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ABSTRACT

The following report deals in preliminary fashion with the transmission
through a fuselage of random noise generated on the fuselage skin by a tur-
bulent boundary layer. The concept of attenuationis abandoned and instead
the problem is formulatedas a sequence of two linesr couplings: the turbu-
lent boundary layer fluctuationsexcite the fuselage skin in laters2 vibra-
tions and the skin titrations induce sound inside the fuselage. The techniques
used are those required to determine the response of linear systems to random
forcing functions of several variables. A certdn degree of idealizationhas
been resorted to. Thus the boundary layer is assumed locslly homogeneous,
the fuselage skin is assumed flat, unlined and free from sxisl loads and the
“cabin” air is bounded only by the vibrating plate so that only outgoing
waves sre considered. Some of the details of the statisticaldescription
have been simplifiedin order to revesllthe basic features of the problem.

The results, strictly applicable only to the limiting case of thin
boundsry layers, show that the sound pressure intensity is proportionalto
the square of the free stresm density, the sqpaxe of cabin air density
and inverselyproportional to the first power of the dsmping constant and
to the second power of the plate density. The dependence on free stream
velocity smd boundary layer thickness cannot be given in general without a
detailed knowledge of the characteristicsof the pressure fluctuationsin
the boundary layer (in particular the frequency spectrum). For a flat
spectrum the noise intensity depends on the fifth power of the velocity
and the first power of the boundary layer thickness. This suggests that
boundsry layer removsl is probably not an economicalmeans of decreasing
cabin noise.

In generel, the S.nalysispresented here only reduces the determination
of cabin noise intensity to the measurement of the effect of any one of
four variables (free stresm velocity,boundary la@r thiclmess,plate
thickness or the characteristicvelocity of’propagation in the plate).

The plate generates noise by vibrating in resonance over a tide
range of frequenciesend increasing the dsmping constant is consequently
sn effectivemethod of decreasingnoise generation.

One of the main features of the results is that the relevent quantities
upon which noise intensity depends ere non-dimensionalnumbers in which boundary
layer snd plate properties enter as ratios. This is taken as an indication
that in testing models of structuresfor boundary layer noise it is not
sufficientto duplicate in the model the structural characteristicsof the
fuselage. One must match properly the characteristicsof the exciting
pressure fluctuationsto that of the structure.

.
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INTRODUCTION

TECHNICAL MEMORANDUM 1420

In his efforts to minimize the noise levels for which he is responsible,
the airplane designer has had to pay increasing attention to a source of
noise which until recently had been ignored. This is the boundary layer.
The boundary layer wild.generate noise whenever it is the seat of any
fluctuatingphenomenon. In particular it will nurture raudem pressure
fluctuationswhenever it is turbulent.

The designer’s interest will naturslly center on the characteristics
of that part of the boundary layer noise which has been transmittedthrough
the fuselage skin end into the cabin rather than on that part which is
radiated into the free-stresm. This is so because the radiation intensity
is, as we shall see, a rapidly increasing function of the velocity of the
boundary with respect to the dr and to a likely observer outside a fuselage
either the relative velocity of the plame is low (as near a tslce-of’for
landing) or the plane is considerablydistamt.

As a consequencethe practical question which has to be raised concerns
the effects on a fuselage skin, snd on the sir which it encloses, of the
boundary layer pressure fluctuationsacting directly on the skin.*

Two features of this problem are worth noting: To begin with, the
fuselage will.trsnsmit noise only by deflectinglaterally. The thickness
of the skin is very smsll when compared to the wave length in metal of
atible sound waves so that, effectivelythere are no fluctuatingpressure
gradients within the skin and hence the latter till not oscillate in latersl
compression.

In the second place, the turbulent pressure fluctuationsin the bountiy “
layer are random both in space and in time. The fluctuationsare generated
locally. If they are measured simfi=m=@y at two different points of
the boundsxy layer, say on the skin itself, they are found to have no
relationshipwith each other unless the two points are separatedby a very
short distance. Alike the value of the pressure fluctuationat a given
point soon loses correlationwith itself.-

—
*Noise intensity is defined in this report as pi2/?oai. It is assumed that
this is the physical quantity of interest. It has the dimensions of an
energy flux; but it is not necessarilyequal to the energy flux at some
point in the field, nor is it necessarily equal to the density of
energy radiated away (lost) by the fuselage.

%ecently two authors (Refs. 5 & 6) have suggestedthat the randomness in
time is not independent of the rsmdomness in space; i.e., that the pressure
fluctuationsat the wsJl are created by the convection at a single speed
of a “frozen”pattern of pressure disturbances. Some attention is psid
later to this eventualitywhich is treated as a special case.
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We are thus led to visuslize the process of transmissionof boundary
layer noise through the metal skin of the fuselage a6 follows: A multitude
of external pressure pulses push the elastic skin in and out end the skin,
in turn, nbt unlike a set of distributedpistons, creates inside the fuse-
lage pressure waves which propagate and superimpose. This constitutescabin
noise.

It is of course desirableto determinethe characteristicsof this
noise. One should point out that the data for the problem are not complete
end are not likely to be so in the near future. Specificallythe structure
of the turbulentmechanism within the boundary layer and, in particular
of the couplingbetween pressure fluctuations,velocity fluctuationssad
temperaturefluctuationsis not enough explalned or measured to define
wholly our forcing function. As a conseq~e It is not now possible to
define say average cabin noise intensitypi as a function of say, free
streem Mach number, Reynolds number and plate characteristics. It iS
however possible and it is the purpose of this report to Indicate the
approximatefunctionaldependenceof> on these quantitiesend thus
to give similarityrules which will reduce to a mininmm the amount of
testing reqtired.

We assume at the outset that the boundary layer unsteady pressure
field is known end that it induces small deflectionsin the skin. As a
consequence

(a) The skin dynamics are describedby allnear eqyation
(b) The generationof a random pressure field inside the cabin

is a linear radiationproblem.

Thus the mathematicaltechniquesused are those reqtired to obtain
the response of linear syste~ to stochasticforcing functions of several
variables.

We also assume the fuselage”to be a large flat plate. This assumption
is not necessarybut it simplifiesthe discussionand allows us to present
more clearly the new features of the problem.

The material in this report Is presented as follows: First we study
the radiationof sound from a randomly tibratingplate. It Is found that
the sound levels in the cabin are defined by the intensity and the scales
of the plate normal accelerations.

Second, generalizedFourier analysis is put to use in order to relate
the normal accelerationof the plate to the forces exerted--onit by the
boundary layer flow.

Third, the boundary layer forces are defined in terms of flow character-
istics, and dimensionalsimilarityis used to determinethe significant
parameters.

Finelly, the functionalform of the noise intensity In the cabin is
given save for an unknown function of one non-dimensionalparameter. This
function depends on the frequency spectrum of the pressure fluctuations
in the boundary layer. No measurementsyielding this spectrunhave been

.

.

.



iJ

.

NACA TM 1420

.

reported to date and speculationsconcerning it would introduce in the
emslysis both complicationand uncertainty.

A smmary of results is given at the end of the report. Some
derivationsand some of the longer arguments have been presented as
appendicesto the text.

3
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I. THE ACOUSTIC COUPLING OF A WUTOOl&Y

VIBRATING PLATE WITH AIR AT REST

We start with Rayleigh’swell known solution of the acoustic equtions
when the sound is generated in an otherwiseunbounded stationarygas by a
large flat plate or disc oscillatingnormally to its plane (Ref. 1 page 107).

where:

the static pressure p has been broken into a steadypart p and
a fluctuatingpart, pi:

F(X,Y, Z) + Pi(x,Y,z,t)

the normal velocity of the plate

an element of plate surface area

the speed of sound in the air

the vector position over which the Integrationis carried out

(X’,o,z’)

the distance between source and field points

=~ (X-X1 )2+y2+(z-z1)2 =r

(1)

A = the totsl area of the plate

The subscript i refers to properties inside the cabin or on the side of the
plate on which air is not flowing.

The normal acceleration ~Vn/dt is a random function of time and space
and so is pi. We wish to evsluate the mean square of the pressure (a quantity
to which sound intensity is directlyproportional).

We notice that for a sum

m
(z )

—— _. — .—,
s a?+d+~s~+ ... +%alaa +2~aa3+2ti3qa...

I

“’2= ~
alike, for the integr~ in (1’)*

.

.

.

*~Is ~6c~sion fo~ows closely the armnts set fofih in ref. 3 and the
background of Information on statisticalmethods can be found in ref. 2.
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and sinceTX = a~if a does not depend on time, we can write

Now the expression.

is the correlation (i.e. the time average of the~roduct~ of the normal
accelerationof the plate surface at two points S1 and S ~d at two
different ti!nes(E- E~y=~) and (t- a~~. If the two poin s tibrate
completelyindependentlyfrom each other, this e~ression is zero and
if the two points sre brought toflether (S~+S2j therefore r1+r2) the
correlationfunction is simply(~Vm/~t>Z . Now we”assume that the average
properties of the plate motion are the same anywhere on its surface ad
at any time (we assmne statisticalhomogeneity aud stationarity). Then the
expression ab~ove~or the correlationbecomes merely a function of the
tistance ( ]Sl- S2\) between the two points and of(~,-qz> We ceX1.this

*
function : Qi

Now we can evsluate pi2 (Y) under a variety of assumptions for$ , for the
plate area A and for the Ustance Y between the plate and the observer. We
will consistentlyhold the tiew that the normsl accelerationat most points
of the plate surface are not correlated (~= o ) and that two points of
the plate, in order to show appreciable correlation,must be a smsU
fraction of the totsl plate size away from each other.

We define as~ the mean distsnce over which(hv$k) is strongly
correlated (i.e.~~ ) and call it the integral (length) scale.

* The integral scale is given, say in the x-directionby
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Our hypothemi$ can then be expressed as

A<cx
.

where R is the average linear dimension of the plate.

A representativecase*

Suppose that the observer distance Y to the plate is such that

Ac<y<<x

and that no appreciablephase difference can arise at X between two strongly
correlated signsls (i.e., between sound pulses originatingwithin ~ of
each other). Then, ifwe examined equation (3)

h,

and equation (3) can be rewritten

We should note that

The integral in (4) is not finite if the

The length scale~ plays no role in the

(4)

plate mea A is infinite

geometry of the problem.

to the plate, and the plateThe integral is a function of Y, the distance
dimensions only. For instance if the plate is circular and of,radiusR

* This case is treated more rigorously In Appendix IA
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(5)

It is apparent from this result that the distance Y from the plate to
the observer is measured in terms of plate diameters, and not in terms
of average correlationlengths or wave lengths~ . This result holds for
all the cases considered (see Appendix I) and depends only on the ‘
assumption that at a give: time the plate vibrations are largely un-
correlated or incoherent.

Here, in effect, X2 loses its identity and combines with (~v./~~)2
to define a strength.

Equation (k) indicates that in order to evaluate the pressure —~
intensity for the case considered above, one must first determine(~~ml~t’)
the mesa square normel accelerationof the plate and ~ , the length
scale for the plate deflections. Other cases (i.e. cases for which
either the plate deflects differently or the observermoves closer to
it) are treated in Appendix IA. For some of them the time scale or
mean period~ is required as welJ ash .

We rewrite Equation (4)

(6)

where @(~~~j isaf~ctionof theplate geometry andofthedistancey
between the observer and the plate. It is defined from equation (4) as

Notice that if the integral scale is not the seinein the Xt and in
the z’ direction we may simply substitute in equation (6) h%’ and h%’
for A

* This result holds, as Appendix IB showa, even when the pressure is
generated by the travel through air at rest of a “randomlybumpy plate”
i.e., when the time-wise and space-wise variations of upwash are not
independent. The latter exsmple is therefore quite distinct from the
flow of an infinite (periodic~y) wav wall for which the only
characteristiclength is the wave length.
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II. TEE DYNAMIC BEK4VIOR OF THE SKIN

The response of the bare fuselage skin to the random pressure field
of the bountbry layer is given, in the absence of sxisl loads, by a plate
equation. For a flat plate this equation is

EIi= v! +yw + pye=f (X, z,t)
-G@

(7)

where x and z are the coordinatesalong the plate surface (x being the
free stresm direction),y the deflectionof the plate at a point, E the
modulus of elasticityof the plate material, v its density,#LPoisson’s
ratio, 2h the thickness of the plate,# a dsmping constantwhich has
dimensions (l/T). Damping may*be present because energy is absorbed either
within the skin or by the air. For air dsmping ~- Bad-h

Notice that to allow for air dsmping Is to provide for a feedback in
the couplingbetween the plate and the air at rest. On the other hand
we exclude feedback between the plate and the boundary layer. In other
terms we are not consideringthe possibilitythat “theplate vibrations
are large enough to induce time-dependentpressure gradients of the ssme
order of ma~itude as our forcing function. Such a feedbackwould amount
to panel flutter. It cannot be handled by the present method.

f(x,z,t) is the random force/unitmass exerted by the pressure
fluctuationson the plate surface. It is characterizedby a power spectral
density F(k1,k2,@ which is a continuousfunction of the wave numbers kl
(in the x td.rection),k2 (in the z direction)and of the.frequency d.
The coefficientE/3&(l-}2) has the dimensionsof a velocity sqpared
and it is defined as C2.

Wl%e skin constructionmay be such that the dsmping It causes is primarily
viscous or primarily flexural. In the latter case it seems more appropriate
to write wtth Ribner (ref. 5)

XL (It+)vq + ~bp + pa‘& = fp’,t)
$=( I.)’)

where & is the flexural damping constant due to the plate and~~ the
damping due to the energy radiated to the air. As is shown in Appendix IB
the noise intensitywithin the fuselagemay or may not be related to the

P
acoustic energy radiated by the plate and thus ~ may or may not be
zero.

.

.
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We sti~ have to specify the space-wiseboundary conditions on the
plate and we are led, for the sake of simplicity,to either one of two
limiting cases. In the first case, the forcing function (the random
pressure field in the boundary layer) is chsxacterizedby an integral
scale so large that at a given time, a skin area between two stiffeners
(assumed rigid) is very likely to be subjected to apressure load of the
same sign.(see Fig. Is). This allows us to express y and f as functions
of t only.

FIG ICL FIG. lb

In the second case, the integral scale of the forcing fmtion is very
small in comparisonwith the distemce between two stiffenersand the
behavior of the skin is in the average very much as though the supports
were removed to infinity (see Fig. Ib). ‘Thereal case will in general
be intermediatebetween these two limiting examples. However, the first
case seems to apply to boundary layers of excessive thickness: A
reasonable guess for the average correlationlength might be one dis-
placement thickness~*; for~* to be larger than the spacing between
stiffeners (of the order of a foot) the boundary layer thickness ~ would
have to be of the order of five feet or more. This unlikely case is treated
in reference (7).

Gn the other hand, the second limiting case (Fig. Ib) would seem
to provide a reasonablemodel for boundary layer thickness not exceeding
one foot. This is the model discussed now.

a) The Mean Acceleration

According to our assumption, the average motion

1

J( )
~dr

TGat

—
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is
of

not sensiblyaffected by the presence of stiffeners. A large number
pulses act on the skin at a given thne between two consecutive

stiffeners. The random pulses may be positive or negative and thus
there will be a large number of load reversas between sqpports. Then
the effect of the boundary conditions can be expected to become small,
in the average. Consequentlyone can define a generalizedadmittanceand—
use it in much the same way as is often done in one-dimensionalproblems.*
For instance, the mean square plate displacementis given by

Here the mean square of the forcing function f is related to the
spectrum~ by:

l/~ is the generalizedadmittance, and kl, k2 and @ are respectively
the wave number in the x direction,the wave number in the z directiou
and the frequency. The determinationof 1~ is easy once it is realized
that this expression is the square of the Fourier transform of the
fundamentalsolution and so can be written by inspection. Thus an
average solution of (7) is:

(8)

Equation (9) gives the mean square response of an unboundedplate to
a random forcing function. One should notice that the plate will always
exhibit resonsmceno matter what value the dsmping constant~ may have.
This resonance occurs, not at a given frequency or at a set of discrete

* See in particular reference (2).
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. THE ADMITTANCE MAP FOR AN UNBOUNDED PLATE

FIGURE 2
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whole frequency spectrum,whenever the follow-
between frequenciesand wave numbers:*

%

A,’+ 4?;)

We can visualizethe resonance condition as a crest or ridge in the
wave space (see Fig. 2) which originatesat the line k2 = #/ch@ and
which becomes higher and steeper as the wave number and the frequency
increase. Thus the effective dsmping is a function of the exciting
frequency.

b) The Len@h Scale A

Equation (6) shows that A2 is neededas well as (-.
Now X is a length scale. It was defined, say in the x direction as

~&f= !:(-).s?2
x,, asal
**I

and could be termed the equivalentlength of perfect correlation.

There are various ways of evaluatingthe integral scale. Perhaps
the most convenientone for our purpose is that (found for instance in
Ref. 2 Eq. 115) which is derived from the relationshipbetween correla-
tion functions and spectral functions. Thus if a stationaryrandom func-
tion J(t) possesses a correlationfunction which is sufficientlywell
behaved,

* Here resonsmce is defined as the maximum of the response curve l/X(k)
holding@ constant. The locus of maximae holding k constant is given
by:

(

A 4-$= [1- P*J

PChw> ~

A’= 42:+ K

These maximae correspondonly for zero damping.
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one can define

w

T
$

a spectral density function

Now for the particular case@ = O, this gives

Since

we have the result that

(10) :

We have already obtained a formal representationfor the spectral density
function of the plate. It is the integrand of Eq. (9) so we can write,
in view of (10)

and a similar expreSSiOIIfor Ay. a(o)= (a?)’
>
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III. THE FORCING FUNCTION

We suppose that a turbulentboundary lqwr develops on the skin of
the airplane (on one side of our plate). The forces which excite the
plate are the pressure fluctuationsexperiencedby the plate itself.
We assume that sll characteristicsof the boundary layer are fixed once
we have specifiedthe boundary layer thickness~, the free stream
velocity U- and density~o . In terms of pressure fluctuationsthis
implies that at a fixed ~int of the “wetted” surface of the skin, we
have for the mean square pressure fluctuations

7
F-

4&
fuo-

and the integral scales,i.e.

w

J b(%,0, a,) pbk,op)bsz
A

—

are proportionalto~. Also the relative contributionto pressure
intensity of the various frequencybands must be a function of U~,~,
and ~ only so that~f ~ is a randcxnfunction of three inde endent
variables,x,z,t, ~c is related to a three-dimensloti spe&-um by..

such that:

r

.
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Loosely speaking, this means that a characteristicfrequency for pressure
fluctuationsis proportionalto U99 /~ and a characteristicwave length is
proportional tod . Now the forcing function of Eq. (7) is a force/unit
mass so that according to our similarityhypothesis

One can thus define a sgectral function
function f(x,z,t):

associatedwith the forcing

and thus

Here F2 is a function of Kl,
variables:

K2, and~~ only and these are non-dimensional

In terms of these non-dimensionalunits, Eq. (8) becomes:
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and Eq. (9) becomes
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.

which can be written

Wit ‘4
()3r -

Again, F2 is a function of the intiegratlonvsxiable only, so that one
csm write

Equation (14) yields the two-non-dimensionalparametersupon which the
plate dynamics depend. The first one,Ch /ALJ@ is the product of a

Mach number, (
speed of free stresm

speed of propagationof waves in the plate
)anda

thickness ratio (
boundary layer thickness @&/u). The second one,_ @

plate thickness
is a non-dimensionald&nping parameter which is, alike, a function of
plate and free stream properties.

If we treat the equation for the integral scale (Eq. 11) in the
same way, we notice that no new non-dimensionalparsmeter occurs, so
that, at most

(13)

(14)

(15)

.

‘1.

.

.
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We now wish to investigatethe form of the functions H and L in
Eqs. (14) and (15) respectively. First, we make an assumptionwhich
Is not strictlynecess~ but which simplifiesthe manipulationof
Eq. (12). We take the function F(K,, K2,f?.)to be symmetric in K,
and Kt , which leads us to define a new wave number.

K= d K,z+ u:

snd to write

Thus,

circumstancesit cen be shown (see Appendix II) that

,

The smsll differencebetween these two integrsls can easily be evaluated
for arbitrarily smell values of ~ 41U w even though both integrals are
unbounded as ~ +0. This leads us to believe that for low damDinK the
main contributionto the inner integrsl comes from the resonanc~ c&iition

Thus, if the spectrel function F(~, K) is reasonablywide, i.e. if~F/~K<<l
over a lsrge rsmge of K, Eq. (16) suggests that we write

~(++j” -)
(17)
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The requirementthat F be flat in K when compared to l/X(K) is equivsl.ent
to the reqwbsment that the average correlationdist=ce or integral scale
for the boundary layer pressure fluctuationsbe smdd. comparedto integral
scale of the plate deflection. Translated in physical terms the simplifica-
tion suggestedhere Is prompted by the following remark: If the plate
has some stiffness,it makes little differencewhether the forcing
function is assmned to be distributedover smell distancesor made of con-
centratedloads (see Fig. 3)

FIGURE 3 .—

Thus a satisfactorymodel for the problem at hsmd wouldbe the impact of
rain drops on a metal.roof. Equation (16) allowsus to integrateover K,
to get

(18)

—
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The expression

\“A.F(@&y2

can be evaluated only when F(K,fi)is known. It may be an increasing

(
or a decreasing function of~~~ ~b . In the absence of data on the
spectral function F, we will.no atteraptto define it.

The function H defined by Eq. (14) can be written:

where f,,is sm unspecified
layer pressure spectrum.

function relatedby (18) to

In order to determineD.2 we need to find out, in

(19)

the boundary

addition. what
quantitiesthe integral sc&A depends on. Here & nake use o+ con-
siderationswhich are similar to those yielding”Eq. (16) (see Appendix III).
The result is that

where f2 is mother function related to the bouudary lvr pressure
spectrum by III(4). Nowwe are able to write Eq. (6) as

(20)

(a)

Expression (21)gLvesthe functional dependence of pressure intensity “inside”
on boundary layer parameters for a typical case. The only q~tity, not
immediatelyavailable is h (~”~\eh). It is probable that we shell have to
await exper3mentsldata to define its numeri.cslvslue reliably.
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IV. SPECIAL CASES

.

1. ConvectedTurbulence

Two authors (ref. 5 & 6) have recently suggestedthat the boundary
layer pressure fluctuationsat any point of the fuselage skin are caused
essentiallyby the passage over the point of a fixed (i.e. time inde-
pendent) pattern of pressure disturbancescarried downstreamat a fixed
convective velocity. So far, experimentalevidence in proof or disproof
is lacking. However, it is interestingto incorporatethis special.case
in the general formulationwhich has been presented. Both the response
of the plate and the coupling of the plate with the sir at rest must
then be reconsidered.

a) The coupling of the plate with air at rest in the case of
convectedturbulence

If a fixed spatialpressure distributionis carried downstream
on the surface of the plate, it is easy to show that the (infinite)plate*
response will be of the same kind, i.e., that it will consist of ripples
which are randomly distributedin space but which travel through the plate
at the sane convectivevelocity as the boundary layer disturbance. The
determinationof the pressure field inside the fuselage is not in principle
different for this case and has been carried out in Appendix IW. The
result is that for both subsonicmoving ripples (with convectionvelocity
u, <LZi ) and moderately supersonicones:

.

(1.10)

where
Mi= &

For higher supersonic speeds, the function of geometry and Mach number
appearing as an integral is more complicated. The equation (1.10) above
has the same form as equation (6). On the other hand there is a sharp
difference in terms of energy radiatedby the plate between the subsonic
and the supersoniccase, since no energy at all is radiated by subsonic
ripples while the supersonicones do generate some. One must, then, make

*Here the presence of transversalbulkheads will change the picture
because of multiple reflectionsof the ripple.

+Wl?hisproblem can also be viewed as a steady (randomlybumpy) wing
problem from the standpointof a stationaryobserver. .
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a distinctionbetween the results in tezms of pressure intensity (the
quantity of practical interest) and in terms of energy radiation. This

distinctionstems from the fact that (as is pointed out on page 7) the
acousticalfield investigatedis truly a near field.

b) The response of the plate

According to the convectivehypothesis, time is not an independent
variable once the convectivevelocity U, is fixed. Translated in terns
of the spectrsl density r (to,kl,~)of’the pressure

r

actuations, this
mesms that ~ (4 ,kl,k2)iszero, except when- s
dimensional.form, when Q= U,

~ /ue)K,”Werewite ‘~ ,>orin non..
equation (12) for this

specisl case.

Here ~[~- ‘l&~ is the Mrac delta function of the variablen.
Then the plate response becomes

Now if we assume as before that F is synnnetricin
substitute

K1 and ~ and
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we finally get

Here

with

k,’+ Ktl = K2

snd
f(lw

k= =7 Bme

The length scalek is indicatedby the fo~owing dimensionalargument.

The mean correlationlength or integrsl scale is a weighted average
of all wave lengths,so that ~nsionelly

A+ ‘z
Since resonance dominatesthe plate response, & is given from the
plate response equation (eqwtion 23) by the resonsnce condition

or

A similar reas~ningwould have yielded, in the non-convectivecase,
~~~hJ/U~J~ inste~ of eqo (20).

Combining (24) and (25) according to (1.10) we notice that we cam
still write as in equation (21).

Here 4 , is a weak function of the Mach number as seen from (1.10).

(24)

(25)

(26)
.

.
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2. The case of zero scale

Under some circw.nstancesit
the plate motion vanishes, i.e.:

is possible that the space average of

This does not rnesnthat the normal accelerationsat two neighboringpoints
show no correlation,but that the
correlationfunction becomes negative
as indicated in Fig. (4) snd in such
a way that its space integrsl vanishes.
We can then consider the norma3
accelerationsas dipoles rather than
sources and we are led to a slightly
different radiationproblem. Appendix
IC shows, however, that if one defines
a length ~’~ such that

FIGURE 4

‘I!he
cm
one

results are sgain identical in form with those of equation (6). Here ~’
be tiewed as the mean moment arm of deflectionmoments. Alternatively
can redefine the Integrsl scale as

(27)

where c is a constant. Eqpation (27) can thus be used to define the
integrsl scale in sny event.
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v. SUMMARY OF RESULTS AND DISCUSSION

.

.

Appendix I discusses in addition to the cases mentioned in the text
a few exemples which provide differentlimiting conditions. Thus the
observer is brought close to the plate (Y<<x ). A short time scale is
consideredetc..... The common feature of sll these analyses is that the
resultingmean noise Lntensity can elways be represented,say by equation
(26). We shall therefore retain this equation:

UCJO
6
Zh

r
Y

$
M;

u,
c

general statementthat we can make at the

= mean square noise intensity inside

= air density inside

speed of sound inside

air density in the free stream

plate density

free stresm velocity

boundary layer thickness

plate thickness

present time,

viscous damping constant (of units l/time)

perpendiculardistancebetween observer and fuselage

geometry of the plate

Mach number “A:

convectivevelocity of turbulencepattern

characteristicvelocity in the plate =
-)

.
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For all but high supersonicvelocities,the dependence,of 5 on Mi is
quite smsll end can be disregarded. The function~ (Y,g), a quantity
which does not depend on the dynamics of the problem but only on its
geometry should be motified to take into account the fact that the
fuselage is a cylinder and not a lsxge flat plate.

The form of the function s cennot be given here both because no
informationis yet available on boundary layer pressure spectra and
because S depends too criticallyon the type of model assumed. How-
ever, if ~ is measured while any one of the four variables defining
S ($,!Joo, c or h) is varied, then the functional.form of the noise
intensity inside a fuselage can be determined. Thus the main contribution
of the snslysis is to diminish the extent of the testing required.

One of the conclusionswhich can be drawn from the foregoing eqwtion
is that unless the boundary leyer press’me spectrum is a ve sharp

Yfunction of frequency (which would make S very sensitiveto (le/Ch) it
is not practical to decrease cabin noise by boundary layer suction: Since
the noise intensity is a weak function of boun@ layer thickness,
decreasingappreciably cabin noise would involve the removsl of a
prohibitive smount of air.

l-botherconclusionis that increasingthe damping is a very effec-
tive way of limiting the production of noise of all frequencies,since
the structure trsnstits sounds essentiallyby resonance.

The analysis which has been presented deliberatelyomitted some of
the features of the problem which would influence the results end intro-
duce new parameters. For instance, the fuselage of commercial airplanes
is ususlly subjected to en axisl tension as well as other loads. In
addition the skin is curved. To account for these features of the prob-
lem one would introduce further terms in the differentialequation
describingthe plate and one could treat it in much the ssme wv as
has been done here.

The general methods which have been used are adsptable in addition
to the study of a germane problem, the fatigue of psmels w?Iichare
btifeted by a turbulent boundary layer.

A NOTE ON TESTING

The discussion of the various limiting
that for the transmissionof boundary layer
the ratio of outside (boundarylayer) noise

solutionsties it clear
noise through a structure,
to inside (cabin) noise is

in general a function-ofboundsry-ltieras well as st~ctur~ character-
istics.

This is to say, first, that an attenuation coefficientcannot be
defined by testing the structure slone with a standsrd noise source.
Thus accurate testing reqtires at the outset that the model be tested
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for transmissionof a noise similar to boundary layer noise. The main
property of such a noise, as we have seen is that it must be random in
space as well as in time, which precludes the use of one or a few
concentratedsources as noise generators. The only proper substitutes
for boundary layer pressure fluctuationsare forcing functionswhose
effects on a fuselage are local.* The Impact of water drops for instance
might be found adequate simulation. Further, similarityIn testing
requires the matching of parameterswhich are ratios of plate and forcing
functionproperties. For instance if the forcing function used in the
test is a turbulentboundaxy layer, similarityparameters are:

.

.

~iS iS nOt true Of jet nOiSe which is generated awey frornthe fuselage.
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APPENDIX I

TEE RANDOM RADIATIONOF A PLANE SURFACE:

A. FOUR LIMITING CASES

In order to determine the couplingbetween fuselage vibrationsand
cabin air one has to choose a model for the correlation# between the
normal accelerationsat two differentpoints of the plate. The model
which was discussed and for which eqyation (4) was made plausible Is
predicated upon two conditions:

A.

B.

That the obsener is distant enough so that a large number
of plate elements vibrating independentlycontributesound
in comparablesmounts, i.e.

A4<V

Here as before, ~ is the integral (length) scale for the plate
normal accelerationssm.dY Is the perpendicularfistancebetween
the observer and the plate.

That the time scsle of the phenomenon is large enough so that
the differencesin phase (i~troducedby the.~equal-distsmce
from the point at Y to the various points of a plate element
of length ~) are unimportant,i.e.

~ is the speed of sound in the fuselage air, and Q is the
integral (time) scsLe for the phenomenon:

Then one can choose a simple model for the correlationfunction +

where & is the delta function. The normal accelerationsare assumed
perfectly correlatedwithin a length X and not at sll for distances
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.

greater thsm X . Then
.

&Tr~

and upon integrating

29

which is equation (4). This case
(
,0A44Y ;z)x<<a~-)

correspondsto the following con~t ons. The passenger (or the microphone)
is far from the plate (in temns of A ), the boundary layer is thick and
the airplane velocities low. One may well wonder about cases for which
these conditions do not apply. While it appears difficult to answer such
a query with generality it is possible to consider other limiting cases.

For instance let us assume that condition2 still applles but that
our observer is etiremely close to the plate. This would correspond to
the followingphysical case: A thin fuselage skin, a thick boundary
layer, a low airplsne velocity and we are measuring neise by placing a
microphone very close to the skin and insulating it on all sides except
the side which faces the skin. Then >77~ j tik a~e .

.

FIGURE 5

Under these conditionsthe noise at the microphone is contributedprimarily
from a single plate element which in the average tibrates in phase. The
evaluation of this contributionis particularly simple. We can nite, very
nearly

.
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(1.2)

and

If~ for the sake of definiteness,we assume the element circular,then

and since ~>T Y it is permissibleto write

The pressure Lntensity is therefore given as

(1.2)

T&ISEq. (6) applies for the very close as well.as for the very far
field when phase effects are not hrportant (fi<<~~).

Now assune that we carry on the same experimentbut that the boun~
layer is thin and that the velocity of the airplane is high so that the
exciting frequenciesare high. Let us assune in additionthat the skin
is thick, so that

VQ~;~ d< ‘/ai .

SUSELAGEBOUMm RYLAYER

w
tMIC/?OPI+ONE

FIGUIW 6
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.

Now the time scale of the plate motion is short emd phase effects are
prevalent. tiedefine a simple time history in anelow to the space
descriptionofEq. (1.1)

avn ~v” (%;, 3:, t- *2
~(xl’)zl’~t-g;) ~ .i)<i~(’~)~

The microphone still receives signals effectivelyonly from one plate
element and all points within that element vibrate in phase but the
pressure pulses originatingfrom that element do not arrive at the
~crophone in the s&e time. l!hen:

-A.-A,

A’ iS Sb@yL . Eqya.tion(1.3) is evaluatedby

rt r%

noticing that:

[{(f)’bw. z-w-)
I’3’(’W

(1.3)

(1.4)

Here ~~ are the resl roots of g($) . 0 which are included in the interval
between and ad b. We only have one root, nsnely r

t
= r2. If we choose

to integrate, say, with respect to S2 first we get assuming again that
the element is circular

and according to (~.k)the inner integrti yields:



32 NACA TM 1420

so that

(1.6)

The time scale appears explicitlyin the answer. For the unboundedplate
however it is simply proportionalto &/Ue just as the time scale for the
boundary layer pressure fluctuations.

Finally we may consider a physical case for which phase effects are
importantand for which the microphonehas been placed a large distance
away from the plate. i.e.: m 44 Ala””; %L4 y
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Now the contributionfrom each sub-elementof vibrating plate is still
in the average independentfrom that of the ncti one. However, there are
in addition cancellationsfrom within one element just as in the previous
case. This will happen if the boundary layer is thin, the airplane
velocity is high ~ small) and the observer is far from the fuselage wall.

In order to evaluate this limiting case we first specify the time
behavior of the correlation function: we write

(1.7)

ad we integrate first with respect to ~= . Using the s=e techniques as
in the pretious example, we get:

Integratingwith respect to 02, 01, ~
s

successively:
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For a circularplate of radius R, this would give

In general.,and defim.ing

a function of the plate geometry and of the distance Y only, we have

.

(1.8)



u
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APPENDIX I

B. Tl!JINOISE GENERATED BY S~ RIPPLES OF F- ,YELOCITY:

If the turbulencepattern is frozen, as discussed in section IV-1
ripples w5.31travel through the (infinite)skin at a fixed convective
velocity. Then the correlationfunction7# must be written differently:

where Uc isthespeed ofpropagation of the ripple (turbulence -
convective speed) and therefore

or

where now

The inner integrsl is of the form

which can be written

as in part A. The expression

(1.9)
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has either one or two real roots depending

“ For ~,<\ , the only real root is

and thus the inner integral.yields

I

JlOt+ I’bC’l
.

so that:

notice that equation
convective speeda.

For ~t71 ,
root given by

It%

as M,<l or ~>i respectively.

(1.10a) -

.

(1.10a) above tends to equation (4) for low

(1.9)has, in addltionto the root %,~~’ , another

s (M ;~l)cl + zM&
*8. )

It is easy to show that this root exists for ell velues of ~. In order to
simplify the integrationlet us assume slightly supersonicconditions;i.e.
let us write

M,= I*Z

Then

and

.

.
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and the inner integral.=

so that for the supersonic case:

A result which is saw for a constsnt coefficientthe sane as I.10a.

37

(1.10b)

.

.
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.

.

APPENDIX I

c. THE GENERATION OF NOISE BY PLATE DEFLECTIONSOF ZERO SCALE

If the space average of the correlationfunction is zero and if
the plate titrationssre isotropic in x’ and z’ one cea define a new
length scale as a moment arm:

4

($s is a fixed point)

alternativelyone can define a modified inte~al. scale

where c is a constant.

Then, one can ideelize the correlationfunction as

provided

h’ 4<s ; N40e+a;
It follows that

~.~h’’=;:

,---
and integratingwith respect to et
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and thus

If there is a (time) mi.croscsle

and

Here the plate has been asmnned circular amd R is its dismeter.
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APPENDIX II

THE SIMPLIFIC&TIONOF THE PLATE RESPONSE INTEGRAL

(Equationz6) .

We consider the approximationequation

The right-handside is clesxly unbounded as the damping constant ~~0
since its value is explicitlyproportionalto l/~ (see for instsmce
Eq.(18)).On the other hand the differencebetween-theleft and the
right-hand integrals is finite for ~ = O. TO show this we mite

c~~e
5—

= 5UC0

Then the left-hand side becomes for ~= O

and the

Now

I

right-handside becomes for p=()

so that the differenceD between expressions (111)and (112)is

(111)

(112)

(113)

(114)

(16)
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●

‘Ibisexpression is finite and of course independentof#’ so that we can
conclude that the left-hand integral of (16) is unbounded for @ = O. .“
Further, it is clear that D is a regular function of~ so that the ratio
of the left-hand side to the right-hand side of Eq. (16) can be made ar-
bitrarily close to unity, by choosing arbitrarily small~. If a correc-
tion is desired a nmnericel check indicates that Eq. (114)gives a good
approximationto the error made even with moderately large damping.

.

●
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APPENDIX III

THE EVALUATION OF THE INTEGRAL SCALE

our startingpoint is Eq. (11). In terms of non-dimensionalvariables

it becomes

We,now simplify the denominatorby writing successi~ly

Q 7 J’K6’

Equation (1112) can now be written

and if we replace ~ by its value at resonance,* namely

Kz= $
* The justificationfor that step is identical.to that advanced in
Appendix II.

(1112)

.

..
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.

.

We can write

.

If we compare (1113) to (18) we get immediately

(1113)

(III4)

NACA - Langley Field, %.


