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SUMMARY

This report treats the stress distribution in shell-
shaped airplane components (fuselage, wings) as an equi-
librium problem; it includes both cylindrical and non-
cylindrical shells. In particular, it treate the stress
distribution at the point of stress application” ai~d at
cut-out points.

1. GWERAL REMARKS OiJ STRESS DISTRIBUTION

To indicate the ~.~lgle from which the arguments on
shell strength are to proceed, we shall intersperse a few
fundamental statements on the stress distribution in stat-
ically indeterminate structures.

A. Safety by Any Chosen Stress Distribution

The designer has” to form a structural component.
Having decided u;?on a preliminary sha:oe, he ascertains,
more or less arbitrarily, the stress d.istri’oution in the
almost always statically indeterminate component, after
which he settles the dimensions of the particular part in
such a way that the permissible stress is at no point ex-
ceeded. The designer. aims to cho-ose the stress distribu-
tion consistent with minimum weight.

In view of this, it is important for the designer to
control the possibilities for the stress distribution (the
equilibrium conditions). Indeed, these equilibrium con-
diticns form the basis of every statically indeterminate

—————____ ________ __.._______.-—__———— .---————. -————

*llEiniges ~ber schalenf~rmige Flugzeug-Bauteile. 11 Luf t-
fahrtforschun.g, VO1. 13, no. ,9, September 2(2, 1936,
pp. 281-2926 .
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calculation. Quite often the designer foregoes the latter
for the following reasons:

In the -part which he designed and for which he estab-
lished the size, the actually produced strain energy -
i.e., the strain energy corresponding to the actually pro-
duced f~rce flew - is, according to the theorem of minimum
strain energy, less than that corresponding to the chosen
stress distribution. In other words, the stresses for
which he dimensioned. the part have, with relation to the
total volume of the ~art, a higher mean value of the stress
square than the actually occurring stresses.. Thus, having
recourse to his arbitrarily chosen stress distribution,
the designer is ‘Ion the aver.agelf on the safe side.

As the actual strain energy is less than the one cor-
responding to the chosen stress distribution, overstresses
can occur only in zones with small volume. The designer
must check his structural component carefully for this
contin~encyo

In particular, he must:

Avoid “nctched places;

Stiffen manifestly weak members (such as free run-
ning members of comparatively small section);

Check for the predetermined external loading”as to
whether this structural part is also able to
carry a scmewh~.t altered stress ?.istributien;

Check the strength of the part by changed external
load.

All this he would equally have to do in a statically
indeterminate calculation.

B. Low Weight and Stiffness as Parallel Requirements

If the designer has chosen the stress distribution
with a view to minimum weight, the structural component is
on the average (i.e. , in mean value of “stress square)
stiffer than any other identically highly stressed, but
heavier design, For, minimum volume by given mean value
of stress square means minimum’ strain energy and conse-
quently, least wcrk and shortest g~;ths of the given exter-
nal loads. The aim of the designer ?.t lowest pcssitle
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stresses for given weight, augments the stiffness of the
rlhe ski~~fui design is stiff,structural part even more. _

,..,,
and at the” same tim”’e, light.

II. SHELL FRCBLEMS

A. Elementary

1 The flat surface shell.- If a hollow space is.A.._——————_—________———
cornFletely enclosed by ,statically determinate Flane-braced
frames without any member passing through the inside”~f
the hollow space, this space framework is statically deter-
minate and, as a rule, stable. It is, according to A.
Foppl, a I!trellis structureot’ Substitution of the surface
of the hollow space tiy malls (flat plates) capable of car-
rying stresses in its plane only, results in a flat sur-
i’ace shell. This body also resists stresses at the corners.

To cnmpute the “shell, it is best to establish - for
the same external load - the tension t“erces in a static-
ally determinate framework enclosing the same hcll~m space,
and then apply the tension established on the framework as
load. Figure 1 illustrates this for two bars. This method
reduces the three-dimensional problem to a number rf two-
dimensional - although in general statically indeterminate.
problems. (The plates or disksare statice.lly indetermi-
nate, i-eference 1.) Owing t,$.this remaining statical in-
determinateness, such shells maybe called quasi statically
determinate.

Now the determination of the tension in such a frame-
work (lattice structure) i.s in mnre cases than net, quite
a task. But the number of reports available on oblcng
structural components of predominantly square cross sec-
tion (fuselage, wing box (fig. 2)), assure a comprehensive
tension determination (reference 2). These reports refer
to partially statically indeterminate and partially static-
ally determinate frameworks. The, results are transferable
to flat surface shells; in fact, some of them are specif-
ically derived for shells.

“ The substitution of a shell bounded by curved walls
by a framework is in general nc longer exactly possible.
Even an approximate cal~laticn through establishing the
tensions in a substitute framework is quite complicated on
account of the large -number of truss members and their usti-
ally slanting direction.
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2. Combres&ion; bending torsion, and flegQx=l_!~<=———..—— L__ —_______
siclria’- On application (fig. ~a), at the ends of a thin-.-—
walled prismatic bar (tube or channel), ,of axial stresses
linearly distributed over the section, or on application
of shearing stresses distributed conformable to linearly
fi.istributed axial stresses (that is, the usual bending),
the shearing-stress distribution is constant in all sec-
tions throughout the length of the bar. The cross sec-
tions of the keam do not become twisted. In this case,
there is no %rnall nroblem. This also holds true for shear-
ing stresses in the ends corresponding to St. Venant!s tor-
sion.

Under axial stresses corresponding to a distribution
of flexural torsion applied at the ends of an open pris-
matic section, the resultant force is zero. This is e.
case of stress in the zone of the section end which, al-
though there is. no external torsion momlent, causes the end
to twist and which, as a result of St. Venant~s torsional
stiffness, cancels out at some distance from the end sec-
tion. At every cross section of the profile the moment of
3t. Ven.antis shearing stresses (fig. ?c) are inversely pro-
portional to the shearing stresses of the flexural torsion
(fig. Td) ‘caused by the ch~,nge in the axial stresses. In
the event th~.t the wall thickness of the section is small,
the cancellation does not” take place until after a consid-

.er.able d.ista,nce. This S,lSO is hardly a shell problem,
since the distortions of the section are su%ordin?.te. The
same holds for the case of external torsi’on moment at the
end of t’he open section, of the type of the shearing
stresses nccom;?anying the flexur~.1 torsion (fig. 3e).

B. Real Shell Problems

Shell problems arise (fig. 4) when the cross-sectional
form of the shell varies throughout its length; when axial
or shearing stresses in other than the discussed distribu-
tion ar,e applied “,a.tthe. end cross section or at a median
section;* when the shell has openin~s in a curved part of
the surface,
———— _______________ _____ .___________—— _______ ______

*Applying at a kulkhead in the median zone, of a prismatic
shell , for instance, a transverse force through shearing
stresses with the usual distribution according to the flex-
ion,theory, the unlike shear flons produce on both sides
of the bulkhead the tendency toward unlike cross-sectional
~.va.r~ingc.t either side of the bu”lkhead. But at the bulk-
head itself only a d.efiaite warpin& takes place. The bal-
(Continued on p. 5)
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Further problems are offer,e,d in the buckling of such
shells under compression or ‘shear. Thereby the shells may
be of smooth &’he”et,‘“e.s ex”ernplified in ‘edged dural sections
or sheet-steel wing spars (fig. 5,). Shells reinforced. by
longitudinal and uprights, such as used on bodies or

wings, are also included (fig. 6).

Mo~st problems present no fundamental difference be-
tween shells with straight walls and those with curved
surface.

III. METHODS OF CALCULATION

A. Membrane and Flexion Theories

The statics of shells distinguish two methods of
treatment (reference 3): the membrane method and the flex-
ion, method. In the first - the so-called membrane theory
of the shell - the external loads are taken Up only by ax-
ial stresses and shearing stresses in the shell surface
(median area of shell) (fig. 7). Flexural and torsional
stresses variable throughout the wall thickness ar”e dis-
regarded. On the strength of this omission a stress dis-
tribution, for instance, is then always possible when the
shell corresponds to a lattice structure; i.e., when the
curved. parts. of the shbll or straight plates form .a com-
plete enclosure around a hollow space (fig. 6), and when
no concentrated lead l~ithin the curved part of the shell
~,rea is applied perpendicular to the shell surface or in
the shell area. This membrane theory is far from simple
in halfway general cases. And when the shell does not en-
close the hollow sna.ce completely, it fails altogether as,
for example, with the convention~.1 lattices which have no

. end bulkhead, or when the curved part of the shell has an
cpening or cut-out. ,

‘In c~.se~ of th~.t kind, the YlexUral stiffness - .911d

in any case, the torsional stiffness - of the shell metal
or that of its stiffeners must be resorted to, and one
speaks of “bending theoryll of shells.- This theory allows
.——— __________ _________________________
(Continued from p. 4)

ancing of t’h’ecross-sectibnal wbrping leads (similar to
torque application) to secondary stresses in the region of
the bulkhead, the determination of which is a shell prob-
lem, although they can in most cases be neglected. This
problem is disregarded in the present report.

—
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a. simple calculation precisely in complicated load cases
and by statically complex design.

B. The Negligible Quantities

The memlmane design has achieved some remarkable
successes of late in the field of superstructures. But
the airplane d.esigner?s course is prescribed by predeter-
mined, aerodynamically beneficial forms.

The assumptions to be made for airplane shells must
be governed by the outer form of the shell, by its proper
structural execution, and its types of loading. Probably
all airmlane shells vary hut little from the prismatic
shape. Unless the conditions are unusual, the torsional
strength of the sheet and that of the stiffeners can be
ignored on such a shell, along with the flexural stiffness
of the stringers, thus reducing the problem to the mem-
brane strength of the shell a,rea and the flexural strength
of the ring sections (bulkheads).

In an analysis of the membrane strength of the shell
area and of the flexural strength of the rings, ~robably
all shells constitute statically indeterminate components;
that is, consistently different possibilities exist in
such parts for stress distribution. But this very statical
indeterminateness makes it possible to have recourse to
particularly simple stress distributions in the design and,
indeed, in the smooth part of the shell as well as at load-
a.pplication points and by cut-outs.

The foregoing line of reasoning regarding airplane
shells is predicated on the existence of bending-resistant
rings. The rings of shell bodies or wings (ribs, parti-
tions, bulkheads, frames) are probably always able to car-
ry the almost always small bending moments without special
stiffeners. In sections fabricated fr”om smooth sheet, the
section sheet itself takes up the section deflecting
stresses.

In support of the omission of flexural stiffness of
the longitudinal stiffeners and of the torsional stiffness
of the shell, I chiefly depend upon the fact that the ef-
fect of these stiffeners in the wrinkling theory, dealing
with prismatic shells, recedes in the face of the effect
of the flexural stiffness of the ring sections.
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c. Sample Problem: Bending of an Airplane Body

. . The body -consists ”’o’flongitudinal stiffeners, bulk-
heads (rings), and metal skin (fig. 8). In cross section,
the body may be slightly elliptical, as in figure 8, al-
though this particular sha,me is of no consequence in the
following argument. The d~stribution of the longitudinal
stiffeners over the periphery of the body cross section
and t-he cross-sectional area of the individual stiffeners
is ar%itrary - with the proviso, however, that the cross
sections of all longitudinal stiffeners running lengthwise
along the body, change proportionately.

The body is clamped at the left end, while at the
right a vertic~ly uptiard transverse lead Q is applied.
The longitudinal stiffeners of the shell take up the bend-
ing moment, the sheet being visualized as being wholly or
in part, supporting. The lines of action o“f the axial
loads to be carried by the longitudinal stiffeners run
linearly between two bulkheads (rings), and so join the
course of the stiffeners that the area enclosed “by stiffen-
er and line of action is zero. At the bulkhead itself,
every line of action experiences a break.

Figure 8 (bottom) shows ‘the body contour with exag-
gerated curvature, along with the lines of action of the
axial loads for the uppermost stiffener for a section A
at the left and for a section B at the right of the par-
ticular bulkhead. We extend these lines of action to that
of the applied transverse load Q. Then we apply the same.
procedure to the lowest stiffener of the body and desig-
nate the length cut off by the lines of action of the high-
est and lowest stiffener by hA for secticn A, and by hB

for section B, the height of the b,ulkhead itself being h.
It is further assumed that the lines of action of every
longitudinal stiffener at either side of the bulkhead,
lie on a conical surface. Owing to the break in the line
of action at the bulkhead, each section (tension X) depos-
its a load on the bul-khead, the vertical component of
which is V. Assuming linear distribution of bending
stress, the total load depbsited at the bulkhead is:

h~ - hA
A Qx = X V = Q ––-fi–––

In the section A directly to the left of the par-
ticular bulkhead, load Q .is in part taken up by the lon-
gitudinal stiffen~rs (as a result of their sloping toward

[ .- —
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the body axis); this share QXA amounts to

I’or the other “share

the” tr”ansvere load is taken up b;)rthe shear in the shell
elements. The difference

QSA - QsB=AQs= @ - h~.——-— —
h

of web transverse loads at the sections A and B to broth
sides of the bulkhead is lodged at the bulkhead and exact-
ly balances the bulkhead load due to the longitudinal
stiffeners. The distribution of these shear loads over the
ring periphery corresnond,s exactly to the shear stress dis-
tribution in a prismatic girder of identical cross-sec-
tional form and idbntical stiffener s~pacing. The calcula-
tion of the stresses in the bulkhead ring explains all
other stresses at that point.

This example had recourse to the flexural stiffness
cf the longitudinal stiffeners only to the,extent neces-
sary to transmit the axial loads between the individual
bulkhee.ds.

IV. FRACTICAL CALCULATION

A. Resultant of Constant Shear Flow

If a constant shear flow q=Ts in a straight sec-
tinn I, 11 .(fig. 9) acts through a sheet of constant ormri-
able wall thickness S, the resultant of this shear flow
has the direction from I toward II and the quantity
q a (a = I, 11). The shear flow component in any direction
is equal to qal, al being the component of length a
tcward this direction.

The moment of shear flow Mp about any point 1? is
Mp = q 2fp, There

‘P is the area enclosed by bcth radii

vectors PI and PII and the shear flow. The resultant
R of the shear flow is at distance 2H from I, II when
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H = mean height of the rea f

(5

enclosed by shear flow

and length I, II H=~
al” ,, ,..-. . ..-,...

B., Prismatic shells with Few Flanges

Figure 10 gives the cross sections of several pris-
matic shells. They have few individual flanges. The cross-
sectional area~of the webs is small compared to the flange
cross section. It is assumed that the flanges alone take
Up any created axial’ loads. Then it follows that in each
web %ounded tiy two flanges (in every se”ction of the beam)
the shear ”flow q is, constant.

i?o flange - one web ~tube~.-————___ ____ . Such a cross section can
only take up torsional moments.

One flange––=~ne web (.tube~.- !l!his section can only
take up a torsional moment and a longitudinal force in

————

the flange.

TWO flanges - one web (channelj.- The beam can take uP——_____
longitudinal forces which lie in the plane of both flanges;
it can also take up transverse loads Q. (fig. 10a) which
act parallel to the plane of the flange and which are at
distance 2H from the plane of the flange, The shear
flow created by Q. is -,

>,9,.

a to be measured from center to center of flange.

uQ-QaIMEs-=–-L_.–-––_–two webs (tube) (figA_~QB>.- Such a
structural, component can take up axial loads lying in the
plane of the two flanges; it can also take up transverse
loads Q lyi,ng parallel to the plane of the flange and
acting at any point.

To establish the shear flew, define first the line of
action of the shear flow for each one of the two webs; “de-
compose the external Q. according to these two lines of
action parallel to it, for example:

which gives. the shear flow in the left curved web at

,.

I ---

Q2qz = —a—
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!CQge~_flnnges -“ two webs (c”h~gnel~~_l<~gA_~Qq~.- This
beam can take up any axial. load; it can also take up any
load (Q) from any direction yhich passes thrcugh the
shear center S. The latter is defined as the intersec-
tion of the shear resultants of the two webs (at distance
2H.froin the plane of the flange).

Three flanges - three webs (tube) @gA_~Q~~.- Six (in-
ternal) lo~,ds are applied at one sectional plane (cross

section) through this structural component : three flange loads
rind.the shear resultants of the three webs. The decomposi-
tion of a lo?.d ~,ccording to six lines of action in space
being clear, this component can (in distinction to the pre-
ceding examjplcs) take up and transmit any. external load.

The calculation of the ‘shear flows following a.n ex-
ternal transverse load Qo evolves on the the decomposi-

tion of Q. according to the three shear resultants Ql,

% 9 and Q3. Then shear flow ql > for example, is:

three webs l@annels) (fZgx_~QE_).- ThisFour flq,EgE&_=___..._~.–~.._–_
structural com-onnent is already statically indeterminate.
Assume it to be cl~,mp~i at one end while unrestricted
against warning at tile ether places. The flange stress due
to axial le>.d depends on the type of load application.
Stressed under a transverse load Qo, we decompose this in

the cress section at which it is applied into the shear re-
sultants of the three webs, after which each one of the
two flanges is treated. in regard to its share of Qo, as
if it existed by itself as beam (according to fig. 10a).
This affords the flange loads. In the fla,nges which si-
multaneously bound two webs, the final flange load appears
as the sum of the ottained partial flange loads.

Multi-flanges - mUlti-webs.- For such statically inde-
terminate beams, it is USUally assumed that the axial
stresses in a cress section are linearly distributed; this
beam is computed as a conventional beam. If it pertains
t~ open cross-sectional forms, the stresses due to tor-
sional momc~nts are computed confirmable to the theory of
flexural distortion.

In the two preceding examples, the treatment according
to the bending theory (determination of center of gravity,
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principal axes of inertia, etc. ) would ke more .cemp.l.icate~
than the discussed, method.

-:> ,---

C. Conical Shells with Few Flanges
‘\),

The discussion may be limited to a few examples. \,

TWO flanges - one web_igEQQQE-l.- The beam (fig. ha)
can take up axial loads lying in the plane of the two )

flanges and passing through the point of intersection of
&oth flanges. The beam can also take up transverse loads

Qo s which (’fig. ha) act parallel to the plane of the
flange,* and which at the section at which they are ap-
Flied, are at distance 2H from the plane of the flange.
At the point of application of Q. the shear flow produced

“ by Q& amounts to

At another point x part of the external transverse load
is taken up by the two flange loads forming an angle; the

remainder Q. ;. creates at this peint x the shear flow

three webs Itube) iflg~_llll.- TO com-Three flangES_E______–– _____
puts the internal loads set up at a sect~on point by an
external load Po, it is advisable to divide Po into a
load S passing through the tip of the cone and into a
load Q lying in ene of the cross-sectional planes. The
load S gives the three flange loads; it does not stress
the webs. Load Q is divided in the three shear result-
ants. The latter change in magnitude inversely propor-
tional to the web heights along the keam.
——___________ ________—————————————_————

*This does not define the direction of the transverse load
quite definitely. The cross-sectional plane @f the beam in
which the lead acts could,. for instance, be placed perpen-
dicular to the top flange or, say, perpendicular to the
bottom flange. According to this uncertainty, the web ~e~
veals axial stresses due to the transverse l,oad. However,
these are small and insignificant compared to the shearing
stresses, so leng as the “transverse load acts in a plane
halfway perpendicular to” the cours”e of the beam.
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,, D.” Example’: Stress in End Bulkhead Due to
Applied Transverse Load

On a beam consisting of three flanges and three webs
(fig. 12) the end bulkhead is subjected t@ a transverse

l.oad Qo= What is the stress of the. end bulkhead?

Establish the shear resultants Q1) Q29 Q3 in the
three webs and the three shear flows q~, q+, q3s say, a+

Q1
ql = z; ‘

The shear resultants are applied as external

loads on the assumedly isolated tulkhead.

To define the “nanel-point loads, it is assumed that
no bending moments are transmitted at the joints (hinges).,
The shear flows are distributed ever the web portions” ly-
ing 3etween the individual joints; for example:

As dl = el + —>ea , such partial loads of the shear flow

always conform to the relative geometrical dimensions of
the bulkhead. That is, the geometrical dimensions are
treated as loads. Then these partial loads are applied at
the j~ints; for example:

CIl el = ~1 gl+ -~q.l S2 (note that el = gl + —>g2 )

This subdivision of itself is simply statically indc-
terminat,e; the lines El and gz are chosen so as to hug

the curved bars as closely as possible. The result is two
z~plied loads at every truss joint. TO the extent that
these loads arise from the same shea,r flow, they are readi-
ly ccllected; for instance:

ql h = ql g2 + —xl g~ (observe that h = ga +—>g~)

i~ow the tension is established by substituting the
straight, line connecting the two joints for ,the curved
bars. Lastly, the bending moments in the curved bars are
determined. Member 1 is no truss member, hence possesses
no truss tension. Cn it the t“wc forces ql ~1 an d ql g2
and the shear flow ql are applied as external load. The

bending moment at a point I is:
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At truss member 2 we apply, apart from the corresponding
loads, tension S as external load.

A lower stress in the curved members is obtained when
the lines of action of the truss tensions are made to hug
the curved me~hers more closely (fig. 13). This brings the
hinge joints, Irhich at the same time are intersection points
of the truss members, outside of the curved members. This
constructive measure in nowise renders the calculation com-
plicated.

E. The Membrane Equilibrium of the Unwarped
Shell Element of Finite Size.

The designer must be just as conversant with the equi-
librium conditions of the shell elements as with the ten-
sions in a truss. Figure 14 shows-two views of a develop-
able , very (infinitely) thin shell element of finite dimen-
sions. The straight lines representing in their entirety
the developable area, are called IIgeneratrix. tf The element
is bounded at two sides by straight intersection ’lin.es in
the direction of the generatrix; these sections are called
longitudinal sections. The other two, in general curved
lines of intersections, are to lie in two parallel planes
at distance ~. These sections are called ring sections;
the sectional planes are called ring or bulkhead planes.

In the following, the equilibrium and stress distribu-
tions in such shell elements are analyzed.

Figure 15 is a straight, cylindrical shell element;
the ring sections are Perpendicular to the generatrices.
The three possible stress equilibriums are illustrated at
the left; the corresponding load equilibriums which the
membrane element is able to take up without becoming de-
flected, are given at the right. The element can transmit
axial loads in the direction of its generatrix; it can take
up. shearing stresses; and it can transfer an axial load ap-
plied at a ring section as shear, to a longitudinal sec-
tion. The general equilibrium condition presents a super-
position of these three individual cases. The one impor-
tant fact to remember, is to replace in the shear condition
(fig. 15, center) the load o; stress applied at one of the
sections by the three loads holding. th~’ equilibrium on the
other sections.

Longitudinal stresses applied at the ring section may
also vary along the section. Be it particularly noted
that a shell cannot take up a concentrated axial load act-

1
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ing in the plane of the shell, unless a member is specifi-
cally provided for taking up the entire axial lead.*

~iqure 1’7 depicts an oblique cylindrical shell ele-

ment. The two ring sections are no longer perpendicular
to the generatrix. The general membrane-stress condition
is preferably divided. in pure tension (fig. 17, left),
in a ‘lshear attitude “ (fig. 17, center), and in the
change from axial load. to shear (fig. 17, right).

In “shear attit:de!l the applied shear flow q is the
same slang all secticnal Flanes. This stress condition is
no “pure shear” in the sense of the strength theory, but
rather a superposition of pure shear (mith shear flow q)
and pure tension in direction cf the generatrix (fig. 18).,
Since each one of these two stress conditions is a possi-
ble membrane-stress condition of the shell, the IIshear ,
attitude!’ q on the oblique cylinder itself is a mem-
brane-stress condition.

Be it also noted that the resultant of the shea,r
flow applied at section a has perpendicular to the plane
of the ring the component L = q-l.

Figure 19 depicts as the most general case @f a non-
tmisted skcll a conical shell element formed of straight
generatrices;** By “shear condition” the shear flow is
ve.riable along the generatrix. With L again denoting
the com~jonent of +,he shear load Q a~~lied at a genera-
trix perpendicular to the plane ot” the ,~}ng, the following
relations hold:*** j-

The shell designer must %ecome conversant with this equi-
librium.
—_________________________ __________________________________

*But a concentrated axial load may be applied in a shell
when this load acts somewhat within the shell area (fig.
i6). Then the particular ring must be provided with a
bending-resistant Flate relative to loads. perpendicular to
the plane of the ring, which distributes this concentrated
luad over a number of longitudinal stiffeners of the shell.
**A c~lical shell element ?~ith any baSe is? aPart from

special cases, always oblique.

***This relation is closely related to those of the “Ten-
sicn Method’f in Zeitschrift fir Flugtechnik und Motorluft-
schifafhrt, vol. 18, 1228.
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1?. The Twisted Shell filement.= . . ,,

Figure 20 shows a square surface element with side
length 1. The surface is twisted, and the amount of twist
expressed in angle a. Loading this surface element in
shear flow q, the four shear l~ads q applied at the
sides are not in equilibrium, hut rather have a resultant
2qa in direction perpendicular to the surface. If this
~urface element is crossed by a stiffening section, this
resultant 2qa loads the stiffener in bending (transverse
load perpendicular to sheet surface).

Figure 21 is a small isolated shell element lying be-
tween two parallel bulkheads (distance ~). As the curva-
ture of the element (in ring direction) is of no moment in
this argument, the element is shown as straight, The ele=
ment has a stiffener; the lateral edges of the element ar e

to run midway between this and the adjacent stiffener.

The element is stressed in ‘lshear, t’with L as shear
component perpendicular to the ring plane applied at the
lateral edges. Nom it can be readily proved that equilib-
rium exists between all loads acting on the element, when
every load applied on a ring section is in direction of
the other ring section and possesses the magnitude

~b and ~ a [given in fig. 21)
L L

This equilibrium is now divided into two parts. On
the left equilibrium all loads act at the ed.ges in edge
direction, at the same time as a load p acts per~endic-
lar to the sheet surface. This equili-orium is not” accom-
panied by bending moments in the sheet (in longitudinal
direction), when p has at every point the magnitude

Here a is the fairly small assumed angle between both
ring sections of the element (fig, 21, plan view), c is
the width of the element at the particular point for p.

,,..

The second equilibrium comprises load p and the two
opposing loads

L!ba
t

and
+aa

~— . ....–—--- -----
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which at each I!ulkhe&d., section are proportional to the
length of the other bulkhead section, and which are to be

deposited. on the bulkhead. This equilibrium bends the
stiffener. The distributed load p has the. resultant

As concerns the calculation of the bending moment, p may
be assumed as evenly distributed without appreciable error.

This bending moment in the longitudinal stiffener is,
a s a rule small. It compares, for example, with the load-
ing of stiffeners in a curved and untwisted tension field.
The deflection of the tension in the tension field on the
stiffener causes e. distributed loading directed perpendic-
uls.r to the shell surf?.ce a~ld amounting to about ~;, p

being the angle :~ormed ky tvro stiffeners (fig. 22). sup-
pose, for example, that the length ~ of the shell ele-

ment is twice the mean distance
a+%-.——— of the stiffeners;

2
then the bending moment in the stiffener due to the twist-
ing is only as grez.t as the moment in a tension field when
the angle of twist a, is of magnitude ~.

The loads in the twisted shell transmitted at the
bulkheads perpendicular to the shell surface

are additive to t?~e loads deposited. by the longitudinally
adjacent shell elements, when the twisting of the shell is
uniform lon[~itudi.rlally. The then ensuing bendin~ moments
in the bulkhead nay reach appreci~.ble values.

G. Shell Bounded by Two Parallel,
Plexurally Stiff Bulkheads

1 The c~rliniirical shell l.s~g.ple nrobl.fig~~.- The fol-—*.—.._—._—d..—--————..-.-———.-.———
lowing simple problem is of importance for the shell cal-
culation. Two curved bars bendin{;-resistant in plane are
,joined by a cylili?.ricr,l web plate. The spacing of the
rings is 1. This so fashioned cylindrical piece is now
fixed at one end (at a longitudinal section) and a load

applied at b e ot]ler cnd (fig. 23). St. Venant IS torsion-
al stiffness is rlisreqarded.
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“.;

,.
The membrane equilibrium of the web under a trans-

!Z,. verse load.. Q. i.s given.at the right-hand side of figure
23. Between meb and both edge stiffeners a shear flow

q
Qo=—
2

is transmitted, causing the edge stiffeners to be stressed
in their plane in tension, transverse load and bending.
Tension and transverse load have at a section I in quan-
tity aild direction, given by aI , the resultant*

RI = aI q

These two loads RI in conjunction wi’th the transverse
lozd Q=Qo transmitted by the web, hold the external

QO in equilibrium.

Further, the shear flow q creates in each ring a
bending moment idi of magnitude

M i = q 2f (fig. 23, right side)

This moment Mi i’s inversely equivalent in the two edge
stiffeners - th.catis, Rives no resultant. This moment
Mi cannot be simply computed from the equilibrium with

the external loading; rather, it is dependent on the course
of the be~m between the applied external load ~ and the

particular section point 1. The stresses created by Mi

are called flexural distortion stresses.

If, in addition, torsional and bending moments are
applied at the end. of the cylindrical piece, the resulting
total moment at the cross section is divided into two in-
versely equivalent loads applied at the top and bottom
edge stiffener, e.fter which the bending moments Mi in
————__— _____________________ __________ ..-——————————. -——————-

*This shear flow iS assumed constant over.the,beam height.
On a flat learn this premise holds only when the cross-
sectional area of the web is small relative to the cross-
sectional area of both flanges. In our curved beam the
shear flotv is constant over the beam height so. long as the
flexural stiffness of the Tveb is small compared to that of
the bulkhead rings. In this case no axial loads can occur
in the web’ in rin~q,direction, re.ga.rdless of the size of the
web area compared to the c“ross-sectional area of the rings.



18 I?.A.C.A. Technical Memorand.urn No. “817

the edge stiffeners due to this external load can he read-
ily obtained.

If this moment loading MO (fig. 23, bottom) is ap-

plied, together with a transverse lead Qo , the total

resultant is formed; this consists of a transverse load

Qres Of magnitude QO applied at a certain point. Then

the lending moment Mi in the edge stiffeners at a point

I (fig. 23, bottom) is:

The area f is enclosed” by the radii vectors plotted from

Qres to the initial cross section; i.e., to the section

at which Qres is applied and to Feint I and to the

cylindrical piece (in plan form).

Example: Application of Axial Loads in Cylindrical Shells
by h!eans of Two Bulkheads

A bend.ir.g moment is to be introduced at the end of
the shell in an airplane fuselage. The bending moment is
applied in the form of four concentrated loads (fig. 24).
In. this case it is expedient to fit a bending-resistant
ring (bulkhead) at the shell end itself and one each a
certain distance away from the end of the shell.

With a view to the determination of the stress dis-
tribution, this piece of the shell is isolated. from the
rest and th~ four concentrated loa,d.s applied at the left
end of the piece and the linearly d.istrihuted bending
stress at tile right cud. From this the load Q transmit-
ted by each cross section c of the shell and consequent-
7~y, the shear flow q = Q/t can be determined. This shear
fiow q is shown at the lower left of figure 24 over t-he
rollin~ up from I to II. The smooth curve is the result
of “the distributed. loads applied at the right bulkhead.
At the point of application of a ioad L tl~e entire shear
flow uxldergoes a kreak to the amount of L/t.”

Now the shear loads q exerted by the shell on the
rirlgs are known (lower right of fig. 24) and the ring
stresses become calcula,kle. They are, in general, not
very great; they become so much smaller as the bulkhead
spacing is chosen :~ider. dut the longitudinal stiffeners
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which introduce the concentrated, lends i-n the shell “must
in any case go from cne ‘Dulkhead-t,o the other; their bulk
may decrease the starting distance from the end cross sec-
tion.

If the fuselage space permits the use of two trussed
bulkheads, they themselves probably will he capable of
carrying the loads set up by the shear flow q, so that”a
more exact calculation of these stresses maybe foregone..
and the wnrk confined to a check’ on the shearing strength
of the shell plate.

Example: Cylindrical Shell tvith Cut-out

The stress in the cut-out zone can be treated in sim-
ilar fashion. To illustrate: Suppose it concerns a tor-
sionally stressed fuselage ~Vith a cockpit opening or cut-
out. It is expedient to install four rings, one each at
either end of the cut-out, and one each at a certain dis-
tance from it. In addition, two longitudinal flanges are
fitted - one at either, side of the cut-out - the flanges
extending as far as the outside rings (fig. 25, top).

Isolate the -Dart directly outside of the two outer
rings r-ridapply the she~.r flow !10 of the torsion moment

at both ends. Then divide this equilibrium of the exter-
nal loads by applying the sheer flow q. at the cut-out

into one which produces everywhere constant shear flow and
in a second, the actual disturbance due to the cut-out.

The stress due to the latter forces is now analyzed,
Make a cut m through the center of the shell. This cut

has to transmit a transverse load qoa lying in the plane

of the cut (a = width of cut).

There are three Ivebs between the four longitudinal

stiffeners; vie determine the three shear flows !iO, !113 q;

in these webs which to the resultant have the cited load
qoa. Next isolate the two rings to the right of the cut

along with the intermediate shell piece and plot it twice:
once, giving in the ring area the applied shear flows ~ ,

ql$ % which balance each other and merely stress the ring

adjacent to the cut-out; ‘and a second tirn.e, showing the
axial loads (q. + q~) ‘mc and (ql + qz) ~mc. The calcu-

lation of the shear flows and ring stresses in this anti-
symmetrically loaded shell piece cd
ties.

presents no difficul-
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2 The conical shell &vith sam~le orobleml.r- A shell-&_ ——— ——— ——— ———— ——_— ———. —--—-————— —-
having the s-ape of a truncated- cone is bounded by two
bending-resistant bulkheads; the latter lie in two paral-
lel planes at distance t. The structural component is
fixed at one ~eneratrix and loaded at the other end by a
transverse load Q. ,in the direction of the generatrix

(fig. 26). L is the component of Q. perpendicular to

the bulkhead plane.

Through shear flows the web plate is set in equilib-
rium* (fig. 26):

We further obtain the flange loads:

Ga=:h Gb=~a

acting on a cut I (say, at the point of fixation) and
preserving the equilibrium of the’ external I.oad C& The
bending moments Mi in the two flanges are inversely
equivalent :

Mi =
L> La

qa2fa=Ta2fa=q% 2fb=~$2fb

Example: Cockpit Cut-out in Fuselage

We rep-eat the exa,xple of the cylindrical fuselage
without, however, touching upon the fundamental problems.
The contour of the fuselage is arbitrary, but all bulkheads
must be geometrically similar.

We immediately start with the partial loading corre-
sponding to the disturbance (fig. 27, top). The longitu-
dinal forces in the” flanges are assumed to be zero at a
cut m* and the pieces of the fuselage between m and
the end bulkheads a and d as bein~ conical.

The shear flow at the rear edge of the cut correspond-
ing to the torsion moment, is assumedly given q. = ~. We

forthwith determine the shear loads applied-in cut c
(fig. 25, lottom). From the moment eq~ilibrium of the

—-———————.—.——.——___—___—_.__—_—___— ..-——-—— —.——————————————

/*ab is the ratio of any two mutually corresponding lin-
ear dimensions of the two rings.
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shear flows about point “P follows:
.“, . “.

qo c f-’= q2’”ca (e + f)””.

Furthermore, the sum of the horizontal components of the
transverse loads gives:

The”se” shear flows ~ , ql, qa “’only load the bulkhead ring

lying in cut c.

Next we determine the axial loads to be transmitted in
cut c, proceeding immediately to defining the component
L perpendicular to the bulkhead plane. The basic rela-
tion is (fig. 19):

It affords the two loads:

LI = Zmc : (qo + q,)

LII = Jmc ; (q, + q,)

Here c/m denotes the ratio of the linear cross-sectional
dimensions of cut c and.m. The four axial loads L1

and LII load the ’shell. fraction cd antisymmetricallyO

The calculation of the shear flows and ring stresses of-
fers.no difficulty.

H. Cylindrical Sheet Metal Wall Bounded
by TWO parallel Ring CUts

Consider ~. straight cylindrical shell of length T,.,
the shell consisting of sheet metal of wall thickness s;
the free end of this s?:.ellbeing loaded by a transverse
load Q. and a bending moment MO , whose resultant is a
transverse load Qres (fig. 28); the other end of the

shell is fixed.

Following the loading= the shell piece develops bend-
ing stresses whose moment balances the moment of the ex-
ternal loads, while in addition, the torsion produces
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variable flexural distortion stresses, ~b d over. the wall

thickness, which in every cross section I reaches its
p eak

in the four corners of the cross section. (f is the
shaded area in fig. 28.) St. Venantfs torsional stiff-
ness is ignored. This formula is readily derived accord-
ing to thr. data given in IV G 1.

If the sheet is regularly fitted with individual
stiffeners in ring direction (fig. 29), it is:

whereby Wq = w/tq), W being the section modulus of a

ring section and tcp the spacing of the sections. Stiff-

eners running longitudinally have no iilfluence on this
problcm.

This result is equally important for the calculation
of sleeves or sock~ts (,?us,for instance, on le+nding-gear
strut fittings-) and on rings which form a frame around a
cut-out in the coverinq of ran airylane.

Mr. Tintea (in his thesis, 3erlin, 1934) has extend-
ed these res-~lts to include circular cylinders with con-
sideration of St. Veno,ntls torsional stiffness.

Translation by J. Vanier,
National. A“dvisory Committee
for Aeronautics.

I
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