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ABSTRACT

The following report deals in preliminary fashion with the transmission
through a fuselage of random noise generated on the fuselage skin by & tur-
bulent boundary leyer. The concept of attenuatlon is gbandoned and instead
the problem is formulated as & sequence of two linear couplings: +the turbu-
lent boundary leyer fluctuations excite the fuselage skin in lateral vibre-
tions and the skin vibrations induce sound inside the fuselage. The techniques
used are those required to determine the response of linear systems to random
forecing functions of several varisbles. A certain degree of ideglization has
been resorted to. Thus the boundary layer is assumed locally homogeneous,
the fuselage skin is assumed flat, unlined and free from axisl loads and the
"eabin" eir is bounded only by the vibrating plate so that only outgoing
waves are considered. Some of the detalls of the statistical description
have been simplified in order to reveel the baslc features of the problem.

The results, strictly applicsble only to the limiting case of thin
boundary layers, show that the sound pressure intensity is proportional to
the square of the free stream density, the square of cebln air density
and inversely proportional to the first power of the damping constant snd
to the second power of the plate density. The dependence on free stream
velocity and boundary layer thickness cannot be given in general without a
detailed knowledge of the characteristics of the pressure fluctuations in
the boundary layer (in particular the frequency spectrum). For a flat
spectrum the noise intensity depends on the fifth power of the velocity
and the first power of the boundary layer thickness. This suggests that
boundary layer removal is probably not an economical means of decreasing
cabin noise.

In general, the sanalysis presented here only reduces the determinstion
of cabin noise intensity to the measurement of the effect of any one of
four variables (free stream velocity, boundary leyer thickness, plate
thickness or the characteristic velocity of propagation in the plate).

The plate generates nolse by vibrating in resonance over a wide
range of frequencies and increasing the dempling constent is consequently
an effective method of decreasing noise generation.

One of the main festures of the results is that the relevent quantities
upon which noise intensity depends are non-dimensionsl numbers in which boundary
layer and plate properties enter as ratios. This is taken as an indicatlon
thet in testing models of structures for boundary layer noise it is not
sufficient to duplicate in the model the structural characteristics of the
fuselage. One must match properly the characteristics of the exciting
pressure fluctustions to that of the structure.
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INTRODUCTION

In his efforts to minimlize the noise levels for which he 1s responsible,
the airplane designer has had to pay increaesing attention to a source of
noise which until recently had been ignored. This is the boundary layer.

The beundary layer will generste noise vhenever it is the seat of any
fluctuating phencmenen. In particular it will nurture randem pressure
fluctuetions whenever it is turbulent.

The designer's interest will naturally center on the characteristlcs
of that part of the boundary layer nolse which has been trensmitted through
the fuselage skin and into the cabin rather then on that part which is
radiaeted into the free-stream. This 1s s0 because the radiation intensity
is, as we shall see, a rapidly increasing function of the velocity of the
boundary with respect to the air and to a likely observer outside a fuselage
either the reletive velocity of the plane is low (as near a take-off or
landing) or the plane is considerably distant.

As 8 consequence the practical question which has to be raised concerns
the effects on a fuselage skin, and on the air which it encloses, of the
boundary layer pressure fluctuations acting directly on the skin.*

Two features of this problem are worth noting: To begin with, the
fuselage will trensmit noise only by deflecting laterally. The thickness
of the skin is very small when compared to the wave length in metal of
audible sound waves so that, effectively there are no fluctuating pressure
gradients within the skin and hence the latter will not oscillate in lateral
compression.

In the second place, the turbulent pressure fluctuations in the boundary
layer are random both in space and in time. The fluctuatlons are generated
locally. If they are measured simultaneousily at two different points of
the boundary layer, say on the skin itself, they are found to have no
relationship with each other unless the two points are separsted by a very
short distance. Alike the value of the pressure fluctuation at a given
point soon loses correlation with itself.**

——

*Noise intensity is defined in this report as Piz/Poai- It is assumed that
this 1s the physical quantity of interest. It has the dimensions of an
energy flux; but it is not necessarily egual to the energy flux at some
point in the field, nor is it necessarlly equal to the density of
energy radiated awey (lost) by the fuselage.

**Recently two authors (Refs. 5 & 6) have suggested that the randommess in
time 1s not independent of the randomness in space; i.e., that the pressure
fluctuations at the wall are crested by the convection at a single speed
of a "frozen" pattern of pressure disturbances. Some attention is paid
later to this eventuaslity which 1s treated as a special case.
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We are thus led to visuslize the process of transmission of boundary
leyer nolse through the metal skin of the fuselage as follows: A multitude
of external pressure pulses push the elastic skin in and out and the skin,
in turn, not unlike a set of dlstributed pistons, creates inside the fuse-
lage pressure waves which propagate end superimpose. This constitutes cabin
nolse.

It is of course desiraeble to determine the characteristics of this
noise. One should point out that the data for the problem are not complete
and are not likely to be so in the near future. Specifically the structure
of the turbulent mechanism within the boundary layer and, in particular
of the coupling between pressure fluctuations, velocity fluctuations and
temperature fluctuations 1s not enough explained or measured to define
wholly our forcing function. As a consequegce it is not now possible to
define say average cabin noise intensity pi= as a function of say, free
stream Mach number, Reynolds number and plate characteristics. It is
however possible and it is the purpose of this report to indicate the
approximate functional dependence of pi< on these quantities and thus
to give similarity rules which will reduce to & minimum the emount of
testing required.

We assume at the ocutset that the boundary layer unsteady pressure
field is known and that it induces small deflections in the skin. As a
conseguence

(a) The skin dynemics are described by a linear equation
(b) The generation of a random pressure field inside the cabin
is a linear radiation problem.

Thus the mathematical techniques used are those required to obtain
the response of linear systems to stochastic forcing functions of several
varigbles.

We also assume the fuselage to be & large flat plate. This assumption
is not necessary but i1t simplifies the discussion and sllows us to present
more clearly the new features of the problem.

The meterlal in thils report is presented as follows: First we study
the radiastion of sound from a randomly vibrating plate. It is found that
the sound levels in the cebin are defined by the intensity and the scales
of the plate normel accelerations.

Second, generallzed Fourler analysis is put to use in order to relate
the normal acceleration of the plate to the forces exerted on it by the
boundary layer flow.

Third, the boundary layer forces are defined in terms of flow character-
istics, and dimensionsal simllarity is used to determine the significant
parameters.

Finally, the functional form of the noise intenslty in the cebin is
glven save for an unknown function of one non-dimensional paremeter. This
function depends on the frequency spectrum of the pressure fluctuations
in the boundery layer. No measurements ylelding this spectrum heave been
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reported to date and speculations concerning it would introduce in the
analysls both complication end uncertainty.

A sumary of results is given at the end of the report. Some
derivations and some of the longer arguments have been presented as
appendices to the text.
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I. THE ACOUSTIC COUFLING OF A RANDOMLY

VIBRATING PLATE WITH AIR AT REST

We start with Rayleigh's well known solution of the acoustlc equations
when the sound 1s generated in an otherwise unbounded stationery gas by a
large flat plate or disc oscillating normally to its plane (Ref. 1 page 107).

co= [ | Q2 de
P In Jbt (S, t-%) L4 )

where:

the statlic pressure p has been broken into a steady part p and
a fluctuating part, pi:

P = P (x,7,2) + py(x,¥,2,t)

Vp = the normal veloclity of the plate
de = an element of plate surface area
a4 = the speed of sound in the air

g - the vector position over which the lntegration is carried out

= (x',0,z')

|’:?| = the dlstance between source and fleld points
='\/ (xx)2 + y% 4 (2212 = r

A = +the total area of the plate

The subscript i1 refers to properties inside the cabin or on the side of the
plate on which air is not flowing.

The normsl sccelerstion QVn/dt is e random function of time and space
and so is pyj. We wish to evaluate the mean square of the pressure (a quantity
to which sound intenslity 1s directly proportional).

We notice thaet for a sum

n 2
(Za;) = O:l+a-3-|-as?' + eer +2QAx +Z2A2C + A3, ...
]
= =2 a L
alike, for the integral in (1)*

*Thls discussion follows closely the arguments set forth in ref. 3 and the
background of information on statisticel methods can be found in ref. 2.
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—t;f":(?%r aVn(S“th) )( a\/'n(s t"’-")di-‘:,)

A ot na

and since axX = aX if a does not depend on time, we can write

i_ gt NVn (2 -u\M (S LoniVdode, (2
i E’zi\ St (> T8) Sp(Su b-2 dodes

Now the expression.

Nn | &7 a\l'n Ra

( Su t - (Sz 1 t > »
2 a: a;
is the correlation (i.e. the time average of the _produc?_z of the normal
acceleration of the plate surface at two points 5, and S, and at two
different times(b- Rifny ) and (L~ R34). If the two points vibrate
completely independently from each other, this expression is zerc and
if the two points are brought together (S;~+S,, therefore rl—pre) the
correlation function is simply(dVm/QdEY)2 . Now we assume that the average
properties of the plate motion are the same anywhere on 1ts surface and
at any time (we assume statistical homogeneity and stationarity). Then the
expression above _Eor the correlation becomes merely a function of the
distance ( lsl- 82\) between the two points and of (fLi-7a2) We call this

fu.nctionl'k : Tau
b z § n
o (3,152 ba\/t S b)) = 2 {(' $-5u1), At %, )S
then
—— '7. -P__ ot . hl"’l"-}
b H ¥ {1550 e de (3)
‘:T( h, e

Now we can evaluste pi2 (Y) under e variety of assumptions for"lb , for the
plate aree A and for the distance Y between the plate and the observer. We
will consistently hold the view that the normsal accelergtion gt most points
of the plate surface are not correlated (2]!:0) and thet two points of

the plate, in order to show apprecisble correlation, must be a small
fraction of the total plate slze eway from each other.

We define as A. the mean distance over which(av%t) is strongly
correlated (i.e. zp'_g[(SVn/ad]) and call it the integral (length) scale*.

* The integral scale is gilven, say in the x-direction by

. [ve]
(an/bt)z N = ‘L Vn ()ﬂlo 2) 3{: (X, 0, i;) d x,,
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Our hypothesis can then be expressed as

N « R ‘

where R i1s the average linear dimension of the plate.

A representative ce.se*

Suppose that the observer distance ¥ to the plate is such that
AN« YR

and that no apprecieble phase difference can arise at Y between two strongly
correlated signals (i.e., between sound pulses originating within A of
each other). Then, if we examined equation (3)

P I Y
Pt = o:% "»lz‘ { E Yl15-5a0), z-}iﬁ} de
A A .

we see E?at the inner integral contributes very little except when the
point ¢ 1s appro tely within a distance A, of §, . Then, approximately
No= N, and '\Vg( Vn"l‘)' Thus the inner integral 1s approximately

~ [ DV
N (5
hy

and equation (3) can be rewritten

b” RN (avn 'LS ds (%)
- =4¥‘L at ) A ,lcl'

We should note that
The integral in (4) is not finite if the plate ares A is infinite
The length scale AN Plays no role in the geometry of the problem.

The integral is a function of Y, the distance to the plate, and the plate
dimensions only. For instance if the plate is circular and of radius R

* This case is treated more rigorously in Appendix IA
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NS (o)
7;-“ ot

y i
£ L

Lo R
3‘ (H-Yz) (5)

It is apparent from this result that the distance Y from the plate to
the observer is measured in terms of plate diameters, and not in terms
of average correlation lengths or wave lengths 2 . This result holds for
all the cases considered (see Appendix I) and depends only on the
assumption that at a given time the plate vibrations are largely un-
correlated or incoherent.¥

i
Here, in effect, N 1oses its identity and ccmbines with (av"/at)
to define a strength.

Equation (4) indicates that in order to evaluate the pressure VARV
intensity for the case considered above, one must first determine a\/""/()('_")
the mean square normal acceleration of the pleate and N s the length

scale for the plate deflections. Other cases (i.e. cases for which

either the plate deflects differently or the observer moves closer to

it) are treated in Appendix TA. For some of them the time scale or

mean period ¥ is required as well as A .

We rewrite Equation (k&)

B2) - &

f.a;

(6)

Sepe a3

where @ (g ’ Y) is a function of the plate geometry and of the distance Y
between the observer and the plate. It is defined from equation (4) as

dx'dz
% Y) 4-Tl'1 A _7‘7_1-1__

Notice that if the integral scale is not the same in the x!' and in
the z' direction we may simply substitute in equetion (6) Ax’/ and A=’
for A

¥ This result holds, as Appendix IB shows, even when the pressure is
generated by the travel through alr at rest of a "randomly bumpy plate"
i.e., when the time-wise end space-wise variations of upwash are not

independent. The latter example is therefore quite distinet from the
flow of en infinite (periodically) wavy well for which the only
characteristic length is the wave length.
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II. THE DYNAMIC EEHAVIOR OF THE SKIN

The response of the bare fuselege skin to the random pressure field
of the boundary leyer is given, in the absence of axiel loads, by a plate
equation. For a flat plate this equation is

ER

4

——— VY + Yy Y _-.-B(x,z,t) 7
4 t

36'(171 )
where x and z are the ceordinates slong the plate surface (x being the
free stream direction), y the deflectlon of the plate at a point, E the
modulus of elasticlty of the plate material, ¢~ 1ts density, Ak Poisson's
ratio, 2h +the thickness of the plate, AB & damping constant which has
dimensions (1/T). Demping mey be present because energy is ebsorbed either
within the skin or by the air.® For air demping ﬁf\v pa; /oh

Notice that to allow for air damping is to provide for & feedback in
the coupling between the plate and the air et rest. On the other hend
we exclude feedback between the plate and the boundary layer. 1In other
terms we are not coensidering the possibility that the plate vibrations
are large enough to induce time-dependent pressure gradients of the same
order of megnitude as our foreing function. §Such & feedback would amount
to panel flutter. It cannot be handled by the present method.

f(x,z,t) is the random force/unit mass exerted by the pressure
fluctuations on the plate surface. It is characterized by a power spectral
density F(kl,kg,ab vwhich is a continuous function of the wave numbers kj
{in the x direction), ko (in the z direction) and of the frequency w.
The coefficient E/3¢-(1-MZ2) has the dimensions of a velocity squared
end it is defined as c2.

*The skin construction msy be such thet the damping it causes is primarily
viscous or primarily flexurel. In the latter case it seems more eppropriate
to write with Ribner (ref. 5)

Eh* :
g VT ke v Pa e = f{oE)
o~
vhere ﬁ!, is the flexursl damping constant due to the plate and/éh; ‘the
damping due to the energy radiated to the air. As 1s shown in Appendix IB
the noise intensity within the fuselage may or may not be related to the
scoustic energy radiated by the plate and thus }?;a- may or may not be
Zero.
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We still have to specify the space-wise boundary conditlons on the
plate and we are led, for the sake of simplicity, to either one of two
limiting ceses. In the first case, the forcing function (the random
pressure field in the boundary layer) is characterized by an integral
scale so large that at a given time, a skin area between two stiffeners
(assumed rigid) is very likely to be subjected to a pressure load of the
same sign (see Fig. Ia). This allows us to express y and f as functions
of t only.

£ (%2 )s-z, KB ot

_A;

ZOR X ZFOR X

Fig la Fie. Ib

In the second case, the integrel scale of the forcing function is very
small in comparison with the distance between two stiffeners and the
behavior of the skin is in the average very much as though the supports
were removed to infinity (see Fig. Ib). The real case will in general

be intermediate between these two limiting examples. However, the first
case seems to apply to boundary layers of excessive thickness: A
reasonable guess for the average correlation length might be one dis-
placement thickness J ¥; for J* to be larger than the spacing between
stiffeners (of the order of a foot) the boundary layer thickmess d would
have to be of the order of five feet or more. This unlikely case is treated
in reference (7).

On the other hand, the second limiting case (Fig. Ib) would seem
to provide & reasonable model for boundary layer thickness not exceeding
one foot. This is the model discussed now.

a) The Mean Accelerstion

According to our assumption, the average motion

L, () es
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is not sensibly affected by the presence of stiffeners. A large number
of pulses act on the skin at a given time between two consecutive
stiffeners. The random pulses may be positive or negative and thus

there will be a large number of load reversals between supports. Then
the effect of the boundary conditions can be expected to become smell,

in the average. Consequently one can define s generslized admittence and
use it in much the same way as is often done in one-dimensional problems.*
For instance, the mean square plate displacement is given by

?ii; = ®®(® Ct‘ic¢1‘ka.¢1441 G;-z-J")“‘: “i)
o Jead Jeo :)(; ( 'Lh ,'le.) ‘C’)

Here the mean square of the forecing function f is related to the
spectrum ? by:

H(x,z,t)]z =

I

légfis the generalized admittance, and ky, kp and €O are respectively
the wave number in the x direction, the wave number in the z direction
and the frequency. The determination of 14@(15 easy once it is realized
that this expression i1s the square of the Fourier transform of the
fundamental solution and so can be written by ilmspection. Thus an
average solution of (7) is:

_\Tf' ™ po0 (®© T &U"ﬁ“'w) ko dha dwo

0w S0 cth? ‘h.q"b »'c:)'z-'a; # W'
(

fo Tl , Ay o) dk. dbzdeo

0 0 -®

(8)

= e (7 he o) ootk dbade
(DZ)=(32‘)=j F (e, hees) 0 dbid (5)

e 1L . [c‘h'(&ﬁ- ‘L:)’.‘Jr’«r P‘lw-:_

[

Equation (9) gives the mean square response of an unbounded plate to

& random forcing function. One should notice that the plate will elways
exhibit resonance no matter what value the damping constant /3 mey have,
This resonance occurs, not at a given frequency or at a set of discrete

* See in particular reference (2).
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frequencies but over the whole frequency spectrum, whenever the follow-
ing relationship obtains between frequencies and wave numbers:*

2

w" = c*h* ("1.14- 'k:)

We cen visualize the resonance condition as a crest or ridge in the
wave space (see Fig. 2) which originates at the line k2 = 3/ch V2 and
which becomes higher and steeper as the weve number and the frequency
increase. Thus the effective damping 1s a function of the exciting
frequency.

©) The Length Scale A

Equation (6) shows that A2 is needed as well as (dVn/dt)2.
Now A is a length scale. It was defined, say in the x direction as

MG - ()3 o
(N FPry

21 3
and could be termed the equivalent length of perfect correlation.

There are various ways of evaluating the integral scale. Perhaps
the most convenient one for our purpose 1s that (found for instance in
Ref. 2 Eq. II5) which is derived from the relationship between correla-
tion functions and spectral functions. Thus 1f a stationary random func-
tion J(t) possesses a correlation function which is sufficiently well
behaved,

Py = J(E) J(t+7)

% Here resonance is defined as the meximum of the response curve l/X(k)
holding &) constant. The locus of maximse holding k constant is glven

ke - hwr]
chk® > %
"ztz “‘l.t-l- ‘F&:

These maximae correspond only for zero damping.
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one can define a spectral density function

= g(w) = X P () cos oz AT
Now for the particular casely = 0, this gives

T306)= ("9 4z
N = (Z o(x)dT
9 ()

we have the result that

N=T —_E’t.; (10)

We have already obteined a formal representation for the spectral density
function of the plate. It is the integrand of Eq. (9) so we can write,
in view of (10)

. Tl w* T, ke @) dha deo
b\l ) A% z. I.i [C‘h" A L:.) I F wr |

hlio

and & similar expression for Ay. Do) (%\%»1
3 ’ '

T
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III. THE FORCING FUNCTION

We suppose that a turbulent boundary layer develops on the skin of
the airplane {on one side of our plate). The forces which excite the
plate are the pressure fluctuations experienced by the plate 1tself.

We assume that all characteristics of the boundary layer are fixed once
we have specified the boundary layer thickness § , the free stream
velocity Ues end density [+ In terms of pressure fluctuations this
implies that at a fixed point of the "wetted" surface of the skin, we
have for the mean square pressure fluctuations

P~ £

and the integrel scales, i.e.

A J: l’°(x')°) 2:)\*(":.,0,1.)&:,_
e

{; = j:l h(z' ) °'%">Po \ X4/ 0, 2:9«1.%7_
5

are proportionel to J . AMlsc the relative contribution to pressure
intensity of the various freguency bands must be & function of UQ,J )
and ’. only so that dif 1s a random function of three independent
variables, x,z,t, P. 1s related to a three-dimensional spectrum by:

Poa (P17 (7 0 s A ) deo Ak, ahen

such that:

T['((.‘.J, '?2., ‘gl.z.) = YOU.; (oo

b .;_é, F,_(_G%,‘LS, &1‘5)
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Loosely speaking, this means that a characteristic frequency for pressure
fluctuations is proportional to Uass / J and a characteristic wave length is
proportional to & . Now the forcing function of Eq. (7) is a force/unit
mass so that according to our similarity hypothesis

7: _  frUx
b~ BaE

One can thus define a spectral fumction associated with the forcing
function £(x,z,t):

e ([0 T, e, ) stk

Qo -0 J-9

and thus

?‘l-('gls/’hﬂ-,w)z gﬂ: Jti T (K.,Kg,&) (12)

s*h* U
Here Fp 1s a function of Kj, Kp, and Jl only and these are non-dimensional
veriables:
Q= wd /VUss

i = %‘sf
A= 'Lﬁs

————

In terms of these non-dimensional units, Eq. (8) becomes:

f:U; E” @ P dkKidKzddL E(“‘)“")ﬂ)

o*h™*

< I
»

oJ-wJ_w 21 2 US 012 A UE ot
%E(K‘ti'“"). .6_.,15?. +‘6—5%:n



CA ™ 1420
16 NA

and Eq. (9) becomes

0 reoo

(lj t>7-_(bvn)"-_ fols PREF (Kiy Key ) Ao dia di
t - at - °-|h154 yh; N 2 2 . -
o J-co j-c» [%? (K."f K:)—%’iﬁ-'] 1’%“__"“1

which can be written
4 [ -]

( 2Vm )’-, y;u,,j”a"fg( KiyKe,J2) d ki diew d ST
o8 o h® eth® (g at)= 0 [BEn]” @
°"’"’[‘_gthu;(“‘ Ka™) 1+[(%_0J7.J 13

Again, Fp 1s a function of the integration variable only, so that one
can write

(ﬂ@_)"': % Us 14 {g ; ré_J}

) o c? h‘l. S U Uoo

(1%)

Equation (14) yields the two-non-dimensional parameters upon which the
plate dynamics depend. The first one, Ch /5 Uw is the product of a

speed of free stream
Mach number, (speed of propagetion of waves in the plate) eénd &

boundary layer thickness @S/Uw
thickness ratio ( olate thickness ). The second one, _

is & ncn-dimensional damping parameter which is, alike, a function of
plate and free stream properties.

If we treat the equation for the integral scale (Eq. 11) in the
same way, we notice that no new non-dimensional parameter occurs, so
that, at most

%:L{%@;%o} (15)
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We now wish to investigate the form of the functions H and I in

Egs. (14) and (15) respectively. First, we make an assumption which
is not strictly necessary but which simplifies the manipulation of
Eq. (12). We take the function F(K,, Kg,fl) to be symmetric in K,
and Kz_ » Which leads us to define & new wave number.

and to write

-F:.(K.) Kz)ﬂ)=-'F(K7-n~)

Thus, Eq. (13) becomes

2Vm )7'= 27§, U °°_,14A,7_J°° k d Tk, )
2t o*h* e*h* _4 ot 5 \ent

Now, the demping parsmeter /5 /Lr” is assumed smell and under these
circumstences it can be shown (see Appendix IT) that

©

K dK - Lad K d&
z T AvEtar = 2z
[ E TR ) (G DRI

The small difference between these two integrals can easily be evaluated
for arbitrarily small velues of [55 / Ueo even though both integrals are
unbounded as [»—~#@. This leads us to believe that for low demping the
main contribution to the inner integral comes from the resomance condition

z Sl
Khs o -

Thus, if the spectral functien F(JL,K) is reasonsbly wide, i.e. ifQF/AKLK L
over a large range of K, Eq. (16) suggests that we write

Flan)-® (VIR ) o

(16)
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The requirement that F be flat in K when compared to 1/X(K) is equivalent
to the requirement that the average correlstion distence or integrel scale
for the boundary leyer pressure fluctustions be small compared to integral
scale of the plate deflection. Tramnslated in physical terms the simplifica-
tion suggested here is prompted by the following remerk: If the plate

has some stiffness, 1t makes little difference whether the forcing

function is assumed to be distributed over smell distances or made of con-
centrated loads (see Fig. 3)

FIGURE 3 T

Thus a satisfactory model for the problem at hand would be the impact of

rain drops on a metal roof. Equation (16) sllows us to integrate over K,
to get

(D‘lm "-_ 7.1\':.‘0 5“’_”_4 F(\I:F— )r‘R Sloo Woo dJ?.]

2t . c*ht

- g (SE)RE) [atF(VERR )

Vn \2 24 o) >
(55) = Sle  [Tar (Vi ) an
s‘-h"c{'b
(18)
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The expression
°°ﬁ: F (Vi_uﬁ‘”ﬁ ,J1> dn

can be evalugted only when F(K,ﬂ.) is known. It may be an increasing
or a decreasing function of § Ueo eh . In the absence of date on the
spectral function F, we will not attempt to define 1t.

The function H defined by Eq. (14) can be written:

e B G eEE)

vhere f;, is an unspecified function related by (18) to the boundary
layer pressure spectrum.

In order to determine P12 we need to find out, in addition, what
quantities the integral scale N depends on. Here we mske use of con-
siderations which ere similar to those yielding Eq. (16) (see Appendix III).
The result 1s that

() )

where f, 1s asnother functlon related to the boundary layer pressure
spectrum by III(4). Now we are able to write Eq. (6) as

B (o~ S5 % WSS F(y, Slle
%‘aa (¥) Z or WP g(¥.q) h <h o)

Here

he 447

Expression (21) gives the functional dependence of pressure intensity "inside"
on boundary leyer parameters for a typical case. The only quantity, not
immedistely available is h(9U®/eh). It is probeble thet we shall have to
awalt experimentel date to define its numerical value relisbly.
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IV. BSPECIAL: CASES

1. Convected Turbulence

Two authors (ref. 5 & 6) have recently sugpested that the boundary
leyer pressure fluctuations at any polnt of the fuselage skin are caused
essentially by the passage over the point of a fixed (i.e. time inde-
pendent) pattern of pressure disturbances carried dewnstream at a fixed
eonvective velocity. So far, experimental evidence in proof or disproof
is lacking. However, it is interesting to incorporate this special case
in the general formulatilon which has been presented. Both the response
of the plate and the coupling of the plate with the alir at rest must
then be reconsidered.

a) The coupling of the plate with air at rest in the case of
convected turbulence

If a fixed spatial pressure distribution 1s carried downstream
on the surface of the plate, it is easy to show that the (infinite) platex
response will be of the same kind, i.e., that it will consist of ripples
which are randomly dlstributed in space but which travel through the plate
at the same comvective velocity as the boundary layer disturbance. The
determination of the pressure field inside the fuselage is not in principle
different for this case and has been carried out in Appendix IB**. The
result is that for both subsonic moving ripples (with cenvection velocity -
U, ¢ @i ) and moderately supersenic ones:

b~ 3-1(——5""1’>\"j dot 42! '
ot A n(n+Mx) (1.10)
vhere
. U
Mi= oz

For higher supersonlic speeds, the function of geometry and Mach number
appearing as an integral is more complicated. The equation (I.10) above
has the same form as equation (6). On the other hand there is & sharp
difference in terms of energy radiated by the plate between the subsonic
and the supersonic case, since no energy at all is radiated by subsonic
ripples while the supersonic ones do generste some. One must, then, msake

¥Here the presence of transversal bulkheads will change the picture
because of multiple reflections of the ripple.

*¥*This problem can also be viewed as & steady (randomly bumpy) wing
problem from the standpoint of a stationary observer. -
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a distinction between the results in terms of pressure intensity (the
quentity of practical interest) and in terms of energy radiation. This
distinction stems from the fact that (as is pointed out on page 7) ‘the
acoustical field investigated is truly a near field.

b) The response of the plate

According to the convective hypothesis, time is not an independent
varieble once the convective velocity {d, is fixed. Translated in terms
of the spectral density MW (w,kl ,kz) of the pressure fluctuations, this
means that TU (& ,k; ,ko)is zero, except whendw = U.E. ; or in non-
dimensionsl form, when Jls(uyu )K'. We rewrite equation (12) for this
special case. ®,

T 4 (o + _ K, U
J.( ’le.,/{n.-:., w)= ga"l-‘t‘: Sz%_w?(“‘)'(“ngglﬂ k_uu:;

- Kilk
Here & [J'l. K ﬁ':;A is the Dirac delta function of the variable JU.
Then the plete response becomes

1
(ZVT’“) = 4920k ® mdu.au(z wJL4, F(K"Kz’a>5(ﬁ_-k,‘3..)iﬂ(22)
' arh* tht . e O 4TS
o Jo O[%‘(K.-H(y)‘iﬁ].y (5 i‘&
= 49:11; joojw Ul )4' K:"F" (K.,K‘V) A,K‘ d—K!— (23)
orh o Jo -J'a cth* 2 .
a 111' o) Uiye-1% x) ‘
[l (0o () (P

where w.
F (Kiy®e) = F(.k"K” K Eoe)

Now if we assume as before that F is symmetric in Ky end K, and
substitute

0= -l K2

—

{K’-' Kt""’K;-L
K
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we finally get

M= £Ua S BE (2T 4
(38) = o h o J cos’6 F2 (B, cos9, éaul‘;”)d-a (24)
o

Here B: a'/ub
and
Fa(Bcos0, Sll )= F(Kipkn, ulle )
<h Uo
with
Ki*s K¥ = K*
and Su”

K=E-h- Ces56

The length sca.le?\ i1s indicated by the following dimensional argument.

The mean correlation length or integral scale is a weighted average
of all wave lengths, so that dimensionally

\
A T
Since resonance dominates the plate response, is given from the
plete response equation (equation 23) by the resonance condition

(«&5')1 = K* =(%°_o)q’ P P (Slloo)"

ch
> h (25)
A~ L A L
A Un

A similar reasoning would have yielded, in the non-convective case,

‘)\.\,(c,hﬂ/u )/2. instead of eq. (20).

Combining (24) and (25) according to (I.10) we notice that we can
still write as in equetion (21).

Y % g2 Ued 5, (Y, g1 M) (8 )

i a. &* h (b (26)

Here 5' is a weak function of the Mach number as seen from (I.10).
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2, The case of zero scale

Under some circumstances it 1s possible that the space average of
the plate motion vanlshes, l.e.:

ZE(5e) e (5,0 4A =

This does not mean that the normal accelerations at two neighboring points
show no correlation, but that the R

correlstion function becomes negative 4' v
as indicated in Fig. (4) and in such

a way thet its space integral vanishes.
We can then consider the normal
accelerations as dipoles rather than
sources and we are led to a slightly
different radistion problem. Appendix
IC shows, however, that if one deflnes
a length N p such that o

X = [rvss N

FIGURE L

The results are again identicel in form with those of equation (6). Here AN
can be viewed as the mean moment erm of deflection moments. Alternatively
one can redefine the integral scale as

7\3”" < L ‘ Rfl A‘f (27)

where ¢ is a constant. Equation (27) can thus be used to define the
integral. scale in any event.
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V. SUMMARY OF RESULTS AND DISCUSSION

Appendix I dlscusses in addition to the cases mentioned in the text
a few examples which provide different limiting conditions. Thus the
observer is brought close to the plate (Y(( A ). A short time scale is
congldered etc..... The common feature of all these analyses is that the
resulting mean nolse intensity can always be represented, say by equation
(26). We shall therefore retain this equation:

=0 e 3 .
Pm % 8 Uad g (v, q,m) S(&=)

gia"" a. ov

as the most general statement that we can mske at the present time.
Here

P‘-_q' = mean square nolse intensity inside

9'-' = alr density inside

A+ = speed of sound lnside

' 90 = air density in the free stream

g = plate density

Uw = free stream velocity
5 = boundary layer thickness

7,h = plate thickness
(b = viscous damping constent (of units 1/time)
Y = perpendicular distance between observer snd fuselage
% = geometry of the plate

. = Mach number u'/a';
Uy

¢ = characteristic velocity in the plate =

L}

convective velocity of turbulence pattern
=

So(v-p+)
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For all but high supersonic velocities, the dependence, of E on My is
quite small and can be disregarded. The fu.nctioné (Y,eg), & quantity
which does not depend on the dynamics of the problem but only on its
geometry should be modified to take into account the fact that the
fuselage is & cylinder and not a large flat plate.

The form of the function § cannot be glven here both because no
information is yet availsble on boundery layer pressure spectra and
because S_ depends too critically on the type of model assumed. How-
ever, if E’f is measured while any one of the four veriables defining
S (§,Us0 , ¢ or h) is varied, then the functional form of the noise
intensity inside & fuselage cen be determined. Thus the main contribution
of the analysis is to diminish the extent of the testing required.

One of the conclusions which can be drawn from the foregoing equation
is that unless the boundery lasyer pressure spectrum is a ve sharp
function of frequency (which would make S very sensitive to?ﬂ../ch ) it
1s not practical to decrease cabin noise by boundary layer suction: Since
the noise intensity 1s & week function of boundary lsyer thickness,
decreasing appreclebly cabin noise would involve the removal of a
prohibitive amount of air.

Another conclusion is that increasing the damping 1s a very effec-
tive way of limiting the production of noise of all frequencies, since
the structure transmits sounds essentlally by resonance.

The enalysis which has been presented deliberately omitted some of
the features of the problem which would influence the results and intro-
duce new parameters. For instance, the fuselage of commercial airplanes
is usually subjected to an axial tension as well as other loads. In
eddition the skin 1s curved. To account for these features of the prob-
lem one would introduce further terms in the differentisl equation
describing the plate and one could treat it in much the same way as
has been done here.

The general methods which have been used are adspteble in addition
to the study of a germasne problem, the fatigue of panels which are
buffeted by e turbulent boundary layer.

A NOTE ON TESTING

The discussion of the varlous limiting solutlons makes it clear
that for the transmission of boundary layer nolse through a structure,
the ratio of outside (boundary layer) noise to inside (cabin) noise is
in general e function of boundery layer es well as structural character-
istics.

This 1s to say, first, that an attenustion coefficlent cannot be
defined by testing the structure slone with a standard noise source.
Thus accurate testing requires at the outset that the model be tested
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for transmission of a noise similar to boundary layer noise. The main
property of such & noise, as we have seen is that it must be random in
space as well as In time, which precludes the use of one or a few
concentrated sources as nolse generators. The only proper substitutes
for boundary layer pressure fluctuations are forcing functions whose
effects on a fuselage are locel.* The impact of water drops for instance
might be found adequate simulation. Further, similarity in testing
requires the matching of parameters which are retios of plate and forcing
function properties. For instance if the forcing function used in the
test is a turbulent boundary layer, similarity parameters are:

d b . BS§ Ue & . <h .
JTRR S OE

#*This is not true of Jet noise which is generated awsy from the fuselage.
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APPENDIX I

THE RANDOM RADIATION OF A FLANE SURFACE:

A. TFOUR LIMITING CASES

In order to determine the coupling between fuselage, vibrations and
cebin air one has to choose & model for the correlation between the
normel. aeccelerations at two different points of the plate. The model
which was discussed and for which equetion (4) was made plausible is
predicated upon two conditions:

A. That the observer is distant enough so that a large number
of plate elements vibrating independently contribute sound
in comparable amounts, i.e.

A&Y

Here as before, A is the integrel (length) scale for the plate
normel accelerations and ¥ 1s the perpendicular distance between
the observer and the plate.

B. That the time scale of the phenomenon is large enough so that
the differences in phase (introduced by the. unequal distance

from the point at Y to the various polnts of a plate element
of length N ) are unimportant, i.e.

A K Aol

is the speed of sound in the fuselage air, end © is the
integral (time) scale for the phenomenon:

OV 'L df
jl:. 3 (x'/ ')t) ('x.,a-,,tz) bt
)L
(%)
Then one can choose a simple model for the correletion functlon 1‘0'

1"‘ ( $ n,‘C> = (23_\!/:?)17&8(0 6(") 9() (1.1)

o4 =

where S is the delta function. The normal accelerations are assumed
perfectly correlated within s length A\ and not at all for distences
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grester than N . Then

e 2. DVG\ K ] !
*Dil N ‘giL “;E?) ¢1h(: CL#(:,CL!;,cLJE ! > ! ! Yy~
4_-“-‘2. - 2z S(xl e >5(%.'25)‘9(,_QT)

and upon integrating

—_— 2, % _T 1yt
P R [

which is equation (4). This case,(hN <& 'Y ;1) N <L a-'o'e')
corresponds to the following conditlons. The passenger (or the microphone)
is far from the plate (in terms of A\ ), the boundary layer is thick and
the airplane veloclties low. One may well wonder about cases for which
these conditions do not apply. While it appears difficult to answer such
a query with generality it is possible to consider other limiting cases.

For instance let us assume that condition 2 still agpplies but theat
our observer is extremely close to the plate. This would correspond to
the following physicael case: A thin fuselage skin, a thick boundary
layer, a low airplane velocity and we sre measuring neise by placing a
microphone very close to the skin and insuleting it on all sides except
the side which faces the skin. Then NP ; Ne< acted .

S —

L. BOUNDLARY LAYER THICKNESS

L LLLT T FUSELAGE SKIN

> 74~ L7 7227

rr 72 LT L L7 7777778 7
""IIIIII////

D <— sMicrorHONE

FIGURE 5

Under these conditions the noise at the microphone is contributed primarily
from a single plate element which in the average vibrates in phase. The
eveluation of this contribution is particularly simple. We can wmite, very
nearly
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N Lal ke \Nn ! _TMa V.
W(*c) l7t )-a'E—(\‘t,?z,b .Z‘)s(.a_ei.)
(z.2)
and
— — (N AN
= S (_]M)1 X g 9, 43, $» g+ do do-
ATTCE\D o Jo (IR
If, for the sake of definiteness, we assume the element circular » then
b= e(3E)* (VWY
end since A\ Y7 Y it is permissible to write
P = ot (%)
The pressure lntensity is therefore given as
. AdVm\*
Ei ¥ '&'(.3%> N (1.2)
g.ai a: '

Thus Eq. (6) applies for the very close as well as for the very far
field when phase effects are not important ( 7\ <@s;).

Now assume that we carry on the same experiment but that the boundary
layer is thin and that the velocity of the airplane is high so that the
exciting frequencies are high. Let us assume in addition that the skin

is thick, so that A\ EZI NP2 ANai .

FPUSELAGE BOUNODARY LAYER

FUSELAGE
SKIN
OC—MICR’OPHONE

FIGURE 6
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Now the time scale of the plate motlon 1s short and phase effects are
prevalent. We define & simple time history in analogy to the space
description of Eg. (I.1)

DV-n (x' 6L ) g\é (%, 24, t- a.t>,(avn> (f-;':‘-)m

The microphone still recelves signals effectively only from one plate
element and ell polnts within that element vibrate in phase but the
pressure pulses originating from that element do not arrive at the
microphone in the same time. Then:

'L
)

(1.3)

( DVn\) 5(“-""- dS.dSt.
41\'"' ot AN i
At A

At is simplyk . Equation (I.3) is evaluated by noticing that:

Jb‘g( 5)5[3(§)]Lg - Z (%) )
" 19 (%))

Here €; are the real roots of g(¥) = O which are included in the interval
between and and b. We only have one root, nemely ry = ro. If we choose
to integrate, say, with respect to s, first we get (assuming again that
the element is circular

. (X F+ -
2 | @ ar A )p i 503 A
and according to (I.Lk) the inner integrel ylelds:
A
5 Po= Ca 91. &gio

ab h‘.’

?,_ Rali - al
""1-19,, 29 §2. ] -
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so that
_ A
b = $C aires ( %Vl)‘ ’ g.d.ﬁ'_s.’
= g;‘:xuec(g\’T”‘)L NS ¢
FF = S’;‘aue*?\(%?)z (1.6)

The time scale appears explicitly in the answer. For the unbounded plate

however it is simply proportional to & /U,, Just as the time scale for the
boundary layer pressure fluctuations.

Finally we may consider & physicel case for which phase effects are
importent and for which the microphone has been placed a large distance
awey from the plate. l.e.: MM & N/a. ] N« Y

BOUNDARY LAYER
é__,. THICKNESS

ZFUSEZAGE SN

O MICROPHONE

FIGURE T
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Now the contribution from each sub-element of vibrating plate is still

in the average lndependent from that of the next one. However, there are
in addition cancellations from within one element just as in the previous
case. This will happen if the boundary leyer is thin, the alrplane
velocity is high (@4 small) and the observer is far from the fuselage wall.

In order to evaluate this limiting case we first specify the time
behavior of the correlation function: we write

bv“(g.,e.)h- —‘) %‘(9;,87-/!3--—) T(? =825 8- 9‘-' '2")

Vs e-e)p et 0e0) (o,

so that
bt = 4;1;,_ j ‘15’(3’.-31.; o--az)SL":?)ta (9.-3,,«;.-@&4. ddz

A A

and we integrate first with respect to ?z . Using the seme techniques as
in the previous example, we get:

R
|° = 4’.%» W(o?a"e”)'e‘(% 0-02) % 46 doe
Ry

Now we assume that

——

¥ oo <G {31609} 20

Integrating with respect to 02 R Ol 5 fl successively:

F; < 5 (%‘)1'794(0) A(o) ai Lé,;_-:' ds.
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For a circular plate of radius R, this would give

3 o g‘.'t _2_1- A QLRA d-
bi = t>vo-(o) () So..,{. °

¥ qu) .em.x&[

<\
Vet

In general, and defining

l\(%.,‘(z) = S dfd'e

A R

a function of the plate geometry and of the distance Y only, we have

E{ ~ $ ( (A )11-64)\ h(%:Y) (28
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APPENDIX I

B. THE NOISE GENERATED BY SKIN RIPPLES OF FIXED VELOCITY:

If the turbulence pattern is frozen, as discussed in section IV-1
ripples will travel through the (infinite) skin at a fixed convective
velocity. Then the correlation :E”unc‘bionlp‘ must be written differently:

12 /?z’l:")-'(-’;’%-)z X‘S(n) S(g+W z:)

where Un is the speed of propagation of the ripple (turbulence
convective speed) snd therefore

B s (5e) j drduidaidel § 2-22) §(XiaMri- X Hes)
4 J L

or

SISy PRI S

4 e N T h.1,

where now

* <~
= \lx"‘l+ &, -1—Y
R = VY;'"{' Tl +Y
The inner integrel 1s of the form

Jls) 6] g(5)] 4

o)
z gﬁ(s)

as 1n part A. The expression

8‘-(%)‘ [(x;f M-"z)—(:t.'1 M.r.)] (1.9)
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has either one or two real roots depending as M.(‘ or M.)\ respectively.

For M,V ; the only real root is

t..' s X'
r =

%[g): I+ “‘t‘

and thus the inner integral ylelds
}

n,y L ] “ox.l
so that:
— y ' ’
( ;'1) = N g % ) S d”"&b' (I.10a)
4T ot n ( noe Mae,)

notice that equation (I.10a) above tends to equation (4) for low
convective speeds.

! )
For M.7| ; (I.9) has, in addition to the root 2, Xy , another
root glven by

= (M;."P")“l + ZMF:
MP~)

It is easy to show that this root exists for all values of xl. In order to
simplify the integration let us assume slightly supersonic conditions; i.e.
let us write

Ml.‘-’ It+e
where
¢ <4\
‘I'hg-.n )
R = th) [r.-v-‘z.:]
and A

m:'. F - %& (_rnx).)
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end the inner integral =

{ |

Mxa [Ta=ni
Rt Phxa ;::g’,“c Mt{"s"' Mle'J

so that for the supersonic case:

F-_‘_ 7\1'3-."3_“_‘."2 M1 J”‘:J"%"l
" AT bt) M, S nﬂ(fl*“l"l')

A result which is save for a constent coefficient the same as I.1l0a.

37

(1.10D)
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APPENDIX I

C. THE GENERATION OF NOISE BY PLATE DEFLECTIONS OF ZERQ SCALE

If the space average of the correlation function is zero and if
the plate vibrations are isotropic in x' and z' one can define a new
length scale as a moment arm:

MY T s dr(n0)ds

- -» -
g" (l S -S-..l) (Ss is a fixed point)

elternatively one can define a modified integral scale
00
A= [T 1wl dg
Here )
7\": e
where c is a constant.

Then, one can ideelize the correlation function as

Y- = (2n)® NH(0-08(s-,)90e)

N &Y ; N« ai

It follows that

\quu(av"j 1‘.::1 SS g Lr‘ Ay ) 8 (8'-3,) x(e'- ‘) d%o h J‘t dttt
4 2+
and integrating with respzct to Oy b

4T N o M
Now, unless a or b = O

J: $(6) 5(s) 4y =- Lb{'(s)s(a)otg

NV UL T + (%g,
- (o) N XA 3. dg. do S 3. ds, 9( S )s(? 5.
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and thus

b _er{ (m%lg) S:’..d'{:dﬁﬂ-j?[g,-g.,) f?.@‘.‘?('—'%—'.”)]‘*g‘

= Ny SA@(O ‘_f f%g y‘?'b) ‘_Sf.i?l

Q"ﬂ"\' k ag '—‘540

If there is a (time) microscale

9 (o) =0

— OIS SR (FT)

S5 bt
Rr¥Y™

Here the plate has been asswmed clrcular and R 1s its diameter.
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THE SIMPLIFICATION OF THE PLATE RESPONSE INTEGRAL
(Equation 16)

We conslder the approximation equation

rg rd K — = KdK (16)
= —
b [ G- AR EL] 2 . a4 [;g% Km]i@—i £

The right-hend side is clearly unbounded as the damping constent ﬂ —=0
since its value is explicitly proportional to l//G (see for instance
EqQ.(18)). On the other hand the difference between. the left and the
right-hand integrals is finite for B = 0. To show this we write

= chk?
: S Ueo

Then the left-hand side becomes for ,6 =0

o [ __dE
i#af (g2-1)" )

and the right-hand side becomes for ﬁ =0

]

dUeo fw d ¥ : (I12)
4ch2 |, (§—I)2

Now

e = = S U E PR M — }
£-1)° 4 {(?-')2 (E+1)®* &+ (&-Y) (113)

s0 that the difference D between expressions (IIl) and (II2) is

_ U 1 [Tl 1 L
D=zhn = f {csw)’ DR
or Juw

D = 8chl), (TIh)
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This expression is finite and of course independent of ﬁ so that we can
conclude that the left-hand integral of (16) is unbounded for & = 0. .
Further, it is clear that D is a reguler function of K‘f' so that the ratio
of the left-hand side to the right-hand side of Eg. (16) can be made ar- .
bitrarily close to unity, by choosing arbitrarily small /2. If a correc-
tion is desired a numerical check indicates that Eq. (IILt) gives a good
approximation to the error made even with moderately large damping.
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APPENDIX III

THE EVALUATION OF THE INTEGRAL SCALE

Our starting point is Eq. (11). In terms of non-dimensional veriables

it becomes

By Bl [ [
" D&)- % 0"'"\“ Jow 6"‘\ (K.-rKs) ] Ps‘z (III1)

Kyx0

We. now simplify the dencminator by writing successively

<h* o 2 b h < " * ('_h (T Kt‘)-cn- *
] [ [

(1112)

Then we define
gt
5lloo ..
(R-$"Kk*)s $ £y S w
(.JLJ-J"G') qL

Eguation (III2) cen now be written

(J‘K:“'ﬂ.‘ )(‘)’K; -r?)“(\f K- g)t

and 1f we replace Kp by its value at resonance,* nemely

K=’§

> -

g

% The justification for that step 1s identical to that advanced in
Appendix II.
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We can write

7 0 ® dK
2“Ln * =:1! g:'u“’s 4 2 MYy 3-1 = Y
(36) M= & [ JERE J He)y" (““"f)'*%‘.i“]g,‘,

=T gls (oh {5 Ue W R () dn (zz3)
8 o+h* \OlUw § .

If we compare (III3) to (18) we get immediately
% ch
n, = (cw)"’- -2 g (Vipr n)dn
Ueo
[For| \fsui"'“) dn.

h
- S g (8 (zzz
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