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NATIONAL AﬁGISORY COMMITTEE FOR AEHONAJTICS

TECHENICAL MEMORANDUM NO. 720

RECENT RESULTS or TURBULENCE_RESEARCEl

o By 1. Prandfl’

INTRODUCTION

Ths irnegular motions, called turbulence. play a )
prominent part in all technically important flow phenom-
ena. Turbulence, on. the one hand, .is the cause of unde-’
sirable flow resistanca, while. .on the other hand, it has
the very useful:l characteristic of increasing the pressure
in the currents. The control . of these phenomena is very
important for the flow specialist. Numerous researches
have therefore been recently undertaken for the purpose
of discovering the laws of turbulent flow. In the present
article an attempt is made. to.review the most important re-
sults of these researches. Relations of “immediate practi~
cal interest are discussed.

The first two sections treat of two prominent ques-
tions, namely the origin of turbulence and the character-
istics of turbulent currents, In the third section con-
clusions are drawn for the flow along a rough wall, where-
by an. important relation for the velocity distribution is
revealed. The principles are also’ applied to straight
rough and smooth tubes. Here it was possible to develop.

formulas for flow velocity and’ resistance, which show ex-

cellent. agreement with the experiments, and which also in
contrast with previous purely empirical formulas, hold’

good. for very large. Reynolds. Numbers for which no experi-
mental data are available., The peculiarities in tubes

with fine-grained roughness at moderate Reynolds’ Numbers

are represented by-a. single curve. Test results with arti-
ficially roughened tubes are given and confirm the relation-

. 8hip mentioned.

l"Neuere Ergebnisse der Turbulenzforschung.". Zeitschrift
des Vereines-deutscher Ingenisure, vol. 7, no. 5, February
4; 1933, pp. 105-114. : S TR
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The results obtained with tubes'are applied to the
resistance of plates to a longitudinal flow. Moreover,
the characteristics of the flow in wide and narrow and
curved channels, as likewise the mixture phenomena of
fluid currents with surrounding fluids and alse the phe-
nomena behind moving bodises aré considered. Lastly, newly
discovered relations between the turbulent exchange of ve-
locity and heat are considered, and new conclusions are
drawn regarding the finer details of turbulent flow.

During the last decasde the investigation of the ir-
regular mixing motions, which are called turbulence and
which affect all technically important floews, have been
especially thorough and fruitful. These mixing motions
-produc¢e effects, .as if the viscosity of the fluid were in-
creased a hundred or ten thousand fold or even more. This
circumstance causes the great resistance of fluids in .
pipes, the frictional resistance of ships and airships and
other undesirable resistances, but also the possibility of
increased pressure in diffusers or along airplané wings '
-and blower vanes. 'Without turbulence, separation would oc-
cur :in- these cases, s0 that there would be only & small re-
covery of energy in the diffuser and impaired efficiency
of wings or vanes.

"~ 'The investigation consisted of a determination of the
numerical - dats and their systematic arrangement. General-
ly the investigation was not carried to an actual theory
(which 'is .very difficult), but the results help to support
theoretical conclusions. Often dimensionsal considerations
together with intuitive insight lead to important conclu-
sions. If, e.g. density (i.e¢. inertia) and viscosity are
the only deteérminative properties of the fluid for the phe-
nomenon, .one is led to a Reynods Number = density/viscosity
X velocity X length (Re = vl/v, in which vV is the "kine-
matic viscosity", i.e. viscosity/density). If Reynolds
Number has the same numerical value in two cases, we may
expect exactly the same course in both cases, only with a
different length and time scalé according to circumstances.
In individual cases the application of this rTule may, how-
ever, require consideration as to which velocity and
which length is actually determinative for the process.

There aré tT70 main questions which were investigated
theoretically and experimentally:

1. How and under what immediate conditions does tur-
bulence originate?

“a
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2. What can be oafd?régarding'turbulent motion, par-
tievlarly regarding the mean values of. the volocitiea and

'tforcos? e e %",_-T..—w“‘gw : dae

The second quostion is obviously the more important
one' from the technical viewpoint. e Co e

LN

. anpIN‘or TURBULENCE.
Regarding the first guestion I can be quite brief,
both because I have recently expressed myself om this sub-
ject (reference 5) and because there is here much that is
still in doubt." 'Thé most important fact is that turbulence
always occurs when the velocity profile gshows & turning
point (fig. 1) and when the viscosity effects are not too
great. Any’ flow with such a velocity profile is unstable
in the absénce of fluid friction, i. e. small deviations
in magnitude and direction increase of themselves and cause

- & -complete reversal of the flow. An orig1na11y slight wave

in the streamlines leads gradually to the production of
turvulénce through the toppling over of the waves. . These
phenomena can be delayed by strong viscosity effects.

" This indicates that the tendency to become tubulent -

depends on the magnitude of the Reynolds Number. Velocity

profiles with turning point occur, e.g. in the boundary
layers producad by viscosity effects, when the pressure in-
creases in the direction of flow or, in other words, when
the flow is retarded. Such points in the: fluid therefore.
have a strong tendency to become turbulent,. but even the
unaccelerated rectilinear flow along a wall tends to become
turbulent at a sufficiently large. Reynolda Number. - Thiws-
can te explained by the fact that the inflow is never abso-
lutely undisturbed and that there are alwaya some. irregu-
larities in the veloclty distribution. Ungtable . velocity.
dlstributlon is largely. due to only slightly damped turn- -
ing motions with BxXes parallel to the direction of flow..
Such turning motions direct some portions of the fluid a-
gainst the wall and other portions away from. it, 8o that,
even at low velocity, with the lapse of time, pontiona hav-
ing a lower velocity become intersoersad with portions hav-

" ing a higher velocity, ' thus necegsarily producing 1nstabil-

ity. N B TE R

a L LR

. There is still another cause “of turbulence, whiéh'wao
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discovered in a theoretical manner {references 2, 3 and

~4);and..which call for special consideration when’ there

£

are:none- of the above-menticoned disturbances.  In- the’ flow

2 along a- wall. there occur certain:siow. distrubances Wnlch

abvove & certain.éritical Réynolds: Number. increase in
strength -and thus produce in‘{their. retaréed zones, ~after
thedx-amplitudes have ‘become great. enough the preliminary
condition for turoulence.- It is warthy of note ‘that -the.
critical. Reynolds Numbers for two different cases, as de-

termined theorstically by Tollmien (reference 4) and

thllchting (referenée 6), “are.in: geod agreement with the
experlmental ‘values. : _ :

'Eiperimenta on the -Production engurbulence"

]

- In order to obtain more light.on. this guestion, we:
investigated the prodnction of turbulence:by experiments
in channels 20 cm (7.87 in.) wide and 6. m (19.68 ft.) long.
Though we proceeded with great care, we found it impossible
to eliminate all the dlsturoances, 80 that here and there .
nuclei. of turbalent motion\developed in. 1rregu1ar succes-
sion and snread qulte rapidly.-v':;;d p;, : .

Clearer plctures were obta1ned by purposely inltiatlng
a dlsturbance in ‘the flow, a8 e DY addlng or removing .
a. little water through a- small pieceg of screenlng 1nscrted

_‘in.the.wall.. In the first case, when a . small amount of:
‘water,  .not yet part1¢1pat1ng in:the flow, is thrust- between

the . wall-and the moving mass, instability is immediately

'produced and turbulence develops at. the. point of entrance.

The: amount of water 1ntroduced may:be: ve"y small.’ In the:
second case the greatest disturbance occurred in the por-
tion. of the flowing water opposite the screen at ‘the pe~-
ginning of the removal by suction. - Behind. this point the
thickness. - of the boundary ‘layer. was reduced by the suction,

snd ' .the inner" po;tion ‘of ‘the water flowing past the bound-

ary 1ayer had therefore to flow over a sort of gteép from
the thinner boundary layer to the thicker layer orn the
downgstream side of the screesn. This. created enough of o
disturbance to cause the disintegration of the btoundary -
layer in a short time. Figure 2 showg this effect and the
further development of the turbulent region: :

The flow was rendered visihble by scattering aluminum
dust on the surface of the water. A slowly- 0perating mo-
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’

"tien-picture cnmera'was mounted on. a. car which kept pace
with the flow gso that the same group ‘of vortices. remained

~in the..field of .the camera. . In:the- top picture-the.ob-
lique streamlinesat the left show the location of the suc-
tion point, while the formation of the first vortex in the
middle indicates the location of the "step. %" Other.vorti-
ces developed on the upstream side. In the last picture:
"the original’ vortex is shown at the extreme right. It is
evident that ‘it carried water from the boundary layer:;-u
(which was purposely strewn more thickly with aluminum
dust) far into the interior of the flow .

ST T e T

'CHAEAGTERISTICS OF TURBULENT CURRENTS

We will now consider the laws of fully developed tuf-
bulence. ‘The method of presentation which I shall employ,
does not  follow the historical development, but is intend-
ed to show' the present statu° all the more palinly. I
shall begin with a statement, regarding the behavior. of an
ideal fluid without viscosity. In reality there is. no
such fluid, but it is of advantage for many considerations
to know what would occur in such an ideal fluid, becaube
the laws of the ideal’ fluid {due to the absence of viscos-
ity) are simpler-than those_of an actual fluid.:

According to our previous statements the tendency to
creages or, inmn othér words, as the viscosity decreases . -
(undér otherwise like conditions). At the zero 1lm1t of .
videosity the Réynolds Number: obviously becomes . infinitg,,
necessitating the conclusion that the flow.of .an 1deal '
fluid would’ generally be turbulent. If it is, also assumed
that the bodies or walls, past which the’ fluid flows, are

"mathematically smocdth, the surface friction would also be
zero and we. would ‘thus obtain the theoretical behav1or -of
the ideal fluid .as atated in- old textbooks on hydrodynam- -

ies.- If however. the surfaces are- rough it mey be assumed
that an area of 'separation deveélops at each individual
-point of roughneas,.however slignt{ The flow 'thus acquires

21n glightly viscous fluids. a regular separation of the
flow occurs on projecting parta of the wall. 1In the limit-
ing transition to, vanishin Visaosity, Helmholte separation
surfaces’ are devé10ped w1th finito velocity jumps.
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a turbulent character. frém the mutual effect of the various
small areas of separatlon whlch are unstable ‘in themselves
and have a d1sturbing effect on one another. At each rough
spot a pressure difference develops ‘between its upstreanm
and downstream sides, thus producing a resistance- which ie
prOportional to the square of the veloclty. : .

_From this consideration it may be assumed that it is
permissible to make theoretical assumptions regarding the
laws of turbulence, in which the viscosity of the fluid is
put at zero. The following considerations clearly show
that we are thus on the right track and that, as a matter
of fact, the turbulent resistance in the interior of the
flow is practically independent of the viscosity. In a
thin layer near the wall, however, the effect of the vis-
cosity persists, provided it-is not concealed by the ef-
fect of great roughness.

We will briefly explain a conception wh1ch has been
found useful for the more accurate investigation of the
turbulent mixing processes. This is the so-~called "mix-
ing path," which plays a similar role in turbulent mixing
processes to that played by the mean free path in the mo-
lecular diffusion of gases. In both these precesses shear-
ing stresses (or apparent shearing stresses) are ‘developed
by the continuous interchange of energy between fluid lay-
ers flowing parallel to one another at different velocities.
The following simplified representation can be made of
these really quite complex processcs.

It is assumed that any particle. which, by collisien
with neighboring particles, acquires a motion crosswise to
-the flow, has, in the direction of flow, the mean momentum
of the layer from which it came, and that it now traverses
a distance | crosswise to the flow, before it collides
with other particles or mingles with them. Such exchanges
occur in both directions, and thus the faster layer re-
ceives particles from the slower layer, which naturally. re-
tard. the former, and, conversely, the slower layer receives
particles from the faster layer with an accelerating effect
on the former.

The effect of the two fluid layers on each other is
therefore the same as if there were friction betwsen them.
The difference between the molecular processes and the
turbulent processes is due only to the fact that, in one
cagse, the individuval molecules, and, in the other case,
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wvhole groups of molecules participate in the exchange. If
u 1is the velocity of the flow and .y the coordinate in
“the” direction at right angles .to. the flow in. which the
-hchange in velocity accurs, the difference between the veloc-
nities ‘of the two layers, separated by the distance 1, is
(du/dy) This, according to what precedes, is also the

-velocity difference of a particle vhich, .coming from the
"hother layer. minglea anew with its present environment.

%

Feu Wt T,

R

S In order to determine the magnitude of the frictional
force or, more accurately stated, the shearing stress be-
tween the two’ layers, we must know the magnitude of the

ma g8 exchanged per second. This, as referred to the unit
“aréa, can be expregsed by.the product of the density.
pt=v/&) and an exchange velocity  v'. In the case of the
molecular motion, this velocity is proportional to the ve-
locity of heat, transfer. Sinee the:latter is one third
each along thé “x, y and.z axes and since, in our example,
we can put, in first approximation, v! = c/S. where ¢

is the mean velocity of the heat transfer. Hence the shear
ing stress3 :

d.'l.l_. du . . - (1)

In the case of the turbulent exchange of masses, the
velocity +v' should naturally be taken of the same order
of magnitude as the differencs in the velocities of the
two layers at the distance I from each other, since the
fluid masses collide at velocities of this order of mag-
nitude (references 8, 9, and 10). On eliminating the un-
known numorical factor v'.. we thus obtain the shoaring'”
stress : N

T=p<dy/ v l. ..(2).

The elimination of the numerical factor only denotes a
somewhat different definition of 1 . In this way we ob-
tzin, for the simple viscosity effect, shearing stresses
proportional to du/dy and, for the turbulent exchange
(whereby the effect of viscosity is disregarded), shearing
stresses proportional to (du/dy)=, which is in good a-

s greement with the hydraulic resistances pr0portional to the

By 2 more accurate calculation, Boltzmann found ‘for the
viscosity m, the value m'= 0.3503 p ¢ -1, which differs
but little from that inewguation 1.
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square of the velocity.,

" With formula 2 the problem of the hydraulic flow re-
sistances is brought bacl: to the.other problem of the dis-
trlbﬁtion of the mixing path 1 - in the flow. So long as
we have no. ratlonal theory of turbulent flow which deduces
the. laws of turbulent phenomena from hydrodynamic differ-
ential egquations, weé- have to. obtain the data regarding the
dlstrlbutlon of the mixing path by experimentation, so.that
only one unknown quantity is thus replaced by another. Nev-
ertheless,,cons1derable progress has been made, since it
‘'has been found, at least for the larger Reynolds Numbers
(from about 105 up) that the mixing path is practically-
independent of the magnltude of the veloc1ty and is, more-~
over, .subject to quite 31mple rules, for its distribution
in spacese. o

.Dimensional considerations often furnish useful in-
d1%?t1ons. For exampls, in . considering the flow near a
more/less smooth flat wall, on the assumption that neither
the viscosity nor the roughnes@bf the wall has any zppre-
ciable effect at the point under consideraticn in the in-
terior of the fluid, we are in a position to make a state-
ment regarding the distribution along the mixing path. For
a point at the distance y from the wall there is no other
characteristic length than this distance y. The mixing
path 1 1is also a length, so that there is no other pos-
sibility than to put the mixing path proport:onal to the
distance from the wall: .

1. = Ky.

Here K « is a universal numerical boéfficient,fwhich can
be determined experimentally. If we assume a state of
flow in which the shearing stress T 1is constant, we oD~
tain

du _ 1. T
dy ~ %y +p

according to équation 2, and fherefore

u =_E*ﬂ%(ln_yuf const.) _ (3)

Such a velocity curve, dependent on the distance from the
wall, is qu1te llLe the one’ actually observed (flg. 3).
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Comparison with the experimental results yields the number
0.4 as the approximate value of k.

Farman's Theory

Von Karman (reference 12) assumed that the turbulent
mixing processes are the same in all cazes, so that only
varietions in the lensth and time scales occcur from case
to case and from place to place in the fiow. Under these
circumstances the effects of viscosity are regarded as neg-
ligible in comparlqon with the effects of turbulence. ‘Con-
clusions are now drawn from Buler's eguations regarding
these two scales, the first of which obviously agrees in
principle with our mixing path 1. The velocity u of the
basic flow, which is assumed to be a function of y alone,
is determined from a Taylor series interrupted after the
quadratic term. The mean forward velocity of the particle
under consideration has no immediate effect on its inner .
motion. Of the given quantities therefore, only du/dy and
dzu/dy® need to be considered here. We first have a time

as the time criterion for thc¢ period of the mixing process.
For dimensional reasons, the interfereace velocities u!

in the X direction gnd v! in the Y direction are therefore
proportional to 1/T, .i.e. o

ut ~ vl W 15T

which agreés with the previous formulas. ‘For the longitu~
dinal scale of the mixing process, Von Karman finds the re-
lation

d2n
1 k! /dV

in which k' is.a constant determined experimentally.
This expressicon-of Karman's theory goes beyond previous
expressions, because it furnishes a methcd fer calculating
the magnitude.of the mixing peth 1ndewendent1y of the die-
tance from a wall., If this expression is initroduced into
equation 2 and integrated on the assunption of a constant
shearing stress in the ragion under conslderation, we ob-
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tain

u:lkv‘\/%[ln(y+cl)+0;?] | B (4)

i.e. practically equation 3 again. The reguired agreement
with the experimental results obviously leads to putting
k' = K. Hence both formulas yield the same velocity dis-
tribution in case of constant shearing stress.

o There is no longer any agreement regarding the.shearf
ing stress in the other assumptions. Moreover, the formu-
la 1 = Ky - is without any valid basis, since, due to the

’variability of the shearing stress, a s8till further length

T/%% .is available; but even Karman's formula

_ . Gu/d=un
l =K dy/d y 2

here means only another estimated approximation, since it
was obtained by disregarding the effect of d3u/dy3 and
higher terms in the series development for wu. 1In the

cagse T = constant, the two solutions coincide, because

the velocity distribution, according to eguation 3, is trans-
ferred by changing the integration constant, in case the
shearing stress 171 remains unaltered, so that there is

here also a pronounced similarity with the basic flow.

From equation 3 it is easily seen that the guantity

JT/0 is a velocity. This velocity is very valuable for
various similarity consideratlions in what follows. We will
therefore designate it by v, and call it "shearing-stress
velocity." The formula T =0vx? isg of similar form to
that for the dynamic pressure

Py = % p uZ,

which is comprehensidble for dimensional reasons, since the
shearing stress is also a force per unit area. The appar-
ent shearing stress T of the turbulence is gsnerally very
small as compared with the dynamic pressure. Hence in v,
we are also dealing with a velocity which is relatively
small as compared with the flow velocity 'u. Comparison
with equation 2 shows, moreover, that '
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Hence " v, 1ig.0f the order .of: magnithd% of :the mixing ve-
locities u' and v'.

FLOW ALONG A ROUGH WALL

From our stahdpoint the flow along a-fbugh wall is
simpler than along a smooth wall, because the viscosity
plays a .preponderant role in the latter case, but not. in..

the former. It is therefore better to consider the flow

along a. rough wall first. . If k. is a. length indlcating
the roughness of the wall, it follows, from a simple sim--
11a11ty consideration on the basis of the ideal f1u1d

that the velocity distributions near the wall, with geo—
metrically similar roughnesses, are also geometrically sim-
ilar, sc¢ that the size of the grain k furnishes the -cri-
terion for it. The formulated .expression of this relation-
ship is that the velocity at the distance y 1is a function
of the ratio y/k. If this velocity distribution is based
on eguation 3, which, according to what has preceded, is at
least advisable for the regions farther in the interior of
the fluid, it is found that the Integration constant of e~
quation 2 = constant ~ 1n k. ‘

A hitherto unpublished series of experiments by Niku-~
radse with tubes 0of various diameters, which were givsen
different degrees of roughness by gluing to them sifted
sand with a suitable varnish, showed that the new constant
= 3.4 = 1ln 30, k¥ ‘tocing the mean diameter of the grains
of sand used to produce the roughness. With l/K = 2.5,
we obtain the formula

w = 2.5 v,ln(?gii\
ks

By a shifting of the coordinates by the -amount of k/so,
it is also possible to obtain. u = 0 for y = 0.% Hence,

= 2.5 veln (} + —EJZ> R € ¥ )

*It is still an open, though not very important question as
to the exact location of the axis of the coordinates between
the. protuberances of the roughness.
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or, if the natural logarithm is replaced by a common log-
arithm, .

v = 5.75 v, log (l + ———“) (5a)

Equations 5 and 5a therefore show a flxed relation between
the velocity distribution, shearing-stress velocity, dis-
tance firom the wall.and the degree of rouvghness k. This
first holds good for the .kinds of roughness used in the -
experiments. . For other forms of surface roughness, more-
over, there is probably another number instead of 30, also
dependent on the manner of defining the roughness scale.
Preéparations for tests in this connecflon are being made
in GBttlngen.

Equation 5 immedlately affords us the opportunity to
check the above statement regarding the behavior of the
..ideal fluid. Represent the velocity at the distance y = h
by u=nu With this assumptlon Ve ¢Can be eliminated

1‘
from equatlon Ha.
v, = Ta
5.75 log {1 + 30 =)
\ k
and consequently
'1og(i + 30 L
u=u - [ h< (6)
+ oy .
log\} 30 ks

The corresponding shearing stress is

2
2 !

T=pV*

’/

, B (7)
33[ log (1 + 30 :_q -

from which it follows that the shearing stress is propor-
tional to the square of the flow velocity u,. The effect
of the roughness of the wall is likewise shown by eguation
7o :

If we paés to the mathematically smooth wall, i.e.,
to k = o0, then, according to equation 6, w = u,; and
T= o0 for all values of y constant, as stated in the
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clasgical hydrodynamics on the ideal fluid. It is also
obvious ‘that even a. submicroscoPic roughness with a k

-0f the. oréer of. magnitude of the diameter of an atom would
wstill show cons1derable deviationa from the ideal behavior.
Our formulas ¢an no. longer be used for such ceses. The

relations are here considerably altered by the viscosity,
as will be shown in what follows.

THE FLOW IN TUBES

It is an important discovery that, in a straight tube,
the relative.motion of the fluid particles at ' moderately
large Reynolds Numbers depends on the fall in pressure and
not at all on the charadter of the wall, so that theréefore,
with constant fall in pressure, the velocity-distribution
curves in tubes of greater and less wall roughness can be
brought .into conformity by shifting along the wvelocity ax-
is (of course aside from a layer in immediate contact with
the wall, where the veloclty increase is naturally greater
on a smoother surface than on a rougher one). This rela-
tion was discovered by Darcy (reference 14) 75 years ago
in his researches on resistance in pipes and was then em-
phasized, but was subsequently forgotten. TFritsch:dis-~
covered it anew by direct observation in his experzments
with rough channels at Aachen (reférence 17). From our
standpoint this discovery is identical with the fact that
the distridution of the mixing paeth along the inside of the
tube is practically independent of the nature of the wall.

In connection with our earlier discoveries it is natural to

surmise that the formule
1 r,

can be written for the mixing path, where y 1is the dis-
tance from the wall and r the radius of.-the tube. Since
the distribution of the shearing stress aloung the tube is
known when theé pressure fall §s given, the distridbution of
1. can be ‘verified by measuring the veloocity distribution
with the aid of egquation 2. It is found that the above
statement is confirmed, at least for the higher Reynolds
Numbers. Figure 4 gives the result in nondimensional form
and consequently shows the course of the function f,. In
the function . f, (v/r).. is the mixing.path; r, . radius
of tube; 'y -. d1stance from wall; and %k, mean longitudinal
dimension of raughness. '
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Conversely, on the basis of this: function and with
the aid of equation 2, we can calculate: du/dy, from
which, by an integration, an expression for the velocity
1tself can be obtained. On the introduction of the shear-
ing stress velocity ~vx this expr6551on takes the form

iy
2\r /

(8)

Umgx = ¥ = Vuf

This equation, which was first developed by Von Karman
(reference 12), has also becen cxperimentally confirmed,

as shown by figure 5, in which the test points are given
for smooth tubes and for various rough tubes. . In function

£, (y/r),  u max 18 the maximum flow velocity; mu, flow ve~
loc1ty at - the point y; vx, shearing-stress distribution -
: JV', T,shéaring stress; p, density.

We ¢an now pass from the velocity v - at any distance
y from the wall to the mean velocity TW. We thus obtain
from equation 8 an expression of the form
Yax " u = Vi X coefficient - {3)
Nikgradﬁe'é thfingen experiments yielded 4.07 as the val-
ue of this‘cogffiCient. It was a pieces of good luck that
our equation % or the special forwm for a rough wall (equa-

tion'5) yieldeds, up to the nmiddle of the tube, a useful
approximation for the fumnction f:{y/r), namely° '

sFor more accurate calculations, a small supplementary term
wounld have to be added, which will be included later, at-
least in the final result.

8Darcy (reference 14) deduces from his experiments

_ o L _ ‘a/z
uma-x. n = 11-3 T (r- N

_ : : : . . 1 .4 : -
{4 4is the gradient and therefore = - ga EE; the meter isg
the unit of lengthle. This equation can be put in the form
of equation 8 and thus becomes
£ L =5.ozz(i~§§‘\3/2

2r _ T ‘
which, with the exception of the wall vicinity where Darcy
made no meas*remepts, azgrees very well with modern results
(fig. 5). ' : : c
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= 5.75 log ; L (10)

R

We now have all that is needed te'calculate the resistance
of & rough tube for a given. quantity. We will first write
the customary expression for the drag coefficient A:
L in A ow? |
dx d 2 : : (;1)

"From the  eguilibrium of a water cylinder.ef'radius r = d/2,

we obtain, for the shearing stress - T, of the wall, the
expression. S T . i

-mrezE= 2mr
dx
and accordingly

I._ e = ol = o™ ’ (12)

" The comparison of equations 11 and 12 yields, with the
“‘tube dlameter d =2 r,

Vo= W , R G ¥

By the dise of equation 5a at the middle of the tube (y = r)

. we obtain, when, under the logarithm, we disregard 1 in

comparison with the very great value 30 r/k and put log
30 = 1. 477,

Upax = V4 (5.75 log = +.875) ‘ (14)
On the other hand, accordihg to equation 9

T = upgx = 4-07 vy = v,(5.75 log o + 4.43)

Taking equation 13 into'éensideration. we now have

(15)

' ‘..(5,75'105 I+ 4.43)° . (2.0 log E + 1.57)2

This is very well conflrmed by experiment, . w1th only the
sl1ght d1fference that 1. 74 is better tban 1. 57. in the de-~



16 'N.A.C.A. Technical Memorandum XNo.. 720.

. nominator. This difference:is. connected with the sup-

'pressed auxillary term in equatlon 10.. The experimental
confirmation of the formula is best accomplished by plot-
:ting l/«/ against 1og r/k Accordlng to the foregoing

1/ﬁ—201og1§+174 (16)

" The plotting must therefore yield a straight line. PFigure
6 shows this line for six rough tubes according to measure-
ments by Nikuradse. (See also figure 9.) The general form
of egquation 14, as likewise an equation analogous to. equa-
tion 16 for a coefficient of resistance based on wu , was
first developed by Von Karman. He also made the rec%llln—

ear graph.
Effect of Viscosity (smooth tube)

It has already been mentioned that the effect of vis-~
cogity is. greater when the roughness is less, but of course
only oa the boundary-layer punenomena. The rotgh places are
here more or less covered by a slower-moving layer of flui&
and are thus rendered ineffective as regards resistance.
Progress can also be made here with a dimensional consider-
ation., The shearing stress is responsible for what takes
place on the wall and consequently the velocity wvx Dbased
on this shearing stress, and also the criterion of rough-
ness k. A wall characteristic V*k/p can be developed
from these two with the kinematic viscosity by analogy with
the Reynolds Number. Since, with fixed vy, the state of
flow in the interior remains unaltered, the only remaining
problem is to adapt the integration constant of equation 3
to the new relations. This is accomplished by introducing
a modified roughness criterion,

k' = k £\,

instead of Ik, into equations 5 to 7 and 14 to 16. Regard-
ing the course of the function f5;, it follows from the
foregoing that it must be egual to 1 for large values of
the wall characteristic, in order to restore the previous
relations. HAn immediate conclusion can, however, be drawn
as to what form the function f; must assume for small
values of w_ k/v- -The observations show that, for slight
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buufstlll agpre01able roughness, the rough tube doés.ﬁat .
differ pPraebiecaXly from a .perfectly smooth tube, provided

thé'RéJﬁolds‘Ndeer is ‘not .unusuvally high. Such a condi-

tion- 1s obtalnea ‘when .-

T f (~———>5= coefficient X Y-
v Kk

sinc€ 'k 'is thus removed from the foregoing formulas and
. . s v . .
is replaced by coefficient X 7 The experiments confirm ?

this resnlt and: show, with res;ect to the coefficient
which leaves the dimensional consideration still open,
that our previous value of k/30 must be replaced by

p/9 v,. Instead of equation 5a, we now obtain the formula
for the velocity distribution in the tube

v
u=v, (5.75 log £~ y

. .+ 5.5) (17)

On plotting u/v* against log v*y/v, we obtain a straight
line vhich must contain all the points near the wall for
the velocity profiles of all smooth pipes. An exception is
formed only by the values at very small nondimensional dis- [
tances from the wall v*y/v, at which the turbulence is '
still affected by the viscosity. Up to - the previously -

mentioned supplemcntary function, equation 17 is also valid

to the middle of %the tube. The experimental points in fig-

ure 7 actually contain not only the parts near the wall,

but extend almost to the middle of the tube. One can there~

fore note small systematic deviations from the straight

line, which of course have to be considered in a more ac-

curate theory (referemnce 18),

For comparison figure 7 also shows, by a dash line,
the velocity~distribution law

/7 o
r\l ’ .
LI Te - . (i8)
Vi o Nvos

+ ag determined on the-basis of the Blasius formula for the
friction‘aef the tubey:wlt is .-found that, in a central re-
“gion for which alome data were formerly availabvle, it prac-
tlcully c01n61des thh the straight Tine of equation 17,

but deviates considerably above and below this ‘region. In
fact it was long since discovered that, at -higher" ‘Reynolds
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Numbers, the seventh root is replaced by the eighth-and
ninth roots, .etcs. The reason for this. behavior is mani-
fest, 'since the law of the seventh root now appears -to be
only an-approximation formula for the real law, which is
represented by equation 17, whereby the particular numeri-
cal values of the approximation formula naturally still
depend on the region in whicn they should agree with the
accurate formula7

_ For the coefficient of resistance, we obtain from
equaulon 18 by the same modlflcatlon

-

i ’ v,. T
—— = 2.0 log —*__ 4+ 0.5

'/}\ »1?
Taking equation lzfinto-cbnsiderétibn; we can'put
v, r - "W.r vy -°Wa- -1

e Do TI T SRSt

v v ou v 2. 8

With ﬁ’d/v-: Re, we obtain. '
LW/N = 2.0 log (ReyN) - 1.0 - (19)

This, formula was verlfled experlmentally be Nikuradse
(reference 20) up ‘to.the Reynolds Number 3.4 X 106, It
must bs changed only by ‘the consideration of the preV1ously

mentioned supplementary function'of the numerical value
from - 1.0 to -~ 0.8. The final formula for the res1stance
cosfficient is then :

Y.

The calculation 'of the 'resistance coefficient corresponding
to any ziven value of Reynolds Number encounters no partic-
ular difficulties, although L A occurs once more on the

right side. _QOne can,: for example,  assume provisionally any
value for ./ A - on the right side and calculate 1 /A and
then repeat the process, if the discrepancy is too great.
In.figure 8 the course of A is plétted with respect to Re
according to equation 20 together with the experimental val-

-2,0 log ‘(Re J}T) - 0.8 . ("26)

YBelow log v y/lﬁ—.2 the straight line of equation 17
shows appre01able deviations from the test points., This is
due to the influence of.the V1s0031ty. If the smallest su~
percritical Reynolds Numbers are disregarded, this deviation
occurs only in a very thin layer near the wall of the .tube.
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. ues. By especially good luck this formula agrees with the
”experiments down to. the smalleat sapercritical Reynolds
Numbers.

We now turn once more to the general problem of the
rough tube. On the basis of measurements by Nikuradse
(now being prepared for publication) the course of the re-
sistance coefficient is plotted in figure 9 against the
Reynolds Number for tubes of different relative roughness
k/r. The curves in figure 9 are based on experiments with
tubes of well-defined roughness produced by gluing grains
of sand of definite and different sizes (k) to the inside
of tubes. The conditions to the left of the critical Rey-
nolds Number represent the laminar condition of smooth
flow. It is evident that there is here very little differ-
ence between the smooth and rough tubes. The curves di- .
verge greatly, however, as soon as the turbulence begins,
i.e. above . Re, rit. The curves for the lessser roughness
first follow tbe curve for the smooth tube and then sepa-
rate from the latter in order.

The foregoing considerations indicate a way to find
a law for the turbulent portion., We will take the wall
characteristic v*k/u or ite logarithm as the abscissa and
a gquantity which is constant according to the laws of the
fully developed roughness flow as the ordinate. TFor exam-
rle, we can take the gquantity
T

1/,/ % - 2.0 log .

mor} if we want the corresponding law for the velocity dis-
‘tribution. the quantity
u

- 5.75 log L.

* 1\-.

The plottlng of thess two’ quantlties on the b551 of the
experimental results brings 'in fact the test points meas-
ured with very different roughnesses approximately on-a
single curve. The two curves agree with each other up - to
the scale corresponding to the relations here reprensented.

- The whole problem thus finds a very comprehensive solution

on the basis of combining a few experimental values with
theoretical conclusions. What remains to be done is to
find the curves for other forms of roughness in addition to
the curve of figure 10, which we have thus far determined
only for the special sandpaper form of roughness. "Prepara-
tions are now being made for such experiments.
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= v.. .. . APPLICATION.TO OTHER CASES
'Pléfé‘Résisténée'J Acceierated and'Retérde&-Fiéws”..

.i; From the behavior of the flow in tubes. when the
P1a51us law.of re51stance '
' . C-1/4

x_é 0.316 (22

\.

\

domwnated the field; concliisions had already been drawn
regardlng the frictional résistance of plates subjected
to flow ‘along their surface {references 15 aiid 16). Ac~
. cord1ng to tlie momentum theory, ‘the dBCrease in the ‘mo-
mentum of ‘tlhie flow due to the friction was represented
by a formhla-in terms of the exposed length of the plate
in ‘accord ‘with the laws for the velocity distribution.-
“This decrease in momentum per unit- length along the plate
was expressed as equal to the frictional force per unit"
length. The resulting formula for the coefficient of
frictional resistance cf (rb51stance d1v1déd by the sur-
face .area and dynamlc pressure)

: L "'l/o . .

eg = 0,074 (K_E\ N €39
(1= length of plate, v = velocity of plate), showed simi-
lar discrepancies, in comparison with the experimental re-
sults, to those shown in the resistance of tubes. The ob~
.vious thing to:do now.was to apply the improvedlaw of tubu-
lar flow also to plates. The calculat1ons gre here rather
troublesome. They were first made by Von Karman (references
13 and 21). A new calculation in a somewhat different way
vas made by the writer ‘(reference -18), who compiled a nu-
merical table the values of which agree very satisfactorily
with Kempf's measurements. The values in the table were
obtained by the following approximation formula of H. .
Schlichting..wh1ch .though it is only an interpolation for-
mula, . cak be used throughout the whole practical region of
turbulent flow. :

: 0.455 . SR o
G T OTTTTTTTTTTI . (22)
10z LiNz-38 - '

( v !
.. ./

Forithe;fqngh plate, a correspon@i#g;qéieniaf;on.ﬁas.mgde
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on the basis of the law of rougrness represented in figure
10 (reference 19). :

The benavior of the turbulent frlction layer in an ac-

~celerated or retarded flow is of greater importance. An .
- Amportant special case, the flow in a widened or narrowed
chanh'éel with flat side walls, was investigvted by Dbneh for
air: (reference 22) and by Nikutradse for water (reference
23)+ . Burdi's'work at Zurich showld be metioned here, as al-
so-funot's” experiments on an alrplausv ‘ng at Hannover (ref-
erence 27 ). U .

Buri and Gruschwitz have now made, in somewhat differ-
ent monnery. the very important attempt to~ aevelop purely -
mathematical -méthods for calculating the course .of the phe-
nomena in the. fri¢tional layer., Buri's method is simpler,
:while that of &ruschwitz is more complete. Lack of space
forbids. further consideration here of these rather compli-
cated calculations. With these methods it is possible to
predict the course of the frictional layer for any given
pressure distribution and, under some circu mstances, even
to make the. important determination as to whether this flow
will adhere to the wall, as assumed, or will separate at
some point. A further attempt is now being made to predict
in this way the actual characteristics of an airplanse wing
including the profile drag and maximum 1ift. Should the
results show a satisfactory agreement with expcrimental re-~
sults, this method would constitute a very considerable ad-
vance.

"FURTHER PROBLEMS

The investigation of currents in strongly curved
channels (referernces 30 and 31) shows that, aside from the
"secondary currents" on the side walls as already described
by earlier writers , even the real nature of the turbulence
is here substantially altered., The two kinds of phenomena
are related in that the faster portions of the fluid along
the curved wall develop stronger centrifugal forces than
the slower portions. The faster portions therefore tend 'to
displace the slower portions on the outer wall. However,.
‘gince the portions in immediate contact wit th the wall are
continually retarded by friction, a materially accelerated
exchange is produced on the outer side of the channel by
the displacement of these retarded portions. On the con-
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_trarv the slower portions tend toward ‘the 1nner 51de and.
the exchange is con31derably retarded. :

: The phenomena are verv s1m11ar to those in the flow
of & fluid over a heated or cooled bottom’ surface. In .
the former case -the heated and s1mu1taneously retarded.
portions tend to rise from “the bottom, while in the latter
case 'the - oooled _portions, because of their ‘Ereater . density,
tend to remain near.the bottom (references 1ll and :32), 8o
that the turbulent friction 4is increased in. the former
case and decreased in the latter case. Since both groups."
of phénomena have been or are being investigated in Got-
tingen, :mumerical expre831ons for these 1nf1uences may be
expected. .

Another 1mportant kind of phenomena is 1nvolved in
the turbulent spreading of fluid jets and the wakes of ﬂov—
ing bodies. The outer portions of a jet emerging, e.g.
from a larger orifice (nozzle, etc.) are.very unstable and
develop. into a more or less irregular vortex system. . “ven
for this kind of. phenomerna the conception of the mixing
path held good, and it was p0331ble, with' the aid of the
simple assumption -that the mixing path in:a cross section
is constant -and proportional to the width of. the mixing
zone at that point, to predict the form of the mixing zone
and .the velocity distribution in it in.a .very. satlsfactory
‘manner, -whereby only the ratio of the mixing path to the
mizing zone had to be taken from the experiments (refer-
ences 9, 10, 28, 29, 356).

The heat exchange is guite closely related to the
turbulent velocity exch 1aTES. Insofar as it concerns the
flow along a wall, as shown by the experimenis of Elias
(reference 33), the exchange factor has exactly the same
value, so. that the curve of the temperature distribution
agrees with the velocity distribution. For the phenomona
"in the wake of. moving bodles. Taylor (reference 34) ha '
recently shown that here’ the heat exchange is twice as
great as the velocity éxchange, so that the temperature

and.velocity curves differ appreciably8 Taylor -could also

\ 8Taylor demonstrates that in th1s case the’ rotational force
of the meih motion is exchanged: in the.same manner as the
»heat, The exchange factor is. p:c(du/dv), the rotational

“foree in’ parallel motion, however,. i du/dy; and the fall
of the rotational strength in the directlon ¥y  is there-
fore dgu/dy*" Tayior snows that then R R

(Concluded at bottom of page 23) :
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show that theoretically the former condition (like form. of

these curves) is to be expected when the vortex axes of

the interference motion are parallel to the streamlines of
the main motion, but the latter (un11ke) when they are per-
pendicular to them. The unpublished GOttingen experiments -
of P. Ruden show that the Taylor law of exchange is also
valid for the spreading of jets.

It follows therefore that, on closer inspection, there
ares two kinds of turbulence to be distinguished, which dif-
fer in their nature. We may call one "wall turbulence" . and
the other "jet turbulence." In the former (according to
Elias) the vortices parallel to the streamlines obviously
predominate. This rather important discovery will perhaps
once more indicate the way to a real theory of the phenomena,
So long as this 1s not discovered, we must be staisfied with
half-emrpirical considerations of the kind here described.

Translation by Dwight M. Miner,
National Advisory Committee
for Aeronautics.

9.1 = ¢ 178u 4°0 yhich can be integrated to
1 2 fdu‘ﬁ . ' .
T==p 1 == \Yfor | constant in a cross section. The
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