straight edge
parallel to the flow, an addltional resistance arisss at the edge. In
the range of Reynolds numbers from 30 to 2300, its magnitude can be
expressed by the formulr

D, = 1.6 piv

5]

with a mean error of 16.2 percent.

I. RESISTANCE OF BODIES IN IAMINAR FIOW
l. Introduction

The resistance of a body moving in a gas or liquid or exposed to
a medium flowing past it 1s a very complicated function of the geometric
properties of the body and of the physical propertles of the medium,
The resistance depends on the size of the body, its geometric shape and
position, the quality of the surface, and on the velocity and the
density, and the viscosity of the medium. A mathematical expression
that would make possible the computetion of the resistance from all
these magnitudes would be hardly constructible and for thils reason the
problem must be simplified by making certain assumptions:

(1) As regards the surface quality the body is assumed "aerody-
namically smooth", that i1s of such smoothness that the resistance of
the body does not change by further improving the surface for example
by polishing with finely ground metal, lacquer, and so forth.

(2) The same geometric shape of the body or expressions for
geometrically simlilar bodies are always assumed. The size of the body
is expressed by a certain given dimensional characteristic of the body,
for example, the radius of a sphere or the profile chord. This Investi-
gation 1s restricted to the case of symmetrical flow where the veloclty
vector colncides with the axils of symmetry of the body, thereby exclud-
ing from consideratlon buoyant force and the part of the resistance
Induced by it.

The followlng relation results:

W= f(l,v,p,p.)
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where

1 characterlstic dimension of body

v velocity of medlum relative to body

p denslty of medium

i coefficient of internal friction of medium

The analytical expression of this function would be excessively
compllcated. It 1s therefore convenient to use for the resistance a
certalin approximate formula in which the dependence on the variables is
expressed by a simple function and to multiply this function by a
coefficlent which likewise depends on the variables:

W=k F(1,v,0,u)

The resistance function F must also be the same for bodles of different
shapes and by assumption (2), the dependence on the shape ls referred to
the coefficlient of regigtance.

If the coefficlent 1s to be nondimensional, that i1s, independent of
the cholce of the system of units, the function F must have the same
dimensions as the resistance, that 1s the dimensions of a force. In
Newton's formula, which 1s almost exclusively used 1n practice:

W=ch92.v2=chq (1)

where F 1is now a characteristic area (for example, frontal) of the
body, a4 = pv2/2 1is the dynamic pressure (force on unit area), and the
product Fe.q has the dimensions of a force.

If the coefficient k or cx 1is to depend on the magnitudes 1,

v, P, and p and at the same time be nondimensional these magnitudes
must appear in the coefficlent in the form of nondlimensional combinations:

1@ vP o7 B
If the dimensions of the magnltudes are given In the absgolute system:

eee. (cm)
eees (cm)(sec™

eeee (g)(cm's)
eeer (g)(cm™1) (sec™1)

1)

T D <

the product cm.“-c.mﬁ-sec-Bog7-cm-37-g5-cm"aosec"8 must be nondimensional,
or a+B-3y-8 = 0, -p-85 =0, and y+0 = 0, from which it follows that
B=y=a and ® = -a. The nondimengional expressions which may be
constructed from the given four variables are then
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(v = p/b is the so-called kinematic viscosity). These expressions are
powers of the Reynolds number Re = Zv/v. The reslstance coefflicient 1is
then a function of the Reynolds number, or for constant Reynolds number

the coefficient of resigtance of geometrically similar bodies has the same
value. The dependence of the coefficient of resistance on Re 1s generally
given graphically because of the complexity of 1ts analytical expresslon.

The resistance formula need not always have the form (1). The
Stokes formula for the resistance of a sphere which 1s valid for very
small Reynolds numbers (Re <<1), is

W = 6n prv (2)

where r 18 the radius of the sphere. The resistance 1s proportional
to the first power of the velocity. The functlon prv has the dimen-
8lone of a force; and the coefflcient 6n 1is a constant independent
of the Reynolds number.

It is, in principle, immaterial which form of the resistance
function is selected. If the powers of the veloclty are considered,
use must be made of the expressions

W = ko(Re) %2- (3)
or

W= kl(Re) Miv (Stokes), (3*)
or 2
_ W = ky(Re) 1%0v? (Newton) (311)
or 3

W = kz(Re) l;E.vs (3t11)

and so on. The most sultable form of the resistance law must be chosen
according to the nature of the problem or according to the range of
Reynolds numbers, For the resistance of a plate use mugt be made of
the form of Newton's formula in which the ares of the plate is substi-
tuted in place of 12. For the resistance of a linear form, for
example, the added resistance of the bounding edges (parallel to the
stream) of a plate, the expression of Stokes In which the resistance

is proportional to the length 18 convenient. For very low Reynolds
numbers the Stokes formula 1s also generally used. It would be most
convenlent to use, if possible, in each range of Reynclds nuubers, that
form of expression for which k(Re) 1s constant., The most used
expression in practice is Newton's formula in form (1) where cy = 2ky

LT e
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 and the characteristic area of the body F is taken in place of sz

-If Stoke's formula for a sphere .(2) in Newton's form is preferred, the

Z,._&gggfficient of resistance obtalned is

, - o = 24
¥ . X = Re '
= :
& Re =gﬂ
Y

2. Theoretical Solution

- The posslbllities of a theoretical solution of the lamlnar and
- steady flow about bodles and the computatlon of the reslstance are

- briefly examined.

The lamlnar motion of a viscous fluld is governed by the equation
of Navier-Stokes, which in the case where no extermal force is actling
has the form (reference 1),

dw 1
-d—t_-agradp+vAw (4)

where p 1s the statlic pressure and A = Bz/axz + Bz/ayz + Bz/azz.
For the components of the two-dlmensional problem the equatlions are:

2 2
Ovy Oy Ovy 1 vy 0wy
A R RS R e

(5)
dv dv dv 1 Py, v
Ts%v'”x%”y?%-ag‘%“ e

. For the case of steady flow the flrst terms on the left sldes Bvx/Bt
and va/Bt also drop out. The equations are further supplemented by

the condition of continuity, which for an incompressible fluid is
divw=0 or

ov. ov. :

X 3
E*T%=° (6)
and by sultable boundary conditions. These are:

(1) For x-+ s e and y= t« the velocity v = v = constant and

(2) At the wall w = 0, the normal and tangential components of the
veloclty vanish.
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The equations are nonlinear and thelr general solutlon is not
known because a superposition of particular solutions 1s impossible.
A solution can be obtained only if the equations can be suitably
simplified.

(1) If v = 0 1is assumed, from the Navier-Stokes equation the
term vanishes that takes into account the internal friction in the
fluid. The remalning relation

dw , 1
-~ + =grad p =0

izt 5 & 1Y

is the Buler equation of motlon for an 1desal fluid In the simplified
cage of the absence of an external force (reference 2, p. 101). Its
integral along a streamline i1s the Bernoulll equation, which in the
most simple steady state expresses the law of the conservation of
energy

i

gZ+2

+ g = constant

For computing the velocity fileld the equation of continuity (8) is
employed in which are subgtituted

o2

from which is obtained the Laplace equation
Ap = O

where ¢ 1s the so-called veloclty potential. These equations must
not be subject to the second boundary conditlion as & whole but the
condition that the normal component of the veéloclty at the wall
vanishes. The tangential component i1s then obtalined from the solution
of the equation. (This is the so-called Neumann problem (reference 3,
pp. 613 and 620).) This condition agrees wilth the fact that the
internal friction in the fluld has been neglected. For a potential
flow, frictional resistance does not exist. The body 1s acted upon
only by the pressures glven at each point of the surface by the
Bernoulli equation. If the body is in a symmetrical flow (the circu-
lation of the velocity about the body is equal to O) the integral
vanishes over the entlre surface of the body and the resultant resist-
ance is equal to O (D'Allembert paradox).

(2) The nonlinearlty of equations (5) and (4) lies in the term on
the left side. If this term 1s neglected, the equation simplifies to
the form
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pAW = grad p

The solution of thils equatlon for the flow about a sphere wasg derived

TR

“by Stokes (reference 4). The neglected térm dw/dt ~is termed the _
‘inertia force in the fluld. These forces may be neglected when compared

with the viascous forces uAw only if the motions considered are

extremely slow or for very low Reynolds numbers. F¥or thls reason even
“at relatively large distances from the body where the effect of viscosity
-1s small the inertia terms cannot be neglected.

(3) Oseen (reference 5) perfected the Stokes theory by replacing
the inertia terms vxayx/ax, and go forth by the approximate wvalues

vaavx/Bx where vy, 18 the congtant value of the velocity component
vy &t Infinite distance from the body. Near the body where the values
of vy deviate considerably from voy the inertia terms are small com-

pared with the viscoslty terms so that the Oseen equation becomes the
Stokes equation. Oseen obtained an expression for the reslstance of
a gphere in the form

Erprvg
SI"V'O
L-g5

W =

The coefflcient of resistance for the Newtonlan form of the resistance
law 1s then

cx=%§-(l+13—gRe)

The Oseen method was used by Lamb (reference 6) to compute the
registance of a cylinder at low Reynolds numbers. Lamb's formuls is
comparatively complicated:

41(}1701

W=
v 1
Zn—v—1-;+-2-+27,n2—0.577
0
(0.577 is the Euler constant = lim (1+1/2+1/3+ . . o + 1/n - in n).)

(4) The solutions of Stokes and Oseen of the Navier-Stokes equation
are asynptotic solutions for 1lim Re = O, The equations cg&n however be
simplified and solved also for the case that 1im Re =«, a8 done in
the Prandtl theory of the boundary layer (reference 7).

At high Reynolds numbers the thickness of the reglon in which
internal friction occurs 1s small as compared with the length of the
wall, for the viscosity acts only in a thin layer at the wall, the
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so-called bbundary layer. Prandtl made an estimate of the order of
magnltude of each term of equations (5) and showed that on the right
slde the term Bzvx/axz in the first equation may be neglected as

compared with azvx/ayz and in the second equation the term azvy/axz
may be neglected as compared with Bzvx/Byz. Introducing the so-called
gtream function ¥ by the expresslons

the equatlon of the boundary layer is obtained
Py ¥ ¥y d¥ RV 1 1 dp

Stdy * Oy Oxdy T Ox y,2 ~ Fe 5

This equation is nonlinear but 1ts solution in suitable cases simpli-
fies to the solution of ordinary differential equations. This equation
has been solved by various methods for the case of the flow about
cylindrical bodles; a review of thls work has been given by L. Howarth
(reference 8). The exact solution for the flow past plates parallel

to the gtream for dp/dx = 0 has been glven by Blasius (reference 9).
For the coefficlent of frictlion for one side of the plate the following
expression is obtained (reference 9): 7

oy = 1.528 Re ° (7)

(The original value 1.327 of Blasilus was corrected by Topfer
(reference 10) to 1.328.) ’

A solution of equations (5) ls possible only in the simplified
cages when certain terms may be neglected., Solutions also exigt for
definitely prescribed forms of flow, for example, laminar flow in
pipes, the flow at the leadlng edge of a plate at right angles to the
stream, or the solution of several special nonsteady motions
(reference 11). TFor the steady flow about bodies in a free stream, a
known solution has been obtalned only for very low Reynolds numbers
or for the boundary layer for Re—+ «, In the range of Reynolds numbers
of "average" magnitude (roughly from 1 to 104) no simplifications of
equations (5) are possible and therefore an attempted solution in this
cagse lg faced with mathematlical difficulties which have as yet not been
overcome. Thls range 13 therefore left emtirely to the experimental
Investigators.

iy
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3. Resistance of Bodiles

As previously shown, by resgtricting the inveetligation to flow
without hydrostatic forces, the flow about a body of an ideal fluid is
potential and no resistance arises. In an actual medium, however,
resistance 1s always produced by the vlscosglty of the medlum, The
resistance may be divided into three different components 1ln accordance
with the manner in which the medlum acts on the body:

(1) A pressure resistance arises if the stream does not succeed in
adhering to the surface of the body and separates from the wall. Behind
the body there occurs a dead water or turbulent region in which the
pressure 1s lower than at the forward slide of the body. This part of
the pressure glves rise to a resigtance, The energy required for the
motion of the body i1s dissipated mainly in the turbulent regilon.

(2) Shear resistance. The internsl friction in the fluid requires
that the medium in contact with the wall be at rest relative to the wall,
At increasing distance from the wall the velocity continuously increases
to the full value of the velocity in the outer stream. About the body
there is thus formed a frictional or boundary layer which for large
Reynolds numbers is relatively thin (compared with the length of the
wall)., The particles of the medlum are retarded in the boundary layer
and thelr momentum is imparted to the wall causing a shear reslstance.
If p 18 the viscosity, v the velocity along the wall, and the
coordlnate y 1is at right angles to the wall, the shear force acting
on a unlt area of the wall is (reference 11, p. 36)

av
©= ()

¥=0

Dissipation of energy occurs mainly at the wall where the veloclity
gradient is greatest (in the direction normal to the wall).

(3) The deformation resistance arises at very small Reynolds
numbers, The retarding effect of the walls extends very far into the
medlum so that the dlssipation of energy appears in the entire retarded
region about the body, the so-called deformation space. The occurrence
of the deformation reslstance may be explalined as follows: If a body
1s moved a small distance along its path in a very viscous fluid, the
fluld deforms at first like an elastic medium. The Individual volume
elements in the neighborhood of the body are disturbed in tension or
in compression (in transverse contraction or dilatation). The high
viscosity permits only slow and delayed equalization of these internal
gtregses of the volume element to its new shape. In the case of con-
tinuous motion of the body, a constant deformation of the volume
elements In the fluid occurs.
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Spheres and cylinders of infinite length (reference 12) are
examples of bodles for which the coefflclent of resistance was determined
in a wide range of Reynolds numbers. The resistance coefficients of
these bodles are plotted in figure 1 on a logarithmic scale, for conven-
ience, in order to give the relative segment ARe/Pe as a constant scale
unlt. Both coefficilents, for the sphere and for the cylinder, show a
qualitatively constant trend.

The sharp divergence of the coefficlent for Re = 3.10° to 5109
1s connected with the occurrence of turbulence in the boundary layer and
is not included 1in this investlgation, which concerms the range of low
Reynolds numbers and laminar flow. For thls case a constant value of

¢y 1s found at about Re = 10°. The resistance is caused, as tests

show (references 13 and 14), principally by the pressure component, and
the constant value of the coefficlent shows that the magnitude of the
dead water region remains almost constant. As gsmaller Reynolds numbers
are approached the dead water region decreases but at the same time the
shear component of the resistance increases. The thickness of +the
boundary layer and the deformation resistance increase. The coefficient
of resigtance increases at a congtantly greater rate until at very low
Reynolds numbers it agrees wilth the theoretical curves of Stokes and
Oseen for the sphere and of Lamb for the cylinder. For 1im Re =+ 0O

the coefficlent c¢, increases witaout 1imlt as does dcx/dRe. In the

logarithmic plot, however, both curves have an asymptote for Re - 0;
that is,

d(log cg) doy . dRe
d(log Re) = c¢x = Re

converges to a constant for 1im Re = O,

For a plate in a parallel flow the entlre trend of the resistance
coefficient curve 1s not known. For hlgh Reynolds numbers for laminar
flow there is only the theoretical formula of Blasius (reference 7).

The formula was derived for the two-dimensional problem, that is for

the assumption that the plate was of infinite width. The formula is
represented In figure 1 by the straight line., The Blasius formula was
experimentally confirmed in the region of Re~ 10° (reference 15).
Measurements of the velocity distribution In the boundary layer which
were conducted by B. G. van der Hegge Zijnen (reference 16) and M., Hansen
(reference 17) likewlse confirm the Blasius theory.

The valldity of the Blasius formula is restricted to a certaln range
of Reynolds numbers, the upper limit depending on the occurrence of
turbulence 1n the boundary layer of & plate, which occurs, depending on
the degree of turbulence of the medium, between 109 and 106. On the
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average Recrit = 5.10°. The lower limit of validity is glven by the
condition that Re 1s large enough that the thickness of the boundary
Jlayer may be neglected as compared with the length. With decreasing
Reynolds number the boundary layer increases and the déformation resist-
ance beging to Increase., It has been seen In the cagse of the sphere and
cylinder that this 1s brought about by the accelerated increase in the
resisgtance coefficient with decreasing Re; 1t may also be expected that
for a plate in a parallel flow the increase in the resistance coefficient
will be more rapid than that given by the Blasius formula.

II. MBEASUREMENT OF RESISTANCE OF PLATE IN PARATIEL FLOW
l. Assumptions and Method of Measurement

The preceding considerations lead to the followlng problem: To
find the lower 1limit of the Reynolds numbers for which the Prandtl
boundary layer theory and the Blapius formula (7), which is derived
from it, for the shear reslstance of a plate are valid and how this
expression changes for low Reynolds numbers. The difficulties that are
encountered in the theoretical solution of the problem have already

been mentioned.

In order to determine the varlation of the resistance coefficient
of a plate in the range of low Reynolds numbers in which deviations may
be expected from the Blasius formula, the author in 1935 conducted tests
in the oll tunnel for viscous flow of the Wilhelm Institute at Gottingen
under the guidance of the director of the Institute, L. Prandtl. It was
posgible in the measurements to comprise a range of Reynolds numbers

from about 10 to 2300.

The measurements are based on the followlng principle (fig. 3):
The plate of thin sheet steel was suspended on a pendulum scale and was
partly immersged in the streaming oil. The resistance of the Immersed
part was determined from the deflectlon of the scale, The veloclty of
the oll was measured electrically with the ald of floats because at
the veloclitlies used of about 1 to 16 centimeters per second the dynamic
pressures were of the order of 10-2, or 1 millimeter column of water,
g0 that measurements with pltot tubes with normal micromanometers were

too rough.

The measurements were conducted on a plate of finlte width, the
longlitudinal edges of which were parallel with the flow. The shear
resistance on 1 centimeter width are expscted to be dlfferent near
the longitudinal edges from that for a plate of infinite width. Tenta-
tlve examination was made of the stream changes in the nelghborhood of
the edges. The conditions were expected to be approximately as shown
in figure 2., The loci of constant veloclty in a section at right angles
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to the edges are shown approximately in figure 2. The boundary layer
becames thinner the greater the drop in velocity in the direction normal
to. the plate (dv/dy)y=oa This leads to an Increase in the friction near

the boundary so that the reslstance increases,

The reslstance of a strip of unit width is normally computed as

= P _2
Wl—CxZZV

where cx(Re) 1s the coefflicient referred to the case of a plate of

infinite width., If the plate is bounded, an additional resistance
exists at the edges and the total reslistance of the plate immersed to
g depth Db 1is

W=W, b+Wy (8)

The resistance was therefore measured so that the plate was
gradually immersed and the deflections of the scale read. A curve of
the dependence of the resistance on the immersed depth ylelds the
straight line corresponding to equation (8) whose slope is W; and

whose intersection on the coordinate axis is Wy (fig. 11).

In this way, the problem of the coefficient of resistance of a
plate and the problem of the resistance of lts edges were solved
simultaneously.

It may be expected, on the basls of the considerations of the
preceding section, that the values of the coefflclent of resistance of
the plate in the range of Reynolds numbers of the measurements are
higher than those obtained from the Blasius formula (7), for the
Blasius formula was derived on the assumption that the thickness of
the boundary layer was small compared with the length of the plate.
The Prandtl and Blasius theory permits computation of the thickness of
the boundary layer (for example, reference 11, p. 89). The so-called
displacement thickness, that 1s, the distance at which the extermal
potential flow is affected by the boundary layer is

*
vx l.73
J =1.73 ===y
A]Re
o (9)
Re = 1=
v

where x 18 the dlstance from the leading edge of the plate. For the
actual thickness, that 1s, the distance up to which the effect of the
retardation of the liquid or gas extends, the rough value glven by the
following equation 1s assumed:
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f _ 5.26 x (9.)

For example, for Re = 104 +the thickness of the boundary layer is
equal to about 5 percent of the length x. If the lowest Reynolds num-
-bers for whlch the Blaslus formula is valld are to be determined from
the measurements (within the limits of accuracy of the measurements),

1t is necessary to conslder the maximum thilcknesges that can be acquired
by the boundary layers in order to be assumed thin enough to satlsfy
the condition of the Prandtl theory.

2. Measuring Apparatus

Followlng are the parts of the measuring apparatus and their
functions:

(1) 0il tunnel. - The oil tumnel was rectangular with circulating
flow. At each of the longer sides was a narrowed work section
179 millimeters deep by 148 millimeters wide and about 60 centimeters
long. On the opposite side was a rotary pump driven by an electric
motor, Ahead of the pump either a coolling coll in which cold water was
clrculated or an electric heater could be immersed in the oll. In this
way the viscosglty of the oil could be changed within wide limits and
the range of Reynolds numbers extended. It was posslble to vary the
temperature (in the summer) from 15° to 35°, The velocity was regulated
by the driving motor reslstance and its constancy controlled by a
voltmeter giving impulses to the motor.

In the work section the tunnel was contracted from 251 millimeters
ahead of the section to 148 millimeters. The oll then accelerated and
its veloclty in the transverse direction equalized out and was constant
over the entlre width. The veloclty profile at the start of the work
gectlon was then rectangular as at the tunnel entrance. The develop-
ment of the velocity profile wlth increasing distance from the entrance
could, at not too large a distance, be considered such that at the
walls the oll ls retarded and a boundary layer formed which increased
in thickness wlth dlstance from the entrance, The free stream, that is,
the part unretarded by the walls, then constantly contracts and accel-
erates, The veloclty was constant at right angles to the stream but
Increased in the direction of the stream. Figure 4 shows the longi-
tudinal veloclity proflle across the tunnel for certain veloclties at
the surface and beneath the surface, The transverse profile at about
3/4 of the distance through the work sectlon (the measured mean
velocity in the section 32 to 54 cm fram the entrance) is shown in
flgure 5.
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It would be necessary to measure the values of the resistance of
the plate in a uniform unaccelerated stream in order to obtain for the
relation sought those 1ldeal conditions for which the Blasius formula is
valid. Use of the measurements causes certain errors the magnitude of
which is evaluated in the section on the accuracy and corrections of
the measurements.

The problem arises as to which part of the work section of the
tunnel is most sultable for conducting the measurements. The longi-
tudinal non~homogeneity of the velocity of the free stream is somewhat
greater at the mouth and decreases with increasing distance. In addi-
tion, the effect of the measured plate on the stream must be taken
into account. The lmmersed plate retards the part of the llquid in its
boundary layer and leads to a further acceleration of the stream about
the plate. As the velocity 1s measured at the location of the plate
before its lmmersion and after ite removal the resistance is measured
at higher velocitles than those measured and. & correctlon must be made
on the measurements. This correction will be smaller the smaller the
crogs~-gectional area of the liquid retarded by the plate ag compared
with that of the free stream, that is, the wider the free stream.
Because the free stream ig wider at the entrance to the work section,
the measurements were conducted at thisg place. It is also possgible
to use the concept of the boundary layer at the walls for determining
the width of the free stream.

(2) Scale., - The support of T shape was suspended over the
tummel in a horizontal position. The longitudinal beam (parallel to
the direction of the stream) was double and the plate was clasped
between the two parts. The scale was made of a sheet of 0.5 millimeter
thickness reduced in welght by holes and stiffened by curved edges. At
the ends of the cross beam were mounted damping blades moving tightly
in troughs with oil. Damping of the swings was necesgary especlally at
large velocities of the oill so that reliable readings of the deflections
would be possible, This was shown by an indicator fastened to one arm
of the balance and moving over a graduated rule which could be read to
about 0.1 millimeter.

The support was suspended at three pointe and at two of these
polnte the supporting fibers formed & V to prevent rotation of the
geale, The fibers were of untwlsted gilk and so dimensioned that their
elongations with change in weight could be neglected.

Iength of suspengion L = 202.9 centimeters

Weight of support 13,67 grams
1/2 welght of fibers 0.04 grams
13,71 grams
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The effective welght is M

Mg = 13,7 grams (weight of support) + welght of plate
-0.5 grams (buoyancy of dampers) =~ bucyancy of plate

If x 1s the deflection of the scale In centimeters, the resistance 1s
0 =Mg % = 4,835 Mx dynes
(3) Plates. -~ The plates were of sheet.steel 0.5 millimeter thick

sharpened at the edges and polished., The followlng meapurements were
computed ¢

Plate | Length | Width | Weight | Buoyant force
(cm) (cm) | (gram) (gram)
I 10,0 | 19.2 25.,6 Q.44°D
IT 2.15 | 19.95 5.49 +09°D
11T 10,0 | 15.0 192.93 44D
v 15.0 | 10.0 19.93 66D
v 0.95 | 21.8 2.75 022D

In the expression for the buoyancy, b 1s the Immersed depth and
the corresponding coefflclent ls the product of a volume of 1 centimeter
vldth of the plate by the specifilc weight of the oil.

(4) 011, -~ The oll was Russlan of the so-called free-flowing type.
The dependence of the specifilc welght on the temperature was measured
by Mohr welights 1n a water bath at a determined temperature level.
There was measured

p = 0.8880 - 0,000666 T +0,00009

The viscoslity as a function of the temperature was measured by a
caplllar viscosimeter and is plottsd In figure 6.

(5) Electrical measurement of velocity. - The veloclty was measured
by floats of the form shown in figure 7. The small ball below was
wolghted with mercury and its flasks could be ralsed to different
depths or to the surface, Observation showed that they acquire the
veloclty of the oll very well and are not retarded as suspended particles
are.

Two brldges were placed across the tunnel whlich permitted a gap in
the middle bounded at the sldes by two knife edges commected to the
poles of a battery through a recording electrical apparatus. A thin
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wire was placed across the end of the knife edges to comnect the current.
When the float threw off the wire the current was Interrupted and this
break was recorded by the motion of & marker on a cylinder. Another
marker of the apparatus recorded the second impulses of a chroncmeter,
The time between the disconnecting of the two wires was then computed

by measurement of the record.

Except for the shortest plates, the dlstance of the wires was
chosen equal to the length of the plate so that the mean velocity of the
free stream was measured. For short plates, measurements were made at
the section 5 centimeters. Inasmuch as it was impossible to measure
the velocity and reslgtance simultaneously a series of five measurements
of the velocity was always conducted before and after the measurements
of the resistance, During the measurements, the impulses on the motor
were held constant. In meaguring the resistance the immersion of the
plate was varied by 1/2 or 1 centimeter. "One measurement" denotes a
geries of resistance readings (10 to 12, less for the small plates) and
both series of readings of the velocity (before and after the measure-
ment of the resistance).

3¢ Calculation of Results of Measurements

The arithmetlcal average was taken from all readings of the
velocity in one measurement. The probable error of the arithmetical
mean of the veloclty fluctuates In the individual measurements between
0.27 and 1.7 percent (average, 0.63 percent). Three measurements
with too large an error (about 3 percent), where the velocity changed
during the measurements and the values read before the measurement of
the resistance differed considerably from the values read after it,
were omitted. From the arithmetlcal mean of the velocities, the
length of the plate, and the values P and p corresponding to the
temperature of the oil, the Reynoldsg number of a measgurement
Re = 1 v/v was obtained.

The values of the resigtance for varlous depths of immersion must
satisfy equation (8). The values of Wi and Wh were obtained from

the measured values by the method of least squares. From the value of
Wi and the corresponding veloclty (arithmetical mean) the resistance
coefficient v was computed. Although 1t 1s usual to compute the
shear resistance only for one side of the plate, in this investigation
it was measured from both sideg and the coefficient is

W1 W1

Cy = =———— =
7 move  10v8

(F=b1,b=1). Apair of values Re and ¢y is then one point of
the curve cx(Re).
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As previously mentioned, a correction of the measurements must be
made in order to take account of the change in velocity produced by the
immersion of the plate. It 1a therefore necessary to know-the approx-
imate dependence of the reslstance on the veloclty and the uncorrected
values must first be computed.

The measurements are given in table I. If the values of cx(Re)

(eightn column of the table) are plotted in a logarithmic diagram, the
relation log cx(Re) is approximately linear. The relation is there-
fore approximated by a straight line giving an analytical expressilon
convenient for making corrections. The method of least squares gives
the preliminary result

log cy = 0.466 - 0,59 log Re £0.016

or
cy = 2,93 Re™0+59 (10)

with a mean error of 3.9 percent for the range Re = 10 to 2.5'103.
This relation was assumed as the bagis for correctlons.

4, Correction and Accuracy of Measurements

Before making corrections on the measured values, the extent to
which uge of the measurements for deriving the law of resgistance 1l1s
Justified must be determined. The purpose is to express the coefficlent
of regigtance of a plate in a flowlng medium of Infinlte extent which
everywhere, except for the effect of the plate itself, has a constant
velocity. It has alrsady been pointed out that the stream in the
tunnel isg accelersted in the longitudinal dilirection because the liquid
is retarded at the walls of the tunnel and forms a boundary layer
whereby the free gtream, that 1s the part not retarded by the walls,
ig contracted and accelerates.

The resigtance which is measured in this nonhomogeneous stream at
the plate would arise on the same plate in a homogeneous stream for a
certain "ldeal" velocity vy. Thls ideal velocity is assumed equal to

the measured average veloclty at the location of the plate and is
denoted by ¥. The error from thls assumption ls then to be estimated.

The plate is situated in an accelerated stream with 1ts leading
edge at a distance xp from the mouth; the length of the plate is 1

(fig. 8). The minimum velocity of the stream at the plate is at the
mouth, Vmin = v(xo) and the maximum is at the other end of the plate,

Vmax = v(xo + 1). The ideal value v4 18 certalnly between these two
values, that 1s v(xg)Svy S v(Xg + 1)« The error in determining the
velocity 1s then ¥ - vy and the relative error is '
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Fev v
& =“15£ =1- .}
P

The maximum possible relative error is then equal t0 the larger of the
numbers Ii - v(xo)/vl and Il - v(xo + Z)/?l.

In order to evaluate the error the variation of the velocity in the
tunnel must be known. The veloclty is directly proportional to the cross
section of the free stream, Q v = constant. The free stream contracts
from the entrance to the tumnel by the thickness of the boundary layer
(according to expression (9)) for which for simplicity 1t is assumed
that 1t is formed at the walls under the effect of an outside stream of
congtant velocity +v. (Actually the velocity outside the boundary layer
is variable so that the thickness would have to be corrected. However,
inagmuch as the thickness gives a correction of the first order for
the velocity, the correction of the thickness would give a correction of
the second order for the velocity. This is neglected because only the
limit of the errors is of interest.)

If x is the distance from the entrance, the width s 1is
14,8 centimeters, and the depth of the tumnel h isg 17.9 centimeters,
the initial section Qp = s h contracts to

* *

Qx) =s h - (2n+s) S (x) = Qo[l-0.19lf (x)] = Qg(1-kNTX) (11)
where k = 0.191.1.73 A[v/%.

The veloclity 1s then
v(x) = V0% v 1 Yo
—_ -— * -
Q) 1-0.191 / (x) 1-k~NX

The average cross section from x5 to x5 + 1, that is the
section through which the liquid would flow with velocity ¥, 1s
:X'-o'i'z XO+1

i Q
§=z Q(x)ax = = (1-k AR)dx =

X
0 *04

3 3
ofi -2y (]

0.220
= Q {}.— St 1 N{}
0 fJRe

It
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/2

3/2

where M = (xO/Z + l):5 - (xo/l)

From a comparison of equations (11) and (12) the average thickness

. of the boundary layer over the dlstance x3; to Xg + 1 1s obtalned:

F* 2 7 =_ ¥
/ =31.73JY;—M=1.73J§G=/ (%) (13)

where X 1is the distance from the entrance at which the boundary layer
of this average thickness 1s actually formed

N =2 Niun
3
= 4 2
X = - M
91
At this distance the velocity of the stream actually has the value V.

The thickness of the boundary layer at another place is obtained
from the equation

1 [

= =
S (®)
Computlng the maximum error redqulres the equations
*

*
vixo)  §  1-0.101/ (%) _ 1-0.101 / (§)

7 Q) T

* ¥ X
1-0.191 f (xg) 1-0.191 f (%) 2
X

Ad justing equation (13) yields

) =1asm 2By,
v AlRe
and this gives
0.220
v(xg) 1-yRs M1 _ N - 0,220 M 1

v X X

1. 22280y 5 29 RS - 0.220 M 3 AI—O

ARe X x

Similarly,
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Similarly,
v(xo+1)  ARe - 0.220 M 3
7 X
NBs - 0220 M 3 |22
X

From the equations 1t is seen that the maximun possible error 1s
greater for lower Reynolds numbers and depends on the length of the
plate, Its boundary values, that is, its values for the extreme
Reynolds numbers corresponding to each plate are computed. In the
measurements Xy had the value 3.5 centimeters. The results are given

in the following table:

Plate | T and IIT 1T v )
1 10 cm | 2.15 cm | 15 cm | 0.95 cm
M 1.35 2.14 1.215 2.99
X 8.11 4,37 9.83 3.77

For the measurements at the minimum Re of the plate,

NRe 14.8 5.45 26.9  3.46
V(Xo)

_ 0,918  0.972 0.932 0.907
=

v(xp+1)

————  1.076 1,027 1.070 1,014
."'r

8oy (V) #8.2 2.8 7.0 £l.4

percent percent percent percent

For the measurements at the maximum Re of the plate,

NRe 33.7 1547 48.3 5463
v(xg)
0.967 0,992 0.963 0,992
."'r
v(xg+1)
— 1,027 1,008 1,035 1,008
v
9 (v) 3.3 +0.8 3.7 40.8
max percent percent percent percent

For the long plates I, IIT, and IV;the maxlmum possible error,
particularly for smaller Reynolds number, is rather large, as was to be
expected, because the velocities at the beginning and end of the plate
are relatively larger. However, the resistance varies continuously
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with change in velocity at any point of the plate, and in a homogeneous
gtream (in the range of measured Reynolds numbers$ it varles approximately
I with the velocity to a power less than the second, Wevlet, In the

-curve of W against v (fig. 12) a parabola of this power is shown.

The measured resistance W +then certainly lies between the values which
the plate would give in a homogeneous stream for the extreme values of
the velocity W(v = v(xg)) and W(v = v(xy + 1)) and it must be

agsumed that it does not lle too close to these extreme values. If the
resistance were near the minimal valus, for example, the value for
v(xo), 1t would mean that the principal part of the resistance arises at

the forward part of the plate (where this is the actual velocity) so
that the prolongation of the plate would change the resistance very
little. If, on the other hand, W were near the value for v(xg + 1)

it would mean that the larger part of the resistance arises at the end
part of the plate and its forward part contributes very little to the
resistance. Both asgsumptions, however, contradict experience because,
according to the Blasius formula,

1.328
i
v

W-ZO'5, according to our preliminary results WW~ZO'41. The value of
W and therefore of vy cannot be too near the extreme values of the

resigtance or the velocity. It follows that the actual error arising

from the nonhomogeneity of the stream ¥ - v; must be considerably

W = b1 % ve

i
lower, equal only to a fraction of the estimated maximum possible error.

The computed maximum possible errors %,..(v) are errors in the

determination of_the velocity which correspond to the measured value of

the resistance W. However, the dependence of the resistance coefficient

on the Reynolds number is congidered and the error in the resistance coef-
ficient which arises from the non-homogeneity of the stream must be determined.

If use is made of the preliminary result (10), approximately by differen-

e mmr

gy 4

L

1

3& tiation

i

k{ B¢ _ 0.6 A¥

;.H | Cx v

by or ' \
K d(cy) = -0.6 §(v)

is obtained and for the maximum possible error in absolute value

'y
Hf}

M
oY
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3 oy(og) = 0.6 8, (v)
The maximum possible error for each plate then lies between the limits

Tand ITT &« &« o« « « 4.9 - 2.0 porcent, mean 3.5 percent

II- e o e o o & ¢ o ln 7 - 005 Percent, 1. l Percent
IVe ¢« ¢ ¢ o ¢ o o o 402 - 2 .2 percent, 3.2 percen’t
V s e o & o o o ¢ o 0 . 8 - o [] 5 percent, O . 7 percen-b

The first value always corresponds to the least Reynolds number at
which the resistance of the plate was measured and the second value
corresponds to the maximum Re of the plate. The actual error produced
by the non-homogeneity of the stream is considerably lower as has already
been emphasized. Thils error is systematic so that the measured values
of c¢x do not lle on an ideal curve cx(Re) but deviate from the curve,
for each plate separately, the deviation belng greater for smaller Re
and less for higher Re. Hence if the relation cx(Re) is plotted from

the measurements on all the plates it will deviate from the ideal curve
only by the average values of the errors on each plate and the change
in the errors with Reynolds number appears in the increased scatter of
the points about the curve rather than as an increased mean error of
the results.

The preceding considerations on the errors which can arise from the
fact that the resistance is measured in an accelerated stream instead
of a stream of everywhere constant velocity may be reduced to the follow-
ing considerations: The test curve of the dependence of the resistance
coefficient on the Reynolds number must deviate from the theoretical
values in the region of high measured Reynolds numbers (Re ~500 to 2000)
by a maximum of about 3,5 percent; in the range of Re ~100 by at most
1.1 percent; and in the range of lowest measured Reynolds numbers
(Re ~20) by at most 0.7 percent. The actual deviations however must be
considerably lower, that is equal to a fraction of these values. Further-
more, the nonhomogeneity of the stream must give rise to an increase in
the mean errors of the results.

Correction of measurements. - In the preceding considerations the
character of the stream without the immersed plate has been discussed.
Because the Ilmmersed plate reduces the cross-sectional area of the free
gtream, the stream accelerates and the non-homogeneity increases at a
rate 1ncreasing with the depth of immersion of the plate and the measured
value for the velocity of the stream as it was before the immersion of
the plate must be corrected. The correction can be carried out only
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approximately so that the thickness of the boundary layer 1s again
expressed by equation (9), which properly holds only for a homogeneous
stream, and in place of the acceleratlon at each point of the plate the
average increase in the veloclty along the plate is used.

If the plate is immersed to a depth b centimeters,the liquid about
the plate 1s then retarded in the average sectlion

1 *
lfz’bj (x)dx = 3,46 b ;}_fzﬁdx=2.30 bl
l 0 v Ro
0

This is the average value of the sectlon of the boundary layer along the
plate for which, however, the change in thickness at the longltudinal
edge is neglected, see figure 2.

The average cross gection of the free stream at the location of the
plate, that is, from x5 to x5 + 1 according to equation (12) is

§ = Qp(1-0.220 1 M/ NRe) and the average cross section contracted by
the plate is

§' = g - 2.30 b1
MRe
The ratio of the two areas is
Q. e 21 4 2230 4y
Q1 1 - L bl Q NRe
Q NRe

If ¥ is the average velocity without the plate and +¥' the
average velocity with the plate,

gt -5 &
Qt
- - _=[8Q 2.30 -
Av=v'-v=v(.—--l)=_ blv
Qr Q'JRa

If the velocity is increased by Av, the initial resistance W
increases to W' =W + (dW/dv)Av, which 1s the value that is actually
measured. The value of the reslstance is then reduced to

= o, dW
W= - (14)
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Computing dW/dv from the expresslon for the resistance of a plate
(for both sides) W = cypblv? using the results of the measurements (10)

glves

aw _ _ 2 . -1.,59 1
v 2cyPblv pblv” 2.9:0,59 Re v
= %W - 0.59 pblv 2.9-Re~059 = 1,41 g

where v 1is written in place of ¥. Then, approximately,

W= (1 - 1.41—A=‘£) = W (1 -S‘:zibz) =W (1 - eb)
v Q Re
where
_ 3.25 _ 3.25 1
Q NRe Qo( NRe - 0.220 IM)

Using the preceding values for M and 1 (see preceding table)
and Qg = 265 cm® yields for each plate

I, III e = —2kE3

NRe - 2.97
00,0264

NRe - 1.01

Iv E1y = 0.184
Re - 4,01

|

1T €17

v ey = 00116

MR@ - 0,63

These values ag functions of the Reynolds number are plotted in
figure 9.

Correction (15) must be made for each individual reading of the
resistance (for different immersions at the same velocity of the oil),
The straight line of the dependence of the resistance on the immersed
depth is plotted and the corrected values W; and W, are obtalned

(the dotted line in fig. 11) from which are obtained the corrected resis-
tance coefficients for given Reynolds numbers., These coefficients are
given in column 11 of table I and are plotted in figure 10,
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As has already been polnted .out,..the correction made is only approx-

imate, No account 1s taken of the effect of the change 1n velocity on
_the boundary layer in expressing the thickness of the boundary layer by
equation (9). In the range of these measurements. equation (9) holds only
approximately because 1t ig derived from the Blasius and Prandtl theory
for high Reynolds numbers and the form of the boundary layer in a non-
homogeneous stream differs from the form which the boundary layer has in
in a homogeneous gtream., More accurate corrections would however be

too complicated (if not impossible) to carry out because of the lack of
theoretical basls for a more accurate computation of the boundary layer
in this range of Reynolds number and in a non-homogeneous stream; that
18, for the varlation of the veloclty behind the entrance to the tunnel.

ITT, RESULTS OF MEASUREMENTS

1. Reslstance coefficient. - The measured and corrected values of
the resistance coefficient are plotted in figure 10 as a function of
Reynolds number, These values do not agree with the theoretical values
of the Blasius formula (7), which are indicated in the figure by the
dotted straight line. The actual values are higher and the deviation
from the theoretical values increases with decrease in Reynolds number,
that is, with increase in thickness of the boundary layer and deforma-
tion component of the resistance.

In the range of Re from 10 to lOs,the curve of the resistance
coefficient in the logarithmic plot is very close to a gstraight line
and its analytic approximatlon by a stralght line is then applicable.
Computatlion by the method of least squares gives the expression

log cx .= 0.463 - 0,60 log Re + 0,013

or the exponential law

cx = 2.90 Re"0+601  por 10<Re <10° (16)

wlith a mean error +3.0 percent.

This 1s the approximate expression in this range of Reynolds num-
bers. For Re>10° the curve of the coefficient slowly bends in such
way as to asymptotically approach the Blasiug stralght line.

If the result (16) is compared with the preliminary result (10)
1t 1is seen that the correction was only slightly changed. It is clear
that the approximate correction as carrlied out 1s entirely sufficient
within the limits of accuracy of the measurements. The mean error of
the results decreased as compared with the mean error of the preliminary
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resulté because the measurements were partly equalized by the corrections
and because the interval of Reynolds numbers In which the values of the
coefficient are approximated by a straight line was shortened.

In the preceding section the error was considered which arises when
the resistance is measured in & non-homogeneous accelerated stream in
place of a uniform stream. Its maximum possible limits were determined
and. the fact emphasized that the actual error must be considerably less.
It should then be expected that the actual errors will lle entirely
within the limits of the mean error i3 percent of the approximate
expression, in which the errors of non-homogeneity are already partially
taken into account. The computed mean error of the result +3 percent
will then correctly express the accuracy of the measurements.

2. Limit of valldity of Blasius formula. - It was impossible to
make measurements In the oll tumnel at high enough Reynolds numbers to
have the resistance coefficient agree with the Blaslius formula.

Figure 10 shows only that such agreement starts at Re>10%. If the
test curve is extrapolated for the lower limit of validity of the
Blasius law,the approximate value of about Re'-2-104 1s obtained.

It was stated previously that from this value there can be computed
the maximum thickness of the boundary layer for which the Prandtl
boundary-layer theory still holds or the thickness which must still be
agsumed small as compared with the length of the plate. From expres-
gion (9'), for the thickness of the boundary layer it follows that for
Re = 2-104, &= 0.04 x. This means that at the end of the plate the
thickness of the boundary layer must be at most 4 percent of the length
of the plate in order that the Prandtl and Blaslus theory may be used
for computing the boundary layer and resistance.

3. BEdge resistance, - If the parallel flow about the plate is not
of Infinite width but 1s bounded by an edge parallel with the direction
of the stream the resistance at the edge 1ls increased. The normal
registance (from the assumption of an infinite plate) for a width
(immersed depth) b 1is

W = 2c,b1 % v2
and to this must be added the edge resistance Wy

The measured and corrected values of the edge resistance are given
in column 10 of table I. The edge resisbances are small as compared with
the total resistance of the plate and their relative errors are then
greater than the errors of the reslstance Wy (that is the resistance

of a strip of unit width of a plate of infinite width). In the case of
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the shortest plate V of length 0.95 centimeter the edge resistance 1s
of the order of 1 dyne, that is, the resistance corresponding to the
deflection of the scale 0.1l- 0.2 millimeter. The edge resigtance was
then of the order of the measurements and for this plate was not taken
into account. Only the measurements on plates I, II, ITI, and IV were
used except the value Wp = 65 dynes for Re = 403, which evldently 1s
in large error probably on account of a shift of the scale or erroneous
reading of the zero point.

If it is assumed that the edge resistance is proportional to the
length of the edge and to the velocity of the medium, the Stokes for-
mila (3') is used for expressing the resistance:

The computed values ky (column 13 of table I) fluctuate in the

entire range of the measured Reynolds numbers about the same value 8o
that within the limits of accuracy of these measurements kj must be

agsumed constant, The arithmetical mean of the measured values 1is
ky = 1.62 £ 0,10
In the range of Reynolds numbers 30 to 2300, then,
Wh = 1.6 piv

with a mean error of 16.2 percent.

IV. CONCLUSIONS

The frictional resistance of a plate in a lamlnar parallel flow 1s
given by the Blasius formula

W=

1.528 13 0 2

I\I Re 2

for one side of the plate (1 = length, b = width of plate, Re = vl/v),
which holds for high Reynolds numbers provided that the flow at the plate
remaing laminar. This condition is satisfled, as measurements have shown,
for Reynolds numbers above & certain lower limit, which 1s approximately
2-104; the upper limit is given by the occurrence of turbulence In the
boundary layer and 1s found to be approximately 5.10°, For Reynolds
numbers lower than 2.10% the resistance of the plate 1s not governed by
the Blagius law but, as shown 1ln the present paper, has higher values.
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The resistance curve was measured In the interval of Reynolds numbers 12_
to0 2335 and 1s plotted. in flgure. 10, In.the interval Re = 10 to 10%
the resistance can be expressed by the formula

oy = 2.90 Re ~0*501

The change in the resistance coefficlent for still lower Reynolds
numbers may be estimated as follows: If the Reynolds number is decreased
by shortening the length of the plate then for 1im Re = O +the plate
(of infinite width) becomes & stralght line at right angles to the flow
(or becomes a point in the two-dimensional problem). The same condition
is true for a cylinder if its diameter 18 decreased. The resistances
of a plate and of a cylinder for 1lim Re = O +then converge to the same
value. (The resistance of the plate must be measured on both sides of
the plate.) It follows that the coefficients of resistance for very
low Reynolds number must be constant because it must not be asserted
that the characteristic lengths used in forming the Reynolds number,
that 1s, the length of the plate and the diameter of the cylinder, are
equivalent. These lengths can only be assumed proportional; therefore,
the curves for the coefficient are expected to have, in the logarithmlc
plots, parallel asymptotes for 1lim(log Re)-» -w. Such behavior of the
resistance coefficient must be expected not only for a plate and cyl-
inder but for all 'two-dimensional bodies?, that is, bodies of infinite
width at right angles to the flow.

A similar consideratlion shows that the resistance coefficient of
three-dimensional bodlies must also for log Re—> -« have asymptotes par-
allel to the Stokes straight line for the sphere. This may be explained
by the concept of the occurrence of resistance as follows: The geometri-
cal shape of the body has an effect on the shape of the deformation
region only at distances comparable with the dimensions of the body. At
digtances which are large compared with the dimensions of the body, as
long as the effect of the body extends for sufficiently low Reynolds num-
ber, the shape of the deformation region is independent of the particular
gshape of the body (for example whether it is curved or sharp edged). If,
therefore, the dimensions of the body may be neglected compared with the
dimensions of the deformation region the resistance is independent of
the shape of the body.

The measurement of the resistance was carried out on a plate of
finite wldth although the resistance coefficient refers to a plate of
infinite width., The measurements show that the effect of the longitudinal
edges of the plate appears in the increase of the resistance at the edge.
This additional resistance of the edge, within the limits of accuracy of
these measurements, may be expressed by the formula
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Wy = 1.6 piv

in the range of Reynolds numbers from 30 to 2300.

Translated by S. Relss,
National Advisory Commlttee
for Aeronautics,.
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TABLE I -~ MEASUREMENTS
Re v 2 v p L1 Wy Cx wl,corr. wh, corr. | ®x,corr.| HIV by
(cm/sec) |(cuf /soc) | (g/cm®)| (ayn) | (ayn) (dyme) (dyme)
Plate V
1 11,93 2,56 0,2037 0.8775 3.81 0.698 3,64 0.668
2 15.83 3.395 .2037 .8775 5.34 556 5.13 .534
3 15.83 3.395 .2037 8775 5.85 .609 5.41 .564
4 20.00 4.29 .238 .8775 7.9 515 7.65 .500
5 23.88 5.13 2040 8715 9.92 452 9.83 .440
6 28.02 6.01 .2037 .8775 | 11.42 +380 11.1 369
7 31.87 . 6.80 2037 .8775 | 13.8 359 13,44 348
Plate IT
8 29.7 2.63 0.1898 0.8764 5.29 2,04 | 0.400 4.88 2.€3 0.375 0.943 [2.79
9 34.9 3.25 .200 .877 7.72 .63 .388 7.24 1.57 .364 1.224 (1.28
10 36.62 3.475 .2040 .8775 7.70 2.0 339 7.28 2.62 .321 1.336 |1.96
11 40,08 3,42 .1834 .876 6.95 1.67 -3165 6.61 2,14 .300 1.185 |1.81
12 43,33 4,05 .2008 .877 10.3 1.7 .334 9.96 1.98 .323 1.533 (1.29
13 47.6 3.55 1604 .8735 7.25 .56 .306g 6.89 1.17 .291 1,070 {1.09
14 50.7 3.44 .146 .872 6.23 2.14 .281 5.94 2.60 .268 .941 (2.76
15 53.4 4.98 .2008 .877 13,1 1.8 .280 12.5 3.0 .268 1.883 [1.59
16 60,3 5.13 .183 .876 12.5 1.9 .253 12.0 2.6 .243 1.767 [1.47
17 75.6 6.73 +1915 .8765 | 19.3 2.1 .226 18.6 3.3 .218 2.425 |1.36
18 92.9 7.11 1645 .874 18.7 2.1 .197 18.1 3.4 191 2,200 |1.55
19| 102.5 6.92 .143 .872 16.4 .2 .183 15.9 1.0 177 1.853 .54
20| 115.5 8.81 .164 .874 25.2 1.7 173 24.5 2.9 .168 2,715 |1.07
21| 138.4 9.97 .1549 .873 29,2 6.0 .157 28.5 6.9 .153 2,900 |2.38
22| 165.6 11.56 .1501 .8725 { 34,3 7.2 137 33.6 8.0 134 3.255 [2.46
23| 227.3 14.8 .1400 .8713 | 46.0 6.2 L1124 45.6 6.7 111 3.880 |1.73
24 | 247.2 16.1 .1400 8713 | 52.8 4.6 .1088 52.4 4.96 .108 4,220 11.18
Plate IIT
251 219.1 3.55 0.1620 10,8737 | 13.6 5.85 |0.124 11.8 18.8 0.1073 5.025 |3.75
26 | 234.5 3.44 <1467 872 12.3 4.52 L1193 11.0 6.6 .1068 4,400 |1.50
27| 318.1 5.17 .1627 874 24,0 1.9 ,1025 21.3 6.57 .0912 7.35 .89
28| 340.0 5.18 .1524 8725 | 22,3 6.45 .0953 20.4 9.43 .0872 6.90 1.37
29 | 403 6.0 .149 .872 27.9 |(60.5) .0890 25.2 (65.0) .0806 7.80
30| 432 7.11 .1645 .874 36.4 8.0 .0823 33.7 12.2 .0764 ]10.22 1.19
31| 483 6.90 .143 .8715 | 31.0 10.2 .0748 29.1 12.6 .0702 8.80 1.47
32 | 516 8.67 .168 .8745 | 46.9 14.5 .0714 44.6 17.2 .0878 112,73 1.35
33 | 640 9.97 .1558 .873 55.9 17.4 .0644 53.8 19.5 .0620 {13.56 1.44
34| 993 13.4 .135 .8705 | 75.7 15.2 .0485 71.8 22.4 .0460 15.7z 1.42
35 [L050 14.8 141 .8715 | 88.6 24.9 .0464 87.3 26.4 .0458 [18.2 1.45
36 1134 16.10 142 .8715 .00 34.8 . 0443 98.6 35.6 .0438 (19.9 1.79
Plate IV
37| 724 6.85 0.142 0.8715 | 35.3 18.2 0,0575 33.6 20.3 0.0547 [12.7 1.60
38| 785 8.73 1668 874 53,0 30.5 .0530 52.6 26.8 .0528 [19.08 1.40
39| 808 8.81 .1636 874 56.0 21.3 .0551 53,0 24.7 .0520 |18.90 1.31
4011143 8.335 »1094 .867 42,251 15.6 .0469 40.6 17.3 .0450 |11.85 1.46
41 (1336 9.74 .1094 .867 52,9 18.5 .0429 51.3 20.0 .0417 |13.85 1.44
42 |1542 11.25 .1094 .867 66,45 | 20.0 .0403 64.4 22.1 .0391 |16.00 1.38
431680 11.1 .0992 .865 S56.9 27.4 .0352 55.2 29.1 .0345 [14.3 2.03
44 {1921 12.7 .0992 .865 69.5 26.8 .0332 68.0 27.9 .0326 |16.35 1.71
45|2133 14.11 .0992 .865 82.7 33.5 .0321 80.7 35.0 .0313 118,16 1.93
46 (2262 14.0 .0932 .863 79.7 27.0 .0314 77.7 29.3 .0305 |16.93 1,73
472335 15.44 .0987 .865 96.3 27.2 .0312 94.0 29.3 .0304 (19.88 1.47
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Figure 1. - Dependence of resistance coefficient on Reynolds number for sphere, cylinder, and plate.
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