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SYNOPSIS:

Two procedures for calculating the 11ft distributlon
8long the spen are given, in which better account is
taken of the distribution of circulation over the area
than In the Prandtl 1ifting-~lire theory. The methods are
&lso applicable to wings with sweepback. Calculated
results according to two methods agres excellently. Using
the second more simple method,ons needs about 3 hcurs-
for the calculation of the 1ift distribution of a straight -
wing, and about 8 hours for this calculation for the
swept-back wing. The results are compared with those of '
the Multhiopp 'method and with experimental results. Finally,
there 1s & brief note on the swept-back wing in sideslip, .
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INTRODUGCTT ON

In the present report two methods for determining
the 1lift distribution along the span are described, by
meeans of which the influence of the wing plan form is
taken into account better than by previous lifting-llne
theory. Since the new methods are also &appllcable to
wings wlth sweepback, they represent an extension of
previous thecry, at least so far as scope of applicability
1s concernsd,

The method described in the first section is based
on ths assunption of a 1lifting surface, and thersefore will
be designated as the "lifting-surf&ace method," or
"F-method.! For a straight rectangular wing, the amount
of calculatlon required is not materially gresater than
for known methods already in use; it glves & notlceably -

smaller E;é then the older methods, end this decrease

da
of 1ift curve slope increases with decreasing aspect
ratio A and amounts to approximately 8 percent for
A = 5. Practically, this fact will be especilally importart
for unsynmetrlcal 11ft distributions; for instance, one
can deduce from it anoteworthy decrease of the rolling
moment due to sideslip resulting from dihedral. In the
general case of trapezoidal wings with and without sweep-
back, the required amount of c&lculation 1s quite consider-
able, and consequently one would only use the method in
speclal instances for the control of the results from the
more simple approximate method (L-method).

The method of the second sectlon 1ls based on &
8lightly modified model of previous lifting line theory,
and hence will be designated as the "1lifting-line method"
or the "L-méthod." In spite of the radical simplification
of the basic geometrical model compeared to that of the
F-method (and,conaequently, in spite of the marked reductim
of the requlred amount of calculation for trapezoldal and
swept-back wings}, the results show an sxcellent agreement
with those of the first method. :

In the thilrd section the results obtelned with the
new methods (the calculations have been subjected to
numerous checks, but have not besn carried out twice
independently) are discussed, and compéred with experiment,
In addition, a comparison is mede with the Multhopp method
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of calculating swept-back wings (10). The note on the
rolling moment due to sidesllip of swept-back wings -
contained in ths fourth secticn is actually cutside the
sCOpe of the present report, which, except for thils note,
is concerned with symmetrical flow incidénce, but is made
here in ordor to cuickly remove & widesprsad misconception.

In this Interim report, intendsd to make avallable

to prectics &s quickly as possliole the results obtained
to datve, the F-method is only described in detail for the
stralght resctangilar wing, and theé detailed application of
1t for generel wings is not glvsn, especielly since these
mathematical detalls are of less interest to the practical
aerodynemicist, These mé8tters together with soms
supplementary mauerial will be included in a later reoort.

NOTATTION
X, § or &, 7 coordin&tss in vortex plane
‘7 (See fig. l(a)o)

- e X

-

)

g
7

Rek

wing area

\/

dimenslonless coordlinates

4]
1
(&

wing span

wing chord

A._.Ei aspect ratio
F

_ b ' '
AMT) = - locsl aspect ratilo

-

(7).
Z taper ratio (ratio of root chord to’tiﬁ chord)
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Q angle of attack
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g angle of sideslip
v Incident flow veloclty
¢q  1ift coefficient (A = cq £ v2F)

. o 2 B
c,  pitching-moment coefficlent (M = op § VF £
c rolling-moment coefficient (L =c % veF b)
L o L 2
a dlstance of the center of 1ift of a wing half from

tiis plane of symmotry of the wilng referred to
the semispan.

4(x,y) circulation density of the bound vortex

T (y) circulation distribution along the span

a(y) = %iﬁj—_dimensiénless circulation distribution
v

F(1), F(1) influence functions for F-method
L(1) | influence function for L-method

T = MY - 1) argument of influence fumctions
I. THE LIFTING SURFACE METHOD (F-METHOD)

As remarked in the introduction, this method will
oenly be derlved here for the simplest case of the straight
rectangular wing. If such a wing ls replaced by & plane
system of vortices (see fig. 1{&)), in the sense of
customary lifting swurface theory (ses for exsample
Blenk (2)), and if one denotes the density of circulation
of the bound vortices by (&, m) the induced veloclty
of the point =x,y may be calculated as

ng /S b/2 F 1 ,{ 2
= ’ Mx ~8)C + (y 'n)
Walx,y) = | | 17 - (X_é) cxnl a:cﬁ.ﬂ_} & am,

J-t/Z J-b/2 T | /
(1)
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By taking into eccount the two equations

Jﬁ Y(g,ﬂ)dg =p(7n) = circulation at & 'wing ssction [2)
~t/2

b/2 /-—-—— _

(y hy ‘r}) M(Q: ;) d: 2 B 7 .
j_b 2y -m Fpe n = v(g,y) (3)
one can Write instead

' b2 () /2 |

Wy(x,y) = IEIF Ly—:—f;}- an + A= I%f%). ag
b2 . -t/2

R A : - o -
+ EIFJ , Ve -8)2 4 (y - )2 \./v - 2 A& 4z ane
/2 detf2 (x-&)Y(y-m 3 ny

(§ m) 1is to be determined by ths requivement theat
’MA(x,y) *shall be equal tc the prescribed normal compenent

Vn(x,y) of the incident flow velocity &t the wing. If ons.

only takes into account ﬁhe part enclosed in frame NA( ,y)
the canﬂit*on is

J- vE.n ‘d "V(k:‘i)- '( an (5)
-t /2 x =g /2' 'ﬂ :

This is the equation of the two—dimensional problem for the
profile section located-at the station’ ¥y .hsving the normel-
component distribution given on the right hand side of the
equation. If V,(x,y) 1is independent of x one may

obtain from the two~dimensional theory the solution
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I (y) (6)

Lin)  an (7)

= 1t
T (y) 3 n

in which the second relation is obviously identical with
the Prandtl lifting line equation for the determination
of T'(y)s. According to Flstolesi (11) thils relation is
also valld approximately for normal-component distributions
which are dependent on x. If for V,(y) one substitutes
the value of the normal cocmponent &t Ehe three~-quarter
point (Multhopp (1C) has pointed out the importance of
this ided, which seems to have been almost universally
forgotten, Tor numerous applications), the approximation
ls rigorously correct if the dependence on x 1s linear,
that is to say, the sames as 1t 1s for a circular-arc
profile.

Since the term of Wa(x,y) not enclosed 1n the frame
vanishes for A -5 o (for, as is proved in (1) the
equation for the 1lifting surface goes into equation (5)
for A= « ), and also since it is known that the Prandtl
equation is in good agreement with experiment down
to A = l, this part may be regarded as -a corrsction term
to the Prandtl equation, and since 1t is & corresction
term 1t nesd be taken into account only approximately.

In order to arrive at an equation for the determination
of T(m) which will be similar to the Prendtl equation,
one must first of all get rid of the dependencs on X%

in the term in question, and this is done by Plstolesi's
approximation by replacing it by 1ts value at the three-

quarter chord point {(that is, x = E), and in the second
place «(&,m) must be prescribed as a function of ¢

for which the most suitable approximation ls equation (6),
One may easily convince himself that the same result will
be obtained by incorporating both of these procedures in
the initial equation (1). The following equation is then
obtained:
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Yy -1

2 M2ty
Eﬁ[ TGP

t/2 > [t-g
j ‘/" ’57 tly-m /2 T'(n) 48 dn  (6)
- - ’ t
b/2 -b/2 _ (y =) é_,,é
in which =x 1is to be set equal to % .

By introdlcing dimen31onless quantities,

— Lo— _ t —
=5F n=§%, x=2% £g=5%
' (%)
Va :
'{n) b vV &(n); & = —
v
we obtain
1!
c= | em o
LJ-‘Y—T}
-1
l 2 -
+ L }A;-é)"‘A(Y-?;)‘l'—"é“'- YOSy dF am
o~ : = G¢'(m) 4g dn
2 (X - W7 ~.7) 1+E .

where X = 0.,5. If for abbreviation, we set

'F*Erx(i—ﬁ%% RUEEHERY IR ‘/

X - g 1+

§_ ag  (11)
g
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3 LN . — . — -2)
Foézp'ii&(y-n)_[__ =%(arc si_nx+\/{-x (12)
vy :

wag-m ] =BT - Rdret v, 1= aF-H 03)

equ&ation 10 becomes

w Y L *
_ 1+ Fo ¢ (7). d~+2{‘-__I FIAGF - @) Je' () & (1)
01

Y

where F, ¥ = 0.88L7 corresponding to X = 0,5.

Since F(1) 1s continuous esverywhere, the numerical
evaluation of the last integrsl involves no Tundamental
difficulty. The function F(1) may be calculated with
the help of elliptical integrals, but practically one would
get the answer more quickly using numerical approximation
methods. P(1) is an antisymmetrical function whose
positive branch 1s shown in figure 2.

The solution of the integral differential equation (1l)
will be carried out in analogy to the Multhopp procedure (9)
familiarity with which is here assumed, espscially famlliarty
with the Multhopp notation (the Multhopp dimensionless
circulation is designated here by G). To this end, we
need a mechanical integration formula, the proof of which
is analogous to that of the formula used by Multhopp (9), (10

It is:

Iff f£(m) is a polynomial fn 7 of dégree (2m + 1),
that is, of the form : ’

2+l 21
£(7) = cvﬁ":.u:_ C cos vy (15)

=0

then we have without any approximation:

Le@ . Lr(-— 1) +e(r1) 9 f(ﬁnf (16)
n=1

vr**"*“ an Mo+ 1 2
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or writing ¥ = GOS-l n

g (Vo) + £lingy) . J ] .
FOY)dY = ol ° L) r £ 17)
L v f‘-;ﬁl[ ) 3 (xvn)l (17

where

! =
A nM+1

According to the Multhopp substitution

A m i1}
, - s < 3
Gly) = —= Gn %_ sin WA, sin w (18)
and using ;
2 = in 1

one obtains for G'{Y¥) the form.

G () = lfi:l Gp Ty ly) (20)

If this eJFpression is substituted in.the second integral
of (1L) one gets the following approximation-from the
mechanical integration formula:

r _— . -
gﬁj FlA(Fy - 7) | 6" (R) @A = 5_—1 Byn G (21)
-1

n=—

" _
where g, = - = f F A(sT;u - 17‘,')_] i) ay ,
O : . .

1 (fno Fu5-+fn, M+l Fv, Ml o B
= - ‘ -+ S IR VR (22)
2(M + 1) § 2 ' B
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in which for the sake of simplicity we have written

Tap = Taly), Fuy = PAGE, - 7)) |, 5, = ave cos vy, (25)

By teking into account the Multhopp quadrature formula
for the first integral, one now obtains from equation (1l.)
the following system of linear equations for the
determination of the Gy

b'x‘G = Q0 +Z' b -K-G', Uzl, 2, . . .3 m (2!4-)

where

% = 3#* # = 3% C Ae =
by = (1 + Fo*)by + A8y, by = (1 + F¥In, - Ag, (25)

For symmetrical circulation distributions these eqguations
are further simplified to

m+l
27, 1 ¢
4 . = LI - m + 2
BU-} GU E= CLU + r‘;__,—i BUn G‘n, v 1’2,1 * o % ( )
where
¥ = + i -y #* = 3% - AT
Bv (1 Fo )buu +j\guv’ an (1 + Fo )an l\gun. (27)
and M~1
<?_
7 = .-t L T (P =P ), n=N+1l-p (28)
Eun 2(M + 1) M=o ~HRT UM v’ .

The fhu which appear here are formed from the £,  and

are given in teble I for m =7 and M= 7, 15, 31 and in
table IT for m = 15 and M = 15, Their calculation was
not made with formmlas (19), but, in particular for the
case m =M 1in a coaslderably simpler manner to which,
however, no further reference will be made here.

The method of calculation of the 1ift distribution of
8 straight rectangular wing with symmetrical angle of attack
digtribution is, then, for the case m = 7 as follows:
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‘According -to the degree of accuracy reguired, one -
chooses a certain M, multiplies the differences-
(cos 8y = cosep) found in table III with the aspect
ratio A. then reads for the poinbts 1, A(cos 8y - noueé)

the values Fyu, of the function ¥F(3) from figure 2% _
then forms the difference Fyp = Fpg and with them using

Mrl

table I the product sums _Ef: ”ﬂ o = Fvﬁ),which can .
_ =0 )
be done on a calculating machine without wvery mch trouble.
By multiplication with -A/2(m + 1) one obtains from
them the quantitles Ag,, sond from them the Multhopp

coefficients B,ns bUU according to formula (27) and also

‘the coefficients B, ¥, B, ¥ of the system of linear
equations (26) wh*ch ey be solved by the Multhopp iteratim
procedure. In doing this it 1s to be noted that half of

the coelffilcients do nob vanish as in the case of the
I‘Iultho*\p calculations. ' '

In the case M =m for which most of the . ané
congequently also the FUE are equal but of opposite sign,

one needs for m =7 about 3 hours for the calculation

of a lift distribution. For constant. angle of abtack over
thé span, the accuracy obtained by setting( M=m 1is
alwdys sufficient, at any rate for 0 € A= 10 altbough
the - quentities §vx1 do not coms out very accurately.

They are, however, partly too large and partly too smell,
80 that ths 1ift distribution is hardly affected: for
1nstance, for A =5, a=1, m =7 in the calculation
'to 3 dec¢imals there was no distinction between the cases
M=T7, M=15, and M = 31, The incrsase of accuracy
resulting from the choice of a larger m corresponds to
that of the Xulthopp mothod.

The Pistolesi. apvroximation is rigorously correct for
normal-component distribution of the form Vu = oq + C7 cos @

" ‘where ¢ = cos -1 X, If the third term of the Fourier

development is.also to be considered, the velue to be
taken for ‘Vp, 1s not the value.at the three=-quarter chord
point, but the mean of the values at the center of the
profile and et the tralling edge. - In order to intraoduce
this approximation inbo the above calculetion, one must
regard X _as not vet mailed down to a definite numerical

T order to improve the accuracy cf reading the values,
a curve with aoubTSd scales was used,
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velue, and hence F¥(1) and F(1) are regarded as
functions: F¥(1,X), F(1,X) of X: with these one forms

7(3,0) + F(1,1)
2

F(1) =

%
R

and = Fo"(0) + Fo™(1)
2

Fo

and one obtains the equetion

— % Nl g R
1+ Fq GY ) o= A _[— - - '
¢ = =3 ) T lFN.y*ﬂ)G(ﬁ) a7 (30)
[_ —

—~

|

<t

The course of the calculation_is the sage as for equation
(1ly) if one replaces F by F and Fy byFo” = 0.6183
everywhere, The function F(1) is likewise plotted in
figure 2. -

A compariscn mede for a case with A = 5 shows that
taking into account the second Pistolesi approximation
as well as the first does not give enything, at least for
the degree of accuracy employed in the calculation; cg4

changes by 0.5 percent. Since, however, after F(1) is
once calculated, the amount of calculation in the two cases
is the sesme; the - systematic calculations for the straight
rectangular wing were carried out with the function F

( F-method ). For a number of aspect ratios ktetween O and
10 ths 1ift distributions were caleulated on the one hand
by the Prandtl 1lifting-line egquation, and on ths other
hand by equation (30); three examples are given in

figure 3., Tor large A a difference is perceptible only
at the wing tlp where the influence of induction is
greatest; with decreasing A the diffcerence becomes
greater, and is in evidence over more and more of the span.
The new distributlon always liles under the old, since
induction now comcs into play more strongly. In addition,
the corresponding 11ft coefficisnts were determined and
compared with the old values. As A—0 the ratio

1 tends toward the value 0554 But even in the

ol

1 - Fg
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range of normal aspect ratios, the deviatlons are always
noticeable, as may be seen from figure ie For purposes
of comparison, some points for the elliptical wing
calculated by Helmbold are also included (the distinction
between rectangle and ellipse for very small A which

is revealed here is caused by the difference of the basic
vortex systems). According to the L-method discussed in II
we also have for the rsctangular wing the limit 0.5 as

A — 0, Prom this figure one can also take a correction
for the old formulas used to recalculate to a dlfferent
aspect ratio, which correction to be sure ordinarily does
not amount to vsry much. '

The new method will give significant differences for
antisymetrical angle of attack distributions. Although
calculations for such cases are not available, certain
_conclusions may be drawn from figure lj. For an anti-

symmetrical 1ift distribution the 1lift of a wing-half will .|

behave with respect to the induction effect approximately
like a wing with half the span; that is, the 1ift of a
wing~half calculated as formerly and the corresponding
rolling moment are to be multiplied by the ratio

!
C ' _
ad resad from figure. 5 at the point '%.. Thus the

1
C ap :
rolling moment dus to sideslip caused by dlhedral for a
rectangular wing with easpect ratio = 5 would have to be
gbout 15 percent less ‘than previously calculated, and
actually Moeller (8) measured a nmioment 1€ percent too
small ecccrding to the then existing theory.

When the method is extended te swept-back wings, a
number of new difficulties arises, which brings about a
complication of the formulas and with it an increase of
the. computational work. For this reason, the explanation
of the gensral procedure will not be given in this
interim rerort. For this calculation the basis. would be
the vortex system of the lifting surface as it is shown
in the example of figure 1(b). The difficulty caused by
the induced valocity becoming infinite at the center of
the wing 1s overcome by splitting up; that is, the :
circulation distribution G(w) 1is substituted in the

form G(W) = G(r) + Clﬁfv{ - ﬁe with a suitable
constant € or, expressing this in physical terms, the
singularity of the induced velocity causcd by the bound
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vortices is neutralized by the free vorticewm. In this

way we also accompllish something else at the same time,
namely that the distribution G(7M) which is whet we are
solving for, and which is approximated by a Multhopp
Fourier erpression, looks like the distribution of the
stralight wing, so that it can be determined quite
accurately, sven for large sweep angles, with m = 7.

(See fig. 5.) The calculation was carried out for o
rectengular wings, A = 5 with sweep angles ¢ = 0°, 15°, |;57;
the result is shown in figure 6. The purpose of these
curves is to serve as a basis of comparison with the
lifting llne method which will now be described.

IT. THE LIFTING-LINE VETHOD (L-¥ETHOD)

Given & wing wlth a stralght one-quarter chord 1line,
think of the usual model of the lifting line so situsted
at the wing that the 1lifting line is situsted at the one-
quarter chord line (see fig. 7(2)) and then determine
(with reference to Pistolesi's approzimstion) the
clrculation distribution, so that the vertical component
of the induced velocity Jue to this vortex system at the
thres-quarter chord line 1s squal and opposite to the
corresponding component of.the incident flow (to my
knowledge, thls model was first used by Wieghsrdt (16),
page 261/262 in a special form). One has & right to
expect that the influence of the free vortices is pretty
well teken into account by this simplifled model, since,
although they are shorter than the ones on the 1ifting
surface, they are of constant density and do not decrease
to zero, as on the 1ifting surface. #ith reference to
the bound vortices, it will now be helpful that in the
case of the Infinitely wide plane plste the downwash of
the 1ifting surface and the downwash of the lifting line
located at the ons-guarter chord position ere equal to sach
other at the three-quarter chord distsnce.(Thnis result
is teken from a work by Helmbold which 1s not yet
published.)

At the general polnt (x,y) in the plamne of the
vortex sheet the lifting-line model induces the following
down draft veloclty:

b/2 :
1| 1 iy
Wp(x,3) = Iﬁfb/z y“:"‘ﬁ[l tE VRS (y - n)g_-]r'(n) an (31)
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and if one introduces hére the dimensionless notation

of (9) and also writes A = L2 end x =‘EéZl this

t(¥)
becones '
W 1 -
LN B 1+\/1+7»2(37'—ﬁ)2:|a'(?1') an (32)
v 2 ¥ -7 -
-1 :

Introducing the notation

- ARV
tAF-T)] = LT =M -1 (33)
SR - AT - M) .

we obtain the following equation for the determinsation
of G(7m):

o=y oo [
¢ = .gﬁj 8 (1) o7 + ?ﬁf Ll;\-(? - ﬁ)] ¢'(m) an  (34)
¥ -0 -1 =

This equation. obviously has the same form as equation (lh)
or (30) for the lifting-surface method. Consequently the
numerical treatment 1s according to the same scheme as

given on pages 10/11, except. that there F * 1s replaced

by 1, F 1s replaced by L and A by M= %% . The
antisymmetric function TL{(1) is to be taken from filgure 8.

The ap:licetion of the model to swept-back wings
makes no difficulty (compare fig, 7(b))}, since there
are no.singularities of the induced veloclty at the thres-
guarter choérd line. For the dAswii-draft velocibty at a
point (x,y) we have for y = 0 -
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b/2 _, B ' :
WA(x,V) = 'LT r 2 () |1 + x -[nlten g an
-
J-b/Z | Vix -|n| ten 9)% + (3 - )2
o
1 X +y tan ¢
* iF r(n) 3 9N
-t /2 \//J’ - n‘tan cp)2 + (y - m?
1 /2 X -y ten @ .
* g (n) ——— - dn  (35)
o v\~lv1' san )%+ (y - mE 7

The lest two integrals raprczent the 1lnduced velocity of
the 1ifving Line, sand after integrating them by parts one

obtains
r - —
Po |
a1 1 \/(y - in! t (y - )2
Vo = ETJ y - ﬂ X +y van ¢ -
~b/2 ‘
| he g2 L
+ 2 ten @ -\ and ('n) dmn
x2 - y2 tan? ?J
/2 |
Eﬁ o X -y tan ¢ ¥ - 7N

If now one again choonses the point at which the downwash
is computed at the three-guarter chord distance, or in

t(y)

other words, x = y tan ¢ + —- and 1f one introduces
dimensionless notatlon, and also the function
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s ~

1 Vil +Atang (F -[T]) 1%+ R(F - 7)2

-1

A - M) . 1 +2\tang ¥

-2 2=2
tancp\/fl +A tang ¥1< - ATF

;T'é 0 {
1 + 2\ tangy K oT) >

—— A
LCP(Y:T])'-’\ + 2

2

s M=0

\/él +Atan @(F -|7])12 + A2(F - 'ﬁ)z -1

AT - M)

e

one obtains the following eguation for the determination of
G(m)
1
2 a'(M) =, M —— b=y
a = - =1L 47 + Lo (F,m) G (m) an (28)
2% 1y - 2% 1 N4 ’

h--.

which may be_solved by the same method as the earlier equations
since TLu(y,n) is continuvous. Compsred with the csse of

no sweepback, the_computational work 1s more tedious because
the function Lg(y,n) 1is not a universal function of

AM(y_~- 1) as in the casse ¢ = 093 instead the values
Lw(yu,nu) mist be calculated afresh for every A ,t,p. If

one writes L¢(§,ﬁ) as a function of N(¥ - W) one gets

a different function for each point at which the downwash

is comouted, ¥y, for instance if m = 7, four different
functions. In figure 6 the results of calculations by thse
F-method and by the L-method are given for = rect&ngular

wing of aspect ratio A= 5 with sweep angles ¢ = 0°, 15°,5°,
‘The. agreement 1s very good. If, on ths basis of these
examples, which to be sure should perhaps be increased, one
assumes a general agreement of the two methods, onse iray in
the future use only the less laborlous L-method. In contrast
to the Multhopp method (compare section III and also

figures 11, 12) the convergence of the L-method i1s elso very
good for large sweep angles; an Increase in the number of
points from m = 7 to m = 15 does not effect any essentlal
change, as may be seen from figure 6. For the same reason
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88 in the case of the straight reotangulai wing (see p. 11)
one may also calculate gip for the pointed and swept-back
wing by teklng "M ¥ m points. TUsing m =M =7 one needs
about hours for the calculation of the 1ift distribution'
of the swept-back wing. :

IIT. NUMERICAL RESULTS COMPARISON WITH THE MULTHOPP LETHOD
AND #ITH THE RESULTS QF EXPERIMENT -

L

In figures G and 10 the results of the calculation for
a rectangular wing of A = 5 end for a trapczoidal wilng
of A =5, and Z = 2 and cifferent swesp angles are plotted.
For comparison the curves cdlculated by the kulthopp method
(10) for ¢ = 0° end ¢ = h5° end with K =1 sand m = 7
are Iincluded. The large difference 1in total 1ift is
particularly epparent. This may be sxplained as follows:

Multhopp assumed that the factor of pvoportionality
betwsen clrculation and angle of sttack was incdependent of
engle of sweepback, becsuse experiment showed, at least for
sweep angles which were not too great, no effect_of sweep
on total 1ift, The present calculations, however, were
primarily intended to give as good an approximation as
possible to the rigorous theory of the lifting surface, in
order thst a solid foundation might be obtained for the
estimation of various sedondary effects such as toundary
layer, tip vortices, etc. Theoretically, however, sweepback
must cause a decrease of lift, as one may saslly ¢onvincs
himself, and indeed by a factor of cos @ for the wing of
infinite aspect ratio, while for finite aspect ratio as =
result of the vortex sheet the decrease 1s not quite so large.
Based on an approximate ¢calculation which will not be glven
in detail here, the factor turns out to be '

CAE 2 g,

i + 2
cos 0]

1 - L % r—-— In tsble 5.the values

; de
Oa' = :§§ together w1th their uercentage deviations from ’

cg! for ¢ =0 are given for the examples which webe
calculated. The deviations are given vererGTl by “the

expreséion 91 . A,
2 A + 2
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As & second difference between the two methods, one
sees from figures 9 and 10 that according to the Multhopp
distribution the 1ift is dlsplaced a little more strongly
towsrd the wing tigs. Table VI glves the positlon of the
center of 1if% %? on the span according to the Multhopp
formula (L.7), (10}, From the same table one may take the
difference Aa of the centers of lift for the sweptiback
wing end the straight wing, the maegnitude of which 1s
decisive for the questlon of whetner the nesutral point of
the swept-back wing may or may not be caleculated from the
11ft distribution of the straight wing. - Referred to

average ‘wing chord % the error is tang Az @%

a quantity which is likswise given in table VI. If a
maximim error of 1 psrcent of the average chord 1s
permissible, then at least theorstically one must use the
1ift distribution of the swept-back wing beyord ¢z 20°. One
sees, moreover, that for ¢ = 5° the difference between
the Multhopp method, and the 1ifting-line method 1s
considerably greater than ths permissible amount. For
large sweep angles the srror Introduced by the integration
formula (l.7),(10) slso pleys a role. In order to form
an estimate of its magnituds, certalin values of a werse
determined by planimetry of the corresponding integral
areas, and are likewise given in table VI. Here again

one gets deviations which are too large for ¢ = L50,

. In an attempt to explain the differences between the
Multhopp method and the L-method, the convergénce behavior
of the Multhopp method was examined in certain numerical
cases. Flgure 1l shows one. esxample (rectsngle A = 5,9 = h5°%
Multhopp himself polnts out that, on account of the
. divergence of his integrel for w, +there would be no polnt
in the case ' of K =,1 to increase the number of points
m to more then 7. This is conflrmed by calculation. The
distribution calculated for m = 15 18 very different from
the one caleculated for m = 7. Also tthen the correction
_ function . K (fig. 1 (10)) is vsed, there 1s & marked
difference at the center of the wing when m = 7 and
m = 15, (In this connection it may be said that all thse
equations of the F-method and of the L-method lead to the
form v o
1

_ - -“l b - e . " _ .. —
a .:: -21? e | G’I(.T])',H(;Y_:n)]_ an .- - ‘

FEELE D
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for suitsble H(¥,M) from which, using the Nulthopp method
of iIntegration, the following system of llnear equations
is obtained).

m
'
8y = byy Hyy Gy = g_ PvnHyn Gy , -¢v=1,2, . ., n

This method 1s formelly very simple, but converges fright-
fully slow: m = 31 is not even sufficient. If for the
swept~back wing one calculates the term due to the sweep
engle by this method, one has s method which is very
similer to ths Multhopp methud for swept-~back wing.with

K =1, and also has the ssamc convergence behavior. Very
peculiarly, over the rest of the wing the difference
between the most exact cclculation (m = 15, K = 1) and

the roughest ceslculation (m = 7, K = 1)is not excessively
great. A simller result may be seen for the trapezoidal
wing with A =5, Z =2, end® = };5°, (See fig. 12.)
According to this, there does not scem to be much point in
including the correctlon factor K in the. Multhopp
msthod.

Te question of sgreement between theory and
sxperiment 1s cdifflcult to answer, bescause at the present
time there are not many measurements of swept-back wings
available, and the accurecy of the ones which ars svalle
able is not always sufficlent. The following is based on
the rectangular wing measuremsnts by Blenk (3)

(A =55 ¢ =0° 159, 30°) and Hansen (L) (4 = }.8;

¢ = =109, 0°, 109, 20°, L,0°) on the trapezoidal wing
measursments of the NACA (1) (A= 63 2 = 2;0= 09, 159, 309
on a fairly recent series of observations of trspezZoidal
wings with =35° < 9< L5°, by Luetgébrune (6) (7) and on

an unpublished DVI, messurement of a trapezoidal wing

with © = 09 and ¢ = 35°. Regarding the Nulthopp

) - dec
thesis that 735; is not influenced by sweepback, this

is certainly truve for the interval of small sweep anglesg
up to 159, or more precisely it is not detectable since

de '
changes of ?i% by 2 percent or 3 porcent which would

be expected from the L-method for ¢ = 15° are hardly
perceptible experimentally, especlally since the c,4(a)

curve 1s generally not entirely straight; but this
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assertion is also made by Luetgebrune (6) for large sweep
angles on the basis of his measurements. In my opinion,
however, these measurements cannot be used to decide .the
matter, since the dilspersion (explained by inaccuracles of
the model) of the measured ©c¢, ' values about the mean.
which was supposed to be independent of @ was

almost ¥10 percernt (see fig. 9 '6)), so that the ‘errors
here were sbout as great as the difference in question.
Similarly the VDT measurement (1) cannot be used, . :
particularly because the corresctlons to that -cannot be
checked, - If one .attempts to Interpolate the Blenk .
values of o4(@) by & straight line, one gets for ¢ = 30°
& decrease of cg! Dby about 6 psrcent compsarsd to o = 0°,

while from table V one can tgke 10.7 percent. The DVL
measursement (A ~ 5.7, Z ~ 1.9) shows for ¢ = 35° a°
decreasse of about 8 percent, while the theoreticsal approx-
imate formuia would give about 1l percent. If one were

to draw s finsl conclusion from these two results, 1t

- d UG : - .-
would heve to bte seaid: ‘E%Q is decréased by sweepback,
but the decrease appears to be only about 60 percent of
the theoretical value. (When swept-back wings are con-
structed in the usual manner according to which the

profile, and in pgrticular 1ts percentage thickness %

is given in the direction of the wind, then c¢g' really
should have another. correction because the profile sgctions
in, the. directlon of the effective flow incidence -~ that

is, perpendicular to the one-quarter chord line - have a
different thickness than the prescribed profile.) According
to Ringleb (12) c¢4's - when -sweep angle is used changes

by the factor k = cos ¢ + 0.723% % (L - cos @) whers

the first term 1s due to the changed thicknsss. . Since
this influence is already contemplated in our csalculation,
cg ! should be multiplied . by the factor

cos ©
thls means for ¢ = 30° an increase of eg' by
1.3 percent and an increase of 3.6 percent for ® = }5°,

1 + 04723 %l( 1. i}. For. a thickness of 12 perégnt

While the above discussed question of the total 1ift
is perhaps practically not zo lmportant, the practical
engineer is sspeclally interestsd in the form of the 1ift
distribution on swept-back wings, espscially because of 1its
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importance for the positlon of the neutral point, and for
the behavior of the wing with respect to flow separation.
From the experimentsl side thls question may only be
completely answered by pressure~distrlbutlon measurements.
To date, these have only been made by Luetgebrune who
measured a trapezoidal wing with ¢ = 0° and with

® = £350, mhe 1ift distributions obtalned do not reveal
any notable influence of sweepback at all. (This fact,
however, msy be dus to the circumstance that the measure-
ment was carried cut on a wing-hsalf with end plate at

the center of the wing, so that the bshavior at the center
of the wing, preclssely where the greatest effect of
sweepback is tc be expected theoretically, might have bsen
falsified.} . . _

From the balance measurements only one Intergrated
value is to be taken, nsmely ths position of* the neutral
point on the wing chord, or for @ # O +the spanwise
position of the center of 1lift of a wing-half., In this
way the gensral impression, based on experiments, that
the neutral polint way be detsrmined from the 11ft
distribution of the unswept-back wing if 9 < 159, is
confirmed by theory, since a deviation of 1/2 percent
of the average wing chord would be difficult to detect
experimentally. For @ = 300 Kuhle (5) found in the
NACA measurements a difference of 17 percent of the aversage
wing chord between calculsation and experiment; this
enormous difference is due to a mlsteke 1n csaslculations,
but the Multhopp evaluation of this measurement does show
a comparatively great influence of sweepbeck on the
position of the center of 1ift, which for the most part
agrees quite well with the results of this calculatlon.
However, one must dear in mind tHAY Ior tho experimental
determination of the center of 1ift (In its dependence on ),
i1t is not the distance of the measured neutral point from
the quarter-chord line (which is 1ts theoretical position
at ©® = 0) but rather its distance from the neutral point
measured at ¢ = O which 1s of consequence. <Then one gets,

using % = 3, from table VI (1) the following values for

the position %? of the center of 1ift:

~ 120, _ 0.022 + 0.352 _

© = 15°: a R TN 0.465

300: a = 0.022 + 0.775
5 tan @

i
i

® 0.460
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. That 1s, the center of lift according to ‘this,. actually
is ﬂiQpTaced SomewWhatr towafd the center of the wing, as
the, sweenbsck increases. The Blenk wings showed the
same’ bghawlor’ no increase in-.& _.in going from .

@ =.15° to © = 20°, rather, a small decrease. If one

_ assume° that the expsrimpntal velue of a determined for
® = 15° 1s also apnroximately correct - for @ = .09, which

. may very wsll be the case, there are, especiglly for '

@ = 0°; great differencss between theory snd experiment.

o _ Theory Experlment.
a et ¢ = Q° L-method | Multhopp
Rectengle A = 5. | 0439 -] 0.451 L0475,
Trapezofd L = 6, 7 = 2 b2l . ;hSO‘l Lh6S

As a matter of fact, pressure—cist;ibut;or meaﬂursments .
show that the setual 1ift distribubtion nesr. the wing tips.:
is gfeater than thne theoretical, which may be’ e?plalped
by ths 1nf1ue1qe of tip vortices Hansen (i) £lves no
‘neutral-point pos*tions pTDbeTy nn account of the,
' rEther. nonlinder verlation of o m(Cg)e It may, however,

be determihed here also that ths'Hulthopp method ior '
@ =.L0° gives too great a displacement.. -

In summary it may. be sald that the ¥ulthopp method
gives too laﬂge values for the displecement of the neutral
point, and the same s nrcbably elso trus for the,

F-metth and the L-métnod, since sxperiments up to

@ = 200 apparently show no. influence of sweepback whatever
“on the ¢center-of«lift position., Presumably this behavior
.may be expluzined by assuming thet.the - boundary layer,
following the pressure gradients of the-swept-back wing,
flows from the middle toward the wing tips where it 1s
piled wup by the oppositely 3directesd flow aboub:the wing
tips. The presence of such fliow in the boundary layer
may be clesrly seen from flow plctures (tufts, and
coloring mattér in the water tunnel) made by Hansen.
Another indicatlon that the differences betwesn theory

and expaciment aré te be sought in boundary-layer
influences is the fsdct that the influence of* the Revnold's
numder on .cgla), cylca), and -cq . - 1s _considerably

. Breater- for swept-back wirgs than £or straight wings .
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Finally, e few remarks about wings wilthout sweepback,
With reference to the form of the 1ift distribution, the
new methods may be expected to give not better agreement
with measured 1ift distributions, but rather a somewhat
poorer eagreement; for while the difference bstween the
0ld and the new distributions. for large aspect ratio
conglsts in a decrsase of the 1ift, especlally at the w1ng
tips, the experimental distributions at the tips alrsady
glve values too large (compuare the note on p. 22)., Since
this effect clearly has the character of nonlinearlty with
regspect to @ 1t will not be comprehended by any linear
theory of the 1lifting surface, no matter how accurate.

The difference between the theoretical and
experimental values of ! has hitherto been explained
by saying that, even for %he wing wlth infinite aspsct.
ratio, e, ' could be expected to be less than the

theoretical value. This hypothesis is only conditionally
true, as is shown by 2 glance at figure 13. In this
figure the calculated valuss of c¢cgt' according to the
F—method, and by the Prandtl l1lifting-line theory using
c'ge = 2 are plotted versus the aspect ratio A,
together with some experimental vslues obtained with very
thin wings, which agree very well with the c'gp curve.

According to thils, there is no boundary-layer effect
present for very thiln proflles, c'g. 1s equal to the

theoretical vaelue 2w, and the differences.obtainsd
hitherto are due solely to fallure to tsks into sccount
the influence of the surface effects., Naburally even here,
especially for small aspeclt ratlos, a perfect agreement
between experiment and lifting-snrface theory is not to

be expected on account of the tip effscts. In addition,
for normal wings, there 1s the Influence of profile
thickness, which according to the plane theory should have
as a result an Ilncrease of c¢'y ~ while experiment shows

e decrease, It ls thls effect which may nrobably be
correctly attributed to the boundary layer.

In this comnection a method for calculating \cm

simlilar to the F-method would appear to be desirsble,

since the reletion betwsen ¢y and ¢z can be tested
directly by experiment. Since the induced velocity on

the surface increases from the leadling edge toward the
rear, & dlsplacement of the neutral polnt from the vne-
quarter chord line forward 1s to be exp:cted with decreasing
aspect ratio, and thils is in harmony with experience.
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IV. NOTE ON'THE. SWEPT-BACK WING IN YAW

L]

The formule-for the rolling moment due to yaw is glven
incorrectly in almost all of the pertinent literaturs, the
argument being; the 1ift.of a straight wing is decreased’
in yaw by coséﬁ from which the change for the two hslves
of a sweph-back wing- ih yaw 1s cos2(@ - B) for the

. advancing wing helf, and cos (¢~+ B) for the lagging
half. If A 1s the total 1ift, and 1f we assume the

center of 1ift of a wing half at E; the rolling moment .

due to sideslip will be
L= %%[coéa( cp - g) - _0032(‘—¢ + 5)] = &b 8in 29 sin 2@

The error in thils derivation lies in the false analogy
betw een the streight wing in yaw, and the swspt-back wing.
If a2 stralght wing is put in yaw, both the normsl and
tangential components are decreased by cos B 8o that
the 1ift takes on a factor of cos2@. But 1f a straight
wing 1s glven sweepback, only the sffsctive tangentisl
componenf, 1s changed by cos ¢ while the normal component
remeins unchanged, .80 that the 1ift is only to be
multiplied by cos® . If now the swepb-back wing is
yawed, the norrel componsents on bvoth wing—halves change
by cos3 & L end the' tangentisl components %ske on the
factors cos{® - B). and cos(Q + B)s Accordingly the
ecorrect roll¢ng -moment due to sideslip is

i

L= 2] tos(o - B.) - cos (@ Bl = é‘ip_q’:éié.ﬁ (39)

_ L

Ce, %Va

]
N'Q

2 sinQ sing o (ko)

N'-FD‘

.

while the o0ld formula c¢ives fwice this amount. Tracing °
dovm this error in the literaturs is further complicated
by the circumstance that the rolling moment is not always made

dimensionless with %? 88 in this report, but with Fb

instead,
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3o for instance, In the much used summary by Schlichting (1%)
there 1is a formula for Cp for small @ and B which

is formally the same result a2s in equation (i0). Never-
theless the Schlichting formula contains the sbove error
since Fb was used in nondimensionalizing.

The only work known to me which avoid the above
fallacy 1s Multhopp's paper (10), but since the error,
even here, 1ls not expressly emphasized, and rolling moment
due to sideslip is only given in the form of an integral
to be evaluated in every individual case over a 1ift
distribution which has to be calculated for this case, the
Multhopp results have been less noticed than some others.
In addition, Multhopp ls concernsed with the oblique
position of the free vortex sheet, which causes an
additional angle of attack disfribution Aa = a48 tan@

where « ls the induced angle of attack distribution
for nonoblique flow incildence; the positive sign is to

be taken for the advancing w*ng, and the negatlive for the
retarded wing. Wnile now, according to Multhopp, the
11ft distribution belonging to Aa must bHe celculated,
and from it the corresponding rolling moment due to side-
slip, one may by & somewhat cruder procedure obtain also
in this cease a closed formula.

To this end we¢ assume the 1ift distribution of the
wing without yaw to be approximately elliptical. Then
@y 1s constant along the span, and equal to

C ' .
ﬁﬁ likewise the absolute value of Aa 1s constant along

the whole span, but the sign changes at the center from
plus to minus, The 11ft distribution corresponding to &
discontinuous dlstribution of « 1like this, is, for a
wing haelf, approximately like the usual 1ift distribution
of a wing of half the span. That 1s, the total 1ift
coefficlent assoclated with the 4a of a wing half, if
we use the elliptilcal conversion formula, and Cclgp e = 20
is given by

A

2C
21 cosgp .2’_ AQ = EImwp sincp_l.&..:’.\-____ ay=Ep sincpA i l (41)
.5t 2 5+ 2 F
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From this we get for the coefficient of the corresponding
rolling moment:

c
B sing iy -
Together with the moment (LD) of the bound vortices, this

glilves for the total rolling moment dus to yaw resuTting
from sweepback the convenlent: formula

. _
- q———— - 'S 1 . . I
T ca(o 5 +1\; = h) singQ (42)

V. SUMMARY

Two methods have been developed for calculatlng
the 1ift distribution over the span, which takes -into
account the influence of the distributicn of the
clrculation over an area better than the Prandtl lifting-
line theory, and which may both be used on wings with
sweepbacke. For swepbt-back wings, the first method,
called the F-method, i1s numerically very lsborious, and
therefore, serves on1y as & check of the simpler
L-methods The check 1s very good, even at large sweep
angles. The compubations for a straight wing require
about 3 hours, for ths swept-back wing, about 8 hours.
A series of examales wasg calculsted numerically, from
which the following conelusions mey be drawng

le For the strasight wing the new method gives a
noticeable decresse of cta when compared wlth the

Prandtl method, which for ezample at A = 5 amounts
to about 8 percent. If the profile is very thin, the
experimental values seem to lie very well on the new
et, curve. According to this, the difference between

ths 0ld lifting—line theory and sxperiment, in the case
of very thin profiles, 1s not to be ettributed to s
decreage of the Bneoretical c'a = 21 because of

boundary layer, but comes from neglecting the twoe
dimensional distribution of the circulation. .
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c!'_. B
2. In figure l the ratic .'a X of the new c!'y

Cla
to the old is plotted versus the aspect ratio A ., Since
the curve 1s pretty flat in the intervael of normal aspect
ratios, the conversion formulass for changing from one
aspect ratio to enother sre not essentlally changed. The
curve mey, however, be used for correcting the rolling
moments caused by antisymmetrical angle of attack
distributions. For this purpose, one would have to
meltiply the moment calculated by the old theory by the

et F

value of & scaled off of-the curve at the point %_ .

1
cty P

Thus for example one would get for the rolling moment due
to sideslip resulting from dihedral a decrease of

15 percent while measurement gives 18 percent. This 1s
for a rectangular wing with aspect ratio of 5.

\

2. For swept-back wings a comparison of the L-method
with the method of Multhopp (10) was cgrrisd out. The
L-method gives a greater decrease of cl'y and & smaller

displacement of the neutral point caused by sweepback
than the Multhopp method; moreover, 1t converges more
rapidly. ‘

L Available experiments show less change of c'a

caused by sweepback than predicted by the L-method, and
either no displscement at all or very small displacement
of the center of load. in the spanwise direction. Theae
differences between theory and experiment are presumably
to be explained by a movemsnt of boundary-layer materisal
towerd the wing tips, and this 1is verified by flow
observatlons. :

5. The formula customarily given for the rolling
moment due to sideslip of the bound vortices of a swept=
back wing rssts on a fallsascy, snd gives values which are
100 percent too large. 1In ssection IV a convenient
closed formula is derived for the rolling moment due %o
yaw resulting from sweepback, ir which formula the
influence of the free vortices is also taken into account.

Translation by H. R. Grummann
McDonnell Alrcraft Corporation
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SUPPLEMENT

In comparing my evaluaticn of the VDT measurement
with the Multhopp evaluation ((10) fig. 3), I could not
find the polnt corresponding to the wing 2ﬁp15—0.

Writing to iMr. Multhopp about this, I was ianformsd that
he had omitted this point becsuse he iid not think i1t was
correct. At the ssme time he sent me the acgompanylng
amnlified diagram in which there is, in addltion, a new
polnt 1.

Tals filgure seems st first to verify the correctness
of the ¥ulthopp calculation, Ehis slsc if one only
conslders the inclination of the theoretical strajght
line. In my report only wings 5 and 7 were used, because
these were the only ones for which nothing was changed
but the angle of sweepback in starting from o = 0°;
for all cther wings the profile and the twlst were changed
at the ssme time, for no. 1 even the plan form was
changsd, The theslis that sweepback causes no essential
dlsplacement of centser of 11ft is thus ccnfirmed by the
only comparable measurements 5 and 7 (and by Blenk (3)).
Ageinst this conclusion may be adduced the othser measure-
ments6 as well as the fact that oy extrapolation to
=0 one obtains centers of 1ift located very far out.
(The allusion in =y report to tip effsct may not be
sufficient as an explanation as ¥ulthopr correctly
remerks.) Flnally, if one considers that the calculation
of & from measurements of ¢, resta on the assumption

that the nsutral points of the individuel proflle sections
are not changed by swespbsack, one wust probshbly ssy in
concluslon that & finsgl answsr to the gquestion cannot

yet be given on the basls of the exnzrimental results
available at the present tims.
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TABLE T
&t . . .
M=7({M=15 M=l5l n=l1’ _n%Z n=3 n =4
0 0 0. 2.6131 |-1.41k2 | 1.082) |-0.5000
- - 1 u.5889}.qé,1055‘ 1.5663 | -.7193
- 1 2 2,85l | -.236%] +.0751 | -.0253
- - 'z 6573 | .2.0046 -1.5402 | .7109
1 2 L -1, 4102 | 3.6955 [-2.242 | 1.082L
- - 5 -2.7625 | L.1506 |=-2.00%7 .8553
- 3 ',6 ' -5'1207 2.1958 | ~.3621 .1005
- - = | -2.5843 | 1.222L | 1.8601 | -.8209
2 N 8 -1.53C7 {-1.0000 | 3.6955 {-1.L1k2
- ,; 9 - 383 |-2.6609 | L.2950 |-1.28L4
- 5 10 211l |-3.2L65 | 3.3216 3367
- - 1i .5651 {-2.7288 | 1.1207 | 1.1492
3 4 12 Jiihe -1.5307 |-1.h1L2 | 2.6131
- - 13 1016 | -.2939 {-3.2260 | 3.4L397
- 7 1l ~.1258 Jiz72 1-3.5579 | 3.2212
- - 15 --ibhh J635 1=2.290L | 1.9L16
The. numbers 'fnu

at m =.7.




TATLE IT

i
|

=

i
l

n= n=2 n =y a:l;_ 1'1:5 n=25" n = n=

. NN N~ R OO S R o

¢¢

5.1258 | =2.6131 | 1.007 [-1l.u2 | 1.2027| -1.032 | 1.0196 | ~0.5000
~2.6131 | 6.9298 [-h.0275 | 3.0e8g |-2:0066[ 2.2223 | -2.0824 | 1.0196°
-3.2258 |10z | 6.3255 3.6955 | 2.8196] —2.4102 | 2.200% | -1.082)

1.1989 |-3.9231 -1‘082h_ 6,145 1-%.6241| 2.8196 | -2.4966 | 1.2027

=5973 | 1.5307 |-lh.106z $1.0000 [6.145h | -3.6955 | 3.0027 | -1.41L2

¢3318 | -.760L | 1.6i%% l.1062 (1,082 6.3285 | -L.0273 | 1.8000
-.1831 Jirhz | L7800, ;.550§ ~3.9231, Ql.hlgz 6.9258 | -2.6131
.0824 | -.1831 3316 | ~.5973 | 1.1989} -3.23258 | -2.6131 | 5.1258

The numbers Tnp. st m = M = 15

‘ol WL VOVN

O<IT



FACA TH No. 1120

3L

TABLE III
at V=1l lv=2 |v=3 [v=L
M =7]M=15| M= 31 '

0 0 C -0.0761 |-0.2929 }-0.6173 |-1.0000
- 1 2 -.0569 | -.2737 | -.5981 | -.9808
1 2 I 0 -.2168 .| =J5l12 | -.9239
- o 6' 092l | - 12l | - 0488 | -.8315
2 "u 8 - 2168 |0 -.324 | -.7071
- -5 10 3683 01515 | -.1729 | -.5556
5 | & 12 5h12 | 32Lh | o -.3827
- 7 1l 7238 .5120 .1876 | -.1951
L 5 16 cozy | L7071 | 3827 | o
- ‘9 18 1.2190 .9022 5778 .1951
5 10 20 1,7066 | 1.0£98 .T65) .2827
- 11 22 1.5779h | 1.2627 .9382 5556
6 12 2l 1.6310 | l.41l2 | 1.0898 7071
- 13 26 1.7554 | 1.5286 | 1.2142 .8315
7 il 28 1.8578 | 1.5320 | 1.32066 | ' .9239
- 15 Z0 1.9047 | 1.8879 | 1.3635 .9808
8 16 z2 1.9229 | 1.,7071 ! 1.3327 | 1.0000
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CONTIRUATION OF TABLE III

uatM='15 v =1 v ='2 v =3
1 -6.0713 ~042881 |-0.6125 |-0.9952
5 - ~.0330, | -.2498.] -.57h2 | -.9569
5 LO0L20 | =,1748 | ~.4992 | -.8819
o7 . .1509.] =+0659 { ~.3903 | -.7730
9 2895 | .0727.] =~.2517 | -.63lL
o1l 5066 2898 | =-.0346 | -.4173
A3 6336 1168 092l | -.2903
, .15 ‘.8259 .6091 2847 | -.0980
17 1.0219 .2051 11807 .0980
19 i.aluz 00Tl 6730 - »2903
.21 1.3Lh12 b 1gs12kh .3000 1173
23 1,5583 | 1.3L15 | 1.017T | .63lL
25 1.6969 | 1.4801 |' 1.1597 7730
27 1.8058 | 1.5890 | 1.26L6 .8819
29 1.8808 | 1.66L,0 | 1.3%96 . 9569
21 1.9191 | 1.7023 | 1.377¢ 9952




TABLE IV

V=1 U = v =3 v =) v =275 v =6 v =19 v =8
~0.0192 {=0.0761 |-0.1685 |-0.2929 |[-0.4llly |-0.6173 -0 Coug ~1.0000
0 ~-,0569 | -.149 -.275g -.uzga -.5311 gg -.9808
0569 | O -9092 -e216 -.3683 -.Eh 2 Ze -.9239
14,93 .0923 -2kl | -.2759 | - 0488 36l | -.3315
.2757 216 12&& 0 -.1515 -.321 -.5120 - 7071
é . %683 .151 -.1729 -,5602 -65256
59 1 512 .32 .1Z ) -.187 -.3827

. 5g . 7288 .5120 876 | 0 -.1951

+980 +9239 8315 . 7071 555 3827 1951 | 0

1.1759 | 1.1190 | 1. 0266 .9022 <507 .5278 3902 .1951
1.3 53 1.3066 | 1l.2142 [ 1.0898 .9382 .7 gu. 25778 <382
1.536 1.579& 1. 585 1a 2627 1.1111 9782 » 7507 .555
1.6879 | 1.6%10 | 1.5386 | 1.k 62 1. 2ba7 1.0898 .9022 7071
1.8123 1.5353. 1.662 1. 1. i 1.21%2 1.0266 .8315
1.9ouZ 1.847 1.7554 | 1. _g 1. 79h 1.3066 | 1.1150 .9253
1.961 1.9047 | 1. 123 1.6879 | 1.5% 2 1.3635 | 1,1759 .980
1.9508 | 1.92%9 | 1.8315 | 1.7071 | 1.555 1.3827 | 1.1951 | 1.0000

The differences cosd,, - 0083'u atbm= M= 15

‘o WL VOVN

ocTL

9%
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TABLE V
Rectengle & = 5| Trapegoid 4 éis‘if% 2! A =5

5 1%'a Acty in | ety be'eg In . | 42 1000
® percent- | - - | peréent =~ -} ST I D
0 |3.92 o | L.o6. 0 o)
15 |3.79 | -3.1 3.98 | -2.0 , .| 2.5
20 {%3.49 [-10.7 3.72 -8.5 9.8
hs 12.99 {-23.6 | 3.22 ~21.0 E 22.0

The coefficient ¢! as a function of the swept-back

8
angle (according to the L-method)



TARLE VI
Cgloulation of & with Multho sguar formila graphical
Method Malthopp K =1, m= 7 F-method L=xe thod L-mathod
Wing ¢° a Aa 42\.- Ax teng| = Aa .é\- am tang| Aa g aa tang a % b vanp
0 o.51] o 0 oo |O 0 039 © 0 o438 ] o 0
A=35 15 J51 | <011 .007 Jso | o1 007
30 63 | .02 +035
z=1 b | -505f .o54| 135 | B3 [ .0h3) 207 | J4B1] o) .05 | W72 034 085
0 429 1o 0 424 | o 0 2423 o 0
A=5 15 J33 | .009 .006
30 443 | 019 027 | o | L007 025
z= ks 485 | 056 | 140 JA57 | .033 .082 | 450 | .027 .068
A= 0 )30 Ji2h
2= 30 Ay | .023 .0lo
A= 10 0 o431 Ji27
2= 5 Jr2 1 .05 225

The Aistance a from the plane of symmetry of the 1ift center

of gravity of a wing half in terms of semispan..
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Fig. 1

NACA TM No. 1120

The vortex system of the lifting surface

Figure 1.

(a) Straight-rectangular wing

{b) Swept-back rectangular wing
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Figure 2. The functions F (1) and F (1)
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NACA TM No, 1120 Fig. 3

— = — Prandtl's theory of the

— —t— \AL\ ] supporting line
12 / ~N- ~ —————— F-method
6(3 / ~T
=7
7.0 % N
N
A
a8 S \
ANERAN
1
a6 \\
___ZLi4i_‘ * \
‘\ \
=70 N R\
N
AN\
02 AN\
A\
0 a5 g 70
‘Figure 3, Lift distribution of the 3 rectangular wings =1, 5, 10,

Comparison of Prandtl's theory of the supporting line with the
lifting surface method.
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C&F Q9 Rectangle
Cap > Ellipse (Helmbold)
Nne - J - _
U /
Q'i""‘7}4r
a6—17
¥
a5
0 2 ¢ 61 g 1
CaF CaF
Figure 4. The relation = for rectangular wings of the
Cap  Cap

ratios 0=10 (Cqp = 1ift coefficlent according to the F-method,

Ca_p = 11ft coefficient according.to Prandtl's theory of the

supporting line with ('.!a‘111 = 27 .
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NACA TM No. 1120 Figs. 5,6

o4 ' 'f 077 \L
2“‘/-? ~ ]
) - GlI(YJ \\
02 —
/] ] = 3 "‘~_~\~
/
| . |
a5 7 70

Figure 5. The 1ift distribution G (Y) of the 45° rectangular
swept-back wing /A= 5 as the sum of 2 distriburions G (Y)

and C (Y)V l- Y2 (F-method).

06
G(7) ge_Lp —— F-method
n AP o L-method (m =
olf & L-method (m =
¢ ‘ﬁ?—""é’”—_"f‘
02 '
7 |
Qs 70

Figure 6. Lift distributions of the rectangular wingA = 5 with
according to the

the sweep-back angles ¥ = 0°, 15° and 45°
lifting surface and supportlng line method.,
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/,Supporting line in 1/4 T

= e e e

Supporting line in 1/4 T
T
l
|
i
)
l
J

Point in 3/4 T

Fig. 7

T

Point in 3/4

The vortex model of the L-method
(a) Wing withbut sweep back

(b) Swept-back wing

Figure 7.
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Figure 8. The function L (1)
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Figs. 9,10 NACA TM No. 1120

0‘6_ ﬁ . ——' f-method
G(y) AL i, — —— Multhopp A 1. M=7
yad 2 2l - ~
04 SEQ - \\IT—
%%y 0 L ‘\ \\ \
\ AJ
22 \
1
7 ]
Qs 7o

Figure 9. Lift distributions of the rectangular wing./L = 5 with
the swept-back angles ¥ = 0°, 15°, 30° and 45°, according to
the L-method. Dashed line; result of Multhopp's method for
(K =1, m="7) forYY = 0° and 45°,

a6 — T ' T 1
Géz) _- T~ L-method
73p° T — N — —— Multhopp. K=7. n=7

Q4 1= )2 : N

B \ \L

) \
Q2
|
as ¥ 10

Figure 10. Lift distributions of the trapezoidal wings,-A- = B,
2 = 2 with the swept-back angles ¥ = 0°, 159, 30° and 45°,
according to the L-method. Dashed line; result of Multhopp's
method for ; (K =1, m = 7) for ¥ = 0° and 459,
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Figs. 11,12

K= 7. m=7 X
——H=l. =75
———K#7. m=7

— N

Figure 11. The converging of Multhopp's method for the rectangular

wing; A = 5,F= 45°,
—-‘—-—;I'_J‘-.-—‘ SS
P PP s
aqs 4 /0

— K=T m=7
—— K2l m=7
—_—- Kp7, m=75

Figure 12. The converging of Multhopp's method for the trapezoidel
wing;/A= 5, 2

¥ = 459,



Fig. 13 NACA TM No. 1120
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Figure 13. The coefficients c,a.F (F-method) and ‘C;p (Prandtl's
theory of the supporting one C;_oo= 2 X} compared with measure-

ments on -very thin profiles.



