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THE STﬂESS DISTRIBUTION IN SHELL BODIES AND WINGS
AS AN EQUILIBRIUM PROBLEM*

By ‘H. Wagner
SUMMARY

This report treats the stress distribution in shell-
shaped airplane components (fuselage, wings).as an equi-
librium problem; it includes both cylindrical and non-
cylindrical shells. In particular, it treate the stress
digtribution at the point of stress application and at
cut-out points.

I. GENERAL REMARKS ON STRESS DISTRIBUTION

To indicate the angle from which the arguments on
shell strength are to proceed, we shall intersperse a few
fundamental statements on the stress distribution in stat-
ically indeterminate structures.

A. Safety by Any Chosen Stress Distribution

The designer has to form a structural component.
Having decided unon a preliminary shave, he ascertains,
more or less arbitrarily, the stress distridbution in the
almost always statically indeterminate component, after
which he settles the dimensions of the particular part in
such a way that the permissible stress 1s at no point ex-
ceeded. The designer.aims to choose the stress distribu-
tion consistent with minimum weight.

In view of this, it is important for the designer to
control the possibilities for the stress distribution (the
equilibrium conditions). Indeed, these equilibrium con-
ditiens form the basis of every statically indeterminate

*"Einiges uber schalenfgrmige Flugzeug—~Bauteile," TLuft-
fahrtforschung, vol. 1%, no. .9, September 2C, 1936,
Ppe 281-292, - : .
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calculation. Quite often the designer foregoes the latter
for the following reasons:

In the part which he designed and for which he estab-
lished the size, the actually produced strain energy -
i.ee, the strain energy corresponding to the actually pro-
duced force flew -~ is, according to the theorem of minimum
strain energy, less than that corresvonding to the chosen
stress distritution, In other words, the stresses for
which he dimensioned the part have, with relation to the
total volume of the vpart, a higher mean value of the stress
square than the actually occurring stresses.- Thus, having
recourse to his arbitrarily chosen stress distribtution,
the designer i1s "on the average" on the safe side.

As the actual strain energy is less than the one cor-
responding to the chnsen stress distribution, overstresses
can occur only in zones with small velume. The designer
must check his structural component carefully for this
contingency.,.

In pvarticular, he must:
Avoid notched places;

Stiffen manifestly weak members (such as free run-
ning members of comparatively small section);

Check for the predetermined external loading as to
whether this structural part is also able to
carry a somewhat altered stress distributicn;

Check the strength of the part bty changed external
load.

All this he would equally have to do in a statically
indeterminate calculation.

B. Low Weight and Stiffness as Parallel Requirements

If the designer has chosen the stress distribution
with a view tco minimum weight, the structural component is
on the average (i.e., in mean value of ‘stress square)
stiffer than any cther identically highly stressed, but
heavier design. For, minimum volume by given mean value
of stress square measns minimum’ strain energy and conse—
quently, least werk and shortest vaths of the given exter-
nal loadse.e The aim of the designer =2t lowest possitle
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stresses for given weight, augments the stiffness of the
structural part even more. The skillful design is stiff,
"and at the same time, light. o '

II. SHELL PRCBLEMS

A, Elementary

le The flat surface shell.~ If a hollow space is
completely enclosed by statically determinate plane-braced
frames without any member passing through the inside’of
the hollow space, this space framework is statically deter-
minate and, as a rule, stable. It is, according to A.
Foprpl, a "trellis structure." Subgtitution of the surface
of the hollow space by walls (flat plates) capable of car-
rying stresses in its plane only, results in a flat sur-
face gshell. This body also resists strésses at the corners.

To compute the shell, it is best to establish -~ for
the same external load -~ the tension ferces in a static-
ally determinate framework enclosing the same hellsw space,
and then apply the tension estatlished on the framework as
load. Figure 1 illustrates this for two btars. This method
reduces the three—~dimensional protlem to a numter cf two-—
dimensional - although in general statically indeterminate,
problems. (The plates or disks are statically indetermi-
nate, teference 1l.) ®wing ta this remaining statical in-
determinateness, such shells may be called gquasl statically
determinate.

Now the determination of the tension in such a frame-
work (lattice structure) is in mnre cases than nct, gquite
a task. But the number of remorts available on oblong
structural components of predominantly square cross sec-—
tion (fuselage, wing box (fig. 2)), assure a comprehensive
tension determination (reference 2). These reports refer
to partially statically indeterminate and partially static-
ally determinate frameworks. The results are transferable
to flat surface shells; in fact, some of them are specif=-
ically derived for shells..

The substitution of a shell bounded by curved walls
by a framework is in general nc longer exactly pessible.
Even an approximate calamilatien through estadlishing the
tensions in a substitute framework is gquite complicated on
account of the large number of trugs members and their usu-
ally slanting direction.,.
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. 2. Compression, bending, torsion, and flexural tor-
siohs~ On application (fig. Z%a), at the ends of a thin-
walled prismatic bar (tube or channel), of axial stresses
linearly distributed over the section, or on application
of shearing stresses distributed conformable to linearly
distributed axial stresses (that is, the usual bending),
the shearing-stress distribution is constant in all sec—
tions throughout the length of the ‘bar. The cross sec-
tions of the team do not become twisted. In this case,
there is no 3

¥mall wroblem. This also holds true for shear-
ing stresses in the ends corresvonding to St. Venant's tor-
sion, : . .

Under axial stresses corregvonding to a distribution
of flexural torsion applied at the ends of an open pris-
matic section, the resul¥ant force is zero. This is a
case of stress in the gzone of the section end which, al-
though there is no external torsion moment, causes the end
to twist and which, as a result of St. Venant's torsional
stiffness, cencels out at some distance from the end sec-—
tion., At évery cross section of the profile the moment of
8t. Venant's shearing stresses (fig., Ze¢) are inversely pro-
portional to the chearing stresses of the flexural torsion
(fig., ?d) caused by the chearge in the axial stresses. In
the event thet the wall thickness of the section is small,
the cancellation does not take place until after a consid-
erable distance. This also is hardly a shell problen,
since the distortions of the section are subordinate. The
same holds for the case of external torsion moment at the
end of the open section, of the type of the shearing
stresses accompanying the flexurel torsion (fig. Ze).

B. Real Shell Problems

Shell problemsg arise (fig. 4) when the cross-sectional
form of the shell varies throughout its length; when axial
or shearing stresses in other than the discussed distribu-
tion are applied at the end cross section or at a median
section;* when the shell has openings in a curved vart of
the gurface,

*Applying at a btulkhead in the median zone, of a prismatic
shell, for instance, a transverse force through shearing
stresses with the usual distribution according to the flex-
ion. theory, the unlike shear flows produce on both sides

of the bulkhead the tendency toward unlike cross—sectional
warping ~t either side of the bulkherd. But at the bulk-
head itself only a definite warping takes place. The bal-
(Continued on p. 5) .
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.Further problems are offered in the buckling of such
~shells under compression or ‘shear. Thereby the shells may
be of smooth sheet, as exemplified in edged dural sections
or sheet~steel wing spars (fig. 5). Shells reinforced by
longitudinals and uprights, such as used on bodies or
wings, are also included (fig. 6). '

Mosst problems present no fundamental difference be-~
tween shells with straight walls and those with curved
surface.,

III. METHODS OF CALCULATION

A. Membrane and Flexion Theories

The statics of shellg distinguish two methods of
treatment (reference 3): the membrane method and the flex-—
ion method. In the first - the so~called membrane theory
of the shell - the external loads are taken up only by ax-
ial stresses and shearing stresses in the shell surface
(median area of shell) (fig. 7). Flexural and torsional
stresses variable throughout the wall thickness ars dis-
-regarded. On the strength of this smission a stress dis—
tribution, for instance, is then always possible when the
shell corresponds to a lattice structure; i.e., when the
curved parts of the shell or straight plates form a com-
plete enclosure around a -hollow gpace (fig. 6), and when
-no concentrated lcad within the curved part of the shell
area 1s applied vpervendicular to the shell surface or in
the shell area. This membrane theory is far from simple
in halfway general cases. And when the shell does not en-
close the hollow space completely, it fails altogether as,
for example, with the conventionsl lattices which have no
. end bulkhead, or when the curved part of the shell ha~ an
cpening or cut-out.

In cases of that kind, the Flexural stifrness - aud
in any case, the torsional stiffness - of the shell metal
or that of its stiffeners must bte rescrted to, and one
sveaks of "bending theory" of shells.- This theory allows

(Continued from p. 4)

ancing of the cross-sectional warping leads (similar to
torque application) to secondary stresses in the region of
the bulkhead, the determination of which is a shell prob-
lem, although they can in most cases be neglected. This
problem is disregarded in the present report.
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a simple calculatien precisely in complicated load cases
and by statically complex design.

By, The Negligible Quantities

The membrane design has achieved some remarkable
‘successes of late in the field of superstructures. But
the airplane designer's course is prescribed by predeter-
mined, aerodynamically beneficial forms.

The assumptions to be made for airplane shells must
be governed by the outer form of the shell, by its proper
structural execution, and its types of loading. Probably
all airplane shells vary but little from the prismatic
shape. Unless the conditions are unusual, the torsional
strength of the sheet and that of the stiffeners can be
ignored on such a shell, along with the flexural stiffness
of the stringers, thus reducing the problem to the mem-
brane strength of the shell area and the flexural strength
of the ring sections (bulkheads).

In an analysis of the membrane strength of the shell
area and of the flexural strength of the rings, probably
all shells constitute statically indeterminate components;
that is, consistently different possibilities exist in
such parts for stress distribution. But this very statical
indeterminateness makes it possible to have recourse to
varticularly simple stress distributions in the design and,
indeed, in the smooth part of the shell as well as at load-
application points and by cut-outs.

The foregoing line of reasoning regarding airplane
shells is predicated on the existence of bending-resistant
ringse. The rings of shell bodies or wings (ribs, parti-
tions, bulkheads, frames) are probably always able to car-
ry the almost always small bending moments without special
stiffeners, In sections fabricated from smooth sheet, the
section sheet itself takes up the section deflecting
stresses.

In support of the omission of flexural stiffness of
the longitudinal stiffeners and of the torsional stiffness
of the shell, I chiefly depend upon the fact that the ef-
fect of these stiffeners in the wrinkling theory, dealing
with prismatic shells, recedes in the face of the effect
of the flexural stiffness of the ring sections.
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C. Sample Problem: Bending of an Airplane Body

The body consists of longitudinal stiffeners, bulk-
heads (rings), and metal skin (fig. 8). 1In cross section,
the body may be slightly elliptical, as in figure 8, al-
though this particular shave is of no consequence in the
following argument. The distribution of the longitudinal
stiffeners over the periphery of the body cross ssection
and the cross~sectional area of -the individual stiffeners
is arbitrary - with the proviso, however, that the cross
sections of all longitudinal stiffeners running lengthwise
along the body, change proportionately.

The body is clamped at the left end, while at the
right a vertically upward transverse lcad Q is applied.
The longitudinal gstiffeners of the shell take up the bend-
ing moment, the sheet being visualized as being wholly or
in part, supporting. The lines of action of the axial
loads to be carried by the leongitudinal stiffeners run
linearly between two bulkheads (rings), and so join the
course of the stiffeners that the area enclosed by stiffen-
er and line of action is zero. At the bulkhead itself,
every line of action experiences a break.

Figure 8 (bottom) shows the body contour with exag-
gerated curvature, along with the lines of action of the
axial loads for the uppermost stiffener for a section A
at the left and for a section B at the right of the par-
ticular bulkhead. We extend these lines of action to that
of the applied transverse load Q. Then we apply the same
procedure to the lowest stiffener of the body and deslg-
nate the length cut off by the lines of action of the high-
est and lowest stiffener by hy for secticn A, and by hy
for section B, the height of the bulkhead itself being h.
It is further assumed that the lines of action of every
longitudinal stiffener at either side of the bulkhead,
lie on a conical surface. Owing to the break in the line
of action at the bulkhead, each section (tension X) depos-
its a load on the bulkhead, the vertical component of
which is V. Assuming linear distribution of bending
stress, the total load deposited at the bulkhead is:

: hg = h
bog -5V~ qlE it

In the section A directly to the left of the par-
ticular bulkhead, load Q .is in part taken up by the lon-.
gltudinal stiffenérs (as a result of their sloping toward
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the body axis); this share QxA amounts to
hA\
= 1 - ==
By = 9 ( b/
For the other -share

hp
Qsy = @ = Ay = Q 32

the transvere load 1s taken up by the ghear in the shell
elements, The difference

Qs, - Qsp = b Qg = Q-EA_E_]EE
of web transverse loads at the sections A and B to beth
sides of the bulkhead i1s lodged at the bulkhead and exact-
ly baldances the Ptulkhead load due to the longitidinal
stiffeners. The distribution of these shear loads over the
ring periphery corresponds exactly to the shear stress dis-
tribution in a prismatic girder of identical cross—sec-
tional form and identical stiffener spacing. The calcula-
tion of the stresses in the bulkhead ring explains all
other stresses at that voint.

This example had recourse to the flexural stiffness
of the longitudinal stiffeners only to the extent neces-
sary to transmit the axial lcads between the individual
bulkheads,

IV, FRACTICAL CALCULATION

A. Resultant of Constant Shear Flow

If a constant shear flow q = T s in a straight sec-
tien I, TI (fig. 9) acts through a sheet of constant or Tari-
able wall thickness s, the resultant of this shear flow
has the direction from I toward II and the quantity
qg a (a = I, II). The shear flow component in any direction
is equal to q a', a' ©being the component of length a
teward this direction,

The moment of shear flow Mp about any point P 1is
Mp = g 2fp, where fp ig the area enclosed by beth radii
vectors PI and ©PII and the shear flow. The resultant
R of the shear flow is at distance 2H from I, II when
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H = mean height of the: ea enclosed by shear flow
and length I, II H = ?\

Be Prismatic Shells with Few Flanges

Figure 10 gives the cross sections of several pris-
matic shells. They have few individual flanges. The cross-—
sectional area-of the webs is small compared to the flange
cross section: It is assumed that the flanges alone take
up any created axial loads. Then it follows that in each
web bounded by two flanges (in every section of the beam)
the shear flow q 1is constant.

No flange - one wed (tube).- Such a cross section can
only take up torsional moments.

One flange — one web (tube).~ This section can only
take up a torsional moment and a longitudinal force in
the flange. :

Two flanges - one web (channel).~- The beam can take up
longitudinal forces which 1lie in the plane of both flanges;
it can also take up transverse loads Q, (fig. 10a) which
act parallel to the plane of the flange and which are at
distance 2H from the plane of the flange. The shear
flow created by Q is-

a to be measured from center to center of flange.

Two_flanges - two webg (tube) (fige. 10b).~ Such a
structural component can take up axial loads lying in the
plane of the two flanges; it can also take up transverse
loads Q 1lying parallel to the plane of the flange and
acting at any point.

. To establish the shear flew, define first the line of
action of the shear flow for each one of the two webs; ‘de-
compose the- external Q, according to these two lines of
action parallel to it, for example:

sz = QO _..._

which gives the shear flow in the left curved web at

a
cX-) a



10 N.A.C.A. Technical Memorandum No. 817

Three flanges - two webs (channelg) (fig, 10¢).- This
beam can take up any axlal load; it can 2lso take up any
load (Q) from any direction which passes through the
shear center S. The latter is defined as the intersec-
tion of the shear resultants of the two webs (at distance
2H from the plane of the flange).

Three flanges - three webs (tube) (fig, 10d).- Six (in-
terral) loads are applied at one sectional plane (cross
section) through this structural component: three flange loads
and the shear resultants of the three webs. The decomposi-
tien of 2 load according to six lines of actien in space
being clear, this component can (in distinction to the pre-
ceding examples) take up and transmit any:-external load.

The calculaticn of the shear flows following an ex-
ternal transverge load Q¢ evolves on the the decomposi-

tion of Q4 according to the three shear resultants Q.,

Qa, and Qze. Then shear flow gq;, for example, is:
- Q1
a; EI
Four flangeg - three webs (channels) (fig. 10e).~ Thig

structural comoonent iz already statically indeterminate.
Assume it to be clamped at one end while unrestricted
against warping at the cther places. The flange stress due
to axial lcad denends on the type of lcad application.
Stressed under a transverse load Qo' we decompose this in

the cross section at which it is applied into the shear re-
sultants of the three weds, after which each one of the

two flanges 1s treated in regard to its share of Qps 2s
if it existed by itself as beam (according to fig. 10a).
This affords the flange loads. In the flanges which gi~
multaneously bound two websg, the final flange load avpears
as the sum of the ottained partial flange loads.

Multi-flanges = multi-webgs.~ For such statically inde-
terminate beams, it is usually assumed that the axial
stresses in a cross section are linearly distributed; this
beam is computed as a conventional beam. If it pertains
to open cross—~sectional forms, the stresses due to tor-
sional moments are computed conformable to the theory of
Tlexural distortion,

In the two preceding examples, the treatment according
to the bending theory (determination of center of gravity,
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principal axes of inertia, etc.) would Te more cemplicated -
than the discussed method. '

C. Conical Shells with Few Flanges
The discussion may be limited to a few gxamples.

Two_flanges ~ one web (channel).~ The beam (fig. 1lla)
can take up axial loads lying in the plane of the two
flanges and passing through the point of intersection of
both flanges. The beam can also take up transverse loads
Qo: which (fig. 1la) act parallel to the plane of the
flange,* and which at the section at which they are ap-
rlied, are at distance 2H from the plane of the flange.
At the point of application of Qo the shear flow produced

"y Q, amounts to

At another point x wpart of the external transverse load
is taken up by the twe flange loads forming an angle; the

remainder Qo %ﬁ creates at this peoint =x the shear flow

— ao
q Qo as

Three flanges —~ three webs (tube) (fig. 11lb).~ To com=~
pute the internal leoads set up at a section point by an
external load P,, it is advisable to divide Py into a
load S ©passing through the tip of the cone and into a
load §Q 1lying in ene of the cross—-sectional planes. The
load S gives the three flange loads; it does not gstress
the webs. Load Q 1is divided in the three shear result-
ants. The latter change in magnitude inversely proper-
tienal to the web heights along the beam.

*Thig does not define the direction of the transverse load
quite definitely. The cross—sectional plane ef the beam in
which the le¢ad acts could, for instance, be placed perpen-—
dicular to the top flange or, say, pervendicular to the
bottom flange. According to this uncertainty, the web xex
veals axial stresses due to the transverse load. However,
these are small agnd insignificant compared to the shearing
stresses, so leng as the'transverse load acts in a plane
halfway perpendicular to- the course of the beam,
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De Bxample: Stress in End Rulkhead Due to
Applied Transverse Load '
On a beam consisting of three flanges and three webs
(fige. 12) the end bulkhead is ‘subjected to a transverse

load Qgs What is the stress of the end bulkhead?

Establish the shear resultants Qi, Qz, @z in the

three webg and the three gshear flows 41, 92> 4z say, at
qQ, = gi The shear resultants are applied as external

loads on the gssumedly isolated tulkhead.

To define the panel-point loads, it is assumed that
no bending moments are transmitted at the joints (hinges).
The shear flows are distributed over the web vortiens ly-
ing between the individual Jjoints; for examrprle:

q; 4, = q; 6; t—=4q, e,

As 4 = ey +—=ep, such partial loads of the shear flow
always conform to the relative geometrical dimensions of
the bulkhead. That is, the geometrical dimensions are
treated as loads. Then these partial loads are applied at
the joints; for example:

91 €1 = Q1 &1 t——=01 g2 (note that e; = g, +—%>g2)

This subdivigion of itself is simply statically inde-
terminate; the lines g, and gz are chosen so as to hug
the curved btars as closely as possible., The result is two
applied loads at every truss joint., To the extent that
thegse loads arise frem the same shear f]ow, they are readi-
ly ccllected; for instance:

91 h = 93 82 +——>9; &3 (observe that h = g +—5g;)

Now the tension is established by substituting the
straight line connecting the two jointg for the curved
tars. Lastly, the bending moments in the curved bars are
determined. Member 1 1g no truss member, hence possesses
no truss tension. Cn it the two forces q, g; and q; g&s
and the shear flow q; are applied as external load. The

bending moment at a point I is:

Mp = q1 (g1 p - 2f)
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At truss member 2 we apply, avart from the cofresponding
loads, tension S as external load.

A lower stress in the curved members is obtained when
the lines of action of the truss tensions are made to hug
the curved members more closely (flg. 13).- This brings the
hinge joints, which at the same time are intersection points
of the truss members, outside of the curved members. This
"constructive measure in nowise renders the calculation com-
plicated,

E. The Membrane Equilibrium of the Unwarped
Shell Element of Finite Size

The designer must be just as conversant with the equi-
librium conditions of the shell elements as with the ten-
sions in a truss. Figure 14 shows_ two views of a develop-
able, very (infinitely) thin shell element of finite dimen-
sions. The straight lines representing in their entirety
the developable area, are called "generatrix." The element
is bounded at two sides by straight intersection-lines in
the direction of the generatrix; these sections are called
longitudinal sections. The other two, in general curved
lines of intersections, are to lie in two parallel planes
at distance 1. These sections are called ring sections;
the sectional planes are called ring or bulkhead vplanes.

In the foilowing, the equilibrium and stress distribu-
tions in such shell elements are analyzed. .

Figure 15 is a straight, cylindrical shell element;
the ring sections are perpendicular to the generatrices.
The three possible stress equilibriums are illustrated at
the left; the corresponding load eguilibriums which the
membrane element ig able to take up without becoming de-
flected, are given at the right. The element can transmit
axial loads in the direction of its generatrix; it can take
up. shearing stresses; and it can transfer an axial load ap-
plied at a ring section ds shear, to a longitudinal sec—
tion. The general equilibrium condition presents a super-
position of these three individual cases. The one impor-
tant fact to remember, is to replace in the shear condition
(figs 15, center) the load or stress applied at one of the
sections by the three loads holdlng the equilibrium on the
other sections.

Longitudinal stresses applied at the ring section may
also vary along the section, Be it particularly noted
that a shell cannot take up a concentrated axial load act-
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ing in the plane of the shell, unless a member is specifi-
cally provided for taking up the entire axial lcad.*

Figure 17 depicts an obligque cylindrical shell ele-
ment. The two ring sections are no longer perpendicular
to the generatrix., The general membrane-stress condition
is preferably divided in pure tension (fig., 17, left),
in a "shear attitude " (fig. 17, center), and in the
change from axial load to shear (fig. 17, right).

In "shear attitude" the applied shear flow g 1is the
same along all secticnal planes. This stress condition is
no "pure shear" in the sense of the strength theory, but
rather a superposition of pure shear (with shear flow gq)
and pure tension in direction of the generatrix (fig. 18)..
Since each omne of thege two stress conditions is a rossi=~-
bPle membrane-stress condition of the shell, the "shear
attitude® q on the oblique cylinder itself is a mem-
brane-~siress condition,

Be 1t also noted that the resultant of the ghear
flow applied at section a has perpendicular to the plane
of the ring the component L = g-i.

Figure 19 depicts as the most general case of a non-
twisted skell a conical shell element formed of straight
generagtrices,** By "shear condition" the shear flow is
variable along the generatrizx. With L again denoting
the component of the shear load §Q applied at a genera-
trix perpendicular to the olane of the Wing, the following
relationg hold:*** o

LS. % .
3

1

Qt a b ;
] - = — fl . 19
2 la 3 v 7 (fig )

The shell designer must become conversant with this equi-
litrium.

*But a concentrated axial load may be applied in a ghell
when this lcad acts scomewhat within the shell area (fig.
16). Then the particular ring must be provided with a
bending~resistant plate relative to loads-perpendicular to
the plane of the ring, which distributes this concentrated
luad over a number of longitudinal stiffeners of the shell,

*¥*A conical shell element with any btase is, avart from
special cases, always obligue,
***Thig relation is closely related to those of the "Ten-
sien Method" in Zeltschrift fir Flugtechnik und Motorluft-
schifafhrt, vol. 18, 1228.
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P, The Twisted Shell Element

Figure 20 shows a sguare surface element with side
length 1. The gsurface is twisted, and the amount of twist
expressed in angle «. Loading this surface element in
shear flow g, the four shear loads gq applied at the
sides are not in equilibrium, but rather have a resultant
2ge in direction perpendicular to the surface. If this
surface element is crossed by a stiffening section, this
resultant 2aqa loads the stiffener in bending (transverse
load perpendicular to sheet surface).

Figure 21 is a small isolated shell element lying be-
tween two parallel bulkheads (distance 1). As the curva-
ture of the element (in ring direction) is of no moment in
this argument, the element is shown as straight. The ele=
‘ment has a stiffener; the lateral edges of the element are
to run midway between this and the adjacent stiffener.

The element is stressed in "shear," with L as shear
component perpendicular to the ring plane avplied at the
lateral edges. Now it can be readily vproved that equilib-
rium exists between all loads acting on the element, when
every load applied on a ring section is in direction of
the other ring section and possesses the magnitude

Ao

b and % a f(given in fig. 21)

This equilibrium is now divided into two parts. On
the left equilibrium all loads act at the edges in edge
direction, at the same time as a load p acts perpendic-
lar to the sheet surface., This equilibrium is not accom-
panied by bending moments in the sheet (in longitudinal
direction), when p has at every point the magnitude

p=2iaa

L1

Here o 1is the fairly small assumed angle between both
ring sections of the element (fig. 21, plan view), ¢ 1is
the width of the element at the particular point for p.

The second equilibrium comprises load. p and the two
opposing loads

Sl
o

a and % a o
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which at each bulkhead section are proportional to the
length of the other bulkhead section, and which are to be
deposited on the bulkhead., This equilibrium bends the
- gtiffener., The distributed load p» has the resultant

%~a (a + b)

As concerns the calculation of the bending moment, p may
be gssumed as evenly distributed without appreciable error.

This bending moment in the longitudinal stiffener 1is.
as a rule small, It compares, for example, with the load-
ing of stiffeners in a curved and untwisted tension field.
The deflection of the tension in the tension field on the
stiffener causes ~ distributed loading directed perpendic-
uler to the shell surface and amounting to about B ok 3]

being the angle formed by two stiffeners (fig. 22). Sup-
pose, for example, that the length 1 of thc shell ele-

ment is twice the mean distance é—%—b of the stiffeners;

then the bending moment in the stiffener due to the twist—
ing is only as great as the moment in a tension field when
the angle of twist o 1is of magnitude B.

The loads in the twisted shell transmitted at the
bulkheads perpendicular to the shell surface

a a .

Sl foa

b a and

<t

are additive to the loads deposited by the longitudinally
adjacent shell elements, when the twisting of the shell is
uniform longitudinally. The then ensuing bending moments
in the bulkhesad nay reach apprecisble values.

G. Shell Bounded by Two Parallel,
Flexurally Stiff Bulkheads

ls_The cylindrical shell (sample problems).- The fol-
lowing simple problem is of importance for the shell cal=-
culatiocn, Two curved bars bending-resistant in plane are
joined by a cylindrical web plate. The spacing of the
rings is l. This so fashioned cylindrical piece is now
fixed at one end (at a longitudinal section) and a Ioad
applied at the other end (fig. 2%). St, Venant's torsion-
al stiffness is disregarded.
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The membrane equilibrium of the web under a trans-
~verse load. .. Qs 1is. given at the right-hand side of figure
23, Between web and both edge stiffeners a shear flow

= Qo
]

is transmitted, causing the edge stiffeners to be stressed
in their plane in tension, transverse load and bending.
Tension and trangverse load have at a gection I in gquan-~
tity and direction, given by ay, the resultant*

R = al ¢q

These two loads Ry 1in conjunction with the transverse
lozd Q = Qo transmitted by the wed, hold the external
Qo in equilidrium,

Further, the shear flow g creates in each ring a
bending moment M3 of magnitude

M3 = g 2f (fig. 23, right side)

This moment My is inversely equivalent in the two edge
stiffeners - that is, gives no resultant. This moment

Mi cannot be simply computed from the eguilibrium with

the external loading; rather, it is dependent on the course
of the beam between the applied external load Q and the
particular section point I. The stresses created by My

are called flexural distortion stressese.

If, in addition, torsional and bending moments are
applied at the end of the eylindrical piece, the resulting
total moment at the cross section is divided into two in-
versely equivalent loads applied a2t the top and bottom

edge stiffener, after which the bending moments My in

*This shear flow is assumed constant over. the beam height.
On a flat beam thils premise holds only when the cross-
sectional area of the web is small relative to the cross—
sectional area of both flanges. In our curved beam the
shear flow ig constant over the beam helght so. long as the
flexural stiffness of the web is small compared to that of
the bulkhead rings. In this case no axial loads can occur
in the web in ring direction, regardless of the size of the
web area compared to the cross—sectional area of the rings.
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the edge stiffeners due to thisg external load can be read-
ily obtained.

If this moment loading M, (fig. 23, bottom) is ap-
plied, together with a transverge lcad Q5, the total
resultant is formed; this consists of a transverse load
Qres ©of magnitude Qo applied at a certain point. Then
the Ttending moment M; in the edge stiffeners at a point

I (fig. 23, bottom) is:
My = R0 pr - q 2f

The area f 1is encldsed by the radii vectors plotted from
Qreg to the initial cross section; i.e., to the section

at which Qreg 1is applied and to point I and to the

cylindrical piece (in plan form).

Example: Application of Axial Loads in Cylindrical Shells
by Means of Two Bulkheads

A tending moment is to be iIntroduced at the end of
the shell in an airplane fuselage. The bending moment is
applied in the form of four concentrated loads (fig. 24).
In this case 1t is expedlent to fit a bending-resistant
ring (btulkhead) at the shell end itself and one each a
certain distance away from the end of the shell.

With a view to the determination of the stress dis—
tritution, this niece of the shell 1s isolated from the
rest and the four concentrated lozds anplied at the left
end of the piece and the linearly distributed bending
stress at the right eund. From this the load Q transmit-
ted bty each cross section ¢ of the shell and congequent-
ly, the shear flow g = Q/1 <can be determined. This shear
fiocw q 1s shown at the lower left of figure 24 over the
rolling up from I %to II. The smocth curve is the result
of the distributed loads applied at the right bulkhead.

At the point of anplication of a load I +the entire shear
flow undergoes a treak to the amount of L/l.

Now the shear loads q exerted by the shell on the
rings are known (lower right of fig. 24) and the ring
stresses become calculatle. They are, in general, not
very great: they become so much gmaller as the bulkhead
spacing is chosen wider. But the longitudinal stiffeners
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which introduce the concentrated lonads in the shell must
in-any case go- from cne bulkhead to the other; their bulk
may decrease the starting distance from the end cross sec—
tion, .

If the fuselage space permits the use of two trussed
bulkheads, they themselves probably will be capable of
carrying the loads set up by the shear flow g, so that a
more exact calculatien of these stresses may be foregone,
and the work confined to a check on the shearlng strength

of the shell plate.

Example: Cylindrical Shell with Cut-out

The stress in the cut-out zone can te treated in sim-
ilar fashion. To illustrate: Suvppose it concerns a tor-
sionally stressed fuselage with a cockpit opening or cut-
out. It is expedient to install four rings, one each at
either end cof the cut-out, and one each at a certain dis-
tance from it. In additien, twe longitudinal flanges are
fitted - one at either side of the cut-out - the flanges
extending as far as the outside rings (fig. 25, top).

Isolate the part directly outside of the two outer
rings and aoply the shear flow q, of the torsion moment
at both ends. Then divide this equilibrium of the exter-—
nal loads by applying the shear flow 4, @at the cut-out

. into one which produces everywhere constant shear flow and

in a second, the actual disturbance due to the cut-out.

The stress due to the latter forces is now analyzed,
Make a cut m through the center of the shell., This cut
has to transmit a transverse load gq,a lying in the plane

of the cut (a = width of cut).

. There are three webs between the four longitudinal
stiffeners; we determine the three shear flows qg, 4;, da
in these webs which to the resultant have the cited load
dpa. Next isolate the two rings to the right of the cut
along with the intermediate shell piece and plot it twice:
once, giving in the ring area the applied shear flows gq,,
3;, 9z which balance each other and merely stress the ring
adjacent to the cut—out; and a second time, showing the
axial loads (aq, + q;) Vp, and (aq, + gz) ky.. The calcu-
lation of the shear flows and ring stresses in this anti-

symmetrically loaded shell piece c¢d presents no difficul-
ties,
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2. The conical shell (with sample vroblemJr- A shell
having the shape of a truncated cone 1is btounded by two
bending~resistant bulkheads; the latter lie in two paral-
lel planes at distance 1. The structural component is
fixed at one generatrix and loaded at the other end by a
transverse load Q, in the direction of the generatrix
(fige 26)s L is the component of Q, perpendicular to
the tulkhead plane. '

Through shear flows the webd plate is set in equilib-
rium* (fig, 26):

acting on a cut I (say, at the point of fixation) and
preserving the equilibrium of the external load Q. The
bending moments Miy in the two flanges are inversely
equivalent: :
L
Mi = qa 2fa = 7

o o
Al (=

o'lp

2fgq = qp 2fp = 2fy

Example: Cockpit Cut—out in Fuselage

We repeat the example of the cylindrical fuselage
without, however, touching upon the fundamental vproblems,
The contour of the fuselage 1s arbitrary, but all bulkheads
must be geometrically similar.

We immediately start with the vpartial loading corre-
sponding to the disturbance (fig. 27, top). The lengitu=-
dinal forces in the flanges are assumed to be zero at a
cut m, and the pieces of the fusclage between m and
the end bulkheads & and d as being conical.

The shear flow at the rear edge of the cut correspond-
ing to the torsion moment, is assumedly given g, = o We

forthwith determine the shear loads applied - -in cut ¢
(fige 25, bottom). From the moment equilidbrium of the

* afb is the ratio of any two mutually corresponding lin-
ear dimensions of the two rings.
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shear flows about point P follows:

Qo ¢ f = gz & (e + £)
Furthermore, the sum of the horizontal components of the
transverse loads gives:

q1_<°3 ~ ¢) = dp © = 4z Cp

These shear flows gq4, d,, @ “only load the bulkhead ring
lying in cut c. ' S ' '

Next we determine the axial loads to be transmitted in
cut ¢, proceeding immediately to defining the component
L perpendicular to the bulkhead pldne, The btasic rela-—
tion is (fig. 19):

2= ag &, that is, L =1 ap &

It affords the two loads:

1l

L1

glo

Tme (g0 + a;)

11 = lme ﬁ (g7 *+ ap)

Here c/m denotes the ratio of the linear cross-—sectional
dimensions of cut ¢ and m. The four axial loads Ig

and LII load the shell fraction cd antisymmetrically.
The calculation of the shear flowsg and ring stresses of-
fers. no difficulty. :

He Cylindrical Sheet Metal Wall Bounded
by Two Parallel Ring. Cuts

Consider a straight cylindrical shell of length 1,
the shell consisting of sheet metal of wall thickness sg:
the free end of this shell being loaded by a transverse
load Q, and a bending moment My, whose resultant is o
transverse load Qres (fig. 28); the other end of the '

shell is fixed,

Following the loading, the shell piece develops bend-
ing stresses whose moment balances the moment of the ex—
ternal loads, while in addition, the torsion produces
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variable flexural distortion stresses Opg over the wall

thickness, which in every cross section I reaches its
peak

in the four corners of the cross section. (f is the
shaded area in fig. 28.) St. Venant'!s torsional stiff-
ness is ignored. This formula is resdily derived accord-
ing to the data given in IV G 1.

If the sheet is regularly fitted with individual
stiffeners in ring direction (fig. 29), it is:

Q 2f

G-bd = _.:br:ge_.g___
LW

6 @

whereby Wp = W/ tp, W Dbeing thé section modulus of a
ring section and t¢ the spacing of the sections., Stiff-

eners running longitudinally have no influence on this
probleme

This result is equally important for the calculation
of sleeves or sockects (as, for instance, on lending-gear
strut fittings) and on rings which form a frame around a
" cut-out in the covering of an airplane.

Mr. Tintea (in higs thesis, Berlin, 1934) has extend-
ed these results to include circular cylinders with con-
gsideration of St. Venant's torsional stiffness.,

Trenslation by J. Vanier,
National Advisory Committee
for Acronautics.
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Figure 2.~ Box-shaped air-

Pigure 1.~ For computing plane sur-
face shells.
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' Figure 7.- Membrane
Figure 5.~ Wing spar, Figure 6.~ Shell body. equilibrium.
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Figure 11,- Conical shell having
few flanges.

Figure 12.- Stress in end
bulkhead due to applied
Pigure 13.- Improved end ! transverse load.’

bulkhead design. %G,
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Figure 16.- Application of an axial
load.
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Figure 15.- Membrane equilibrium of
untwisted shell element,

Figure 17.,- Obligque cylindrical shell
element.
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Figure 19.~ The "shear attitude®

: T™$=2919Y 4n the conicel shell element.
Figure 18.- The "ghear attitude”,

Figare 21.- Twisted shell.
element with longitudinal
stiffeners.
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Figure 22.- The compara-
tive curved teasiom field.

Figure 23.- —
Stress in cylin-
drical shell be-
tween two rings.

Figure 25.- Cutout in torsion-
ally stressed cylindricel shell,
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Load gy a, is not plotted ac- -

: curlto}y, it should run par-
allel to the transverse line
connecting the flunges, as
resdily seen in fig. 27.
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Figure 27.- Cockpit cut-
out in fuselage.

Figure 24.~- Introduction
., of axial loads through
two bulkheads.

: N
Figure 28,- Stress in :
+~~unstiffened cylindri-
cal shell
{
, P h,,//'
Figure 29.- Cylindri< -
cal shell stiffened
in ring direction. =
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