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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1421

A THECRETICAL INVESTIGATION OF THE TRAG OF GENERALIZED
ATRCRAFT CONFIGURATIONS IN SUPERSONIC FLOW*
By E. W. Grsham, P. A. lLagerstrom, R. M. Licher,
and B. J. Beane

CHAPTER I. SUMMARY

It seems possible that, in supersonic flight, unconventional arrange-
ments of wings and bodies may offer advantages in the form of drag reduc-
tion. It is the purpose of this report to consider the methods for deter-
mining the pressure drag for such unconventional configurations, and to
consider a few of the possibilities for drag reduction in highly idealized
alrcraft.

The i1desllzed aircraft are defined by distributions of 1lift and
volume in three-dimensional space, and Hayes' method of drag evaluation,
which is well adapted to such problems, is the fundamental tool employed.
Other methods of drag evaluatlon are considered also wherever they appear
to offer simplifications.

The basic singularities such as sources, dipoles, lifting elements
and volume elements are discussed, and some of the useful inter-relations
between these elements are presented. Hayes' method of drag evaluation
18 derived in detell starting with the general momentum theorem.

In going from planar systems to spatial systems certain new problems
arise. For example, interference between 1ift and thickness distributions
generally appears, and such effects are used to explain the difference
between the non-zero wave drag of Sears-Haack bodies and the zero wave
drag of Ferrari's ring wing plus central body.

Another new feature of the spatial systems 1s that optimum configu-
rations generally are not unique, there being an infinite family of 1lift
or thickness distributions producing the same minimum drag. However it
is shown that all members of an opbtimum family produce the same flow
field in a certain region externsl to the singularity distribution.

Cther results of thils study indicate that certain spatial distri-
butions may produce materially less wave drag and vortex drag than com-
parable planar systems. It is not at all certain that such advantages
can be realized in practical aircraft designs, but further investigation
seems to be warranted.

* Unedited by the NACA (the Committee takes no responsibility for the
correctness of the author's statements).
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CHAPTER II. INTRODUCTION

The primary purpose of thils report 1s to consider the problems
involved in exploring a broader class of aircraft conflgurations than
is ordinarily studied .for supersonic flight. It is necegsary to deter-
mine whether any unconventionsl arrangemerits of wings and bodies offer
sufficient serodynaemic advantages in the form of drag reduction to merit
more detalled study. As a first step 1n this direction attention is
directed to optimum configurations, even though they are highly idealized
in form and do not necessarily represent practical aircraft.

In the preliminary exploration of such configurations 1t is not .
necessary to know their detalled shapes. It is sufflcient to define the
alrcraft as a distribution of 1ift and volume in space, without knowing
the camber and twist of the wing surfaces supporting the 1ift distri-
bution, and knowing only approximately the shapes of the bodies con-
taining the volume.

Hayes' method of drag evaluation is well adapted to this type of
anelysis and is one of the primsry tools used. However other methods
end points of view are employed wherever they appear to offer further
understanding of the problems.

The propertiles of sources, dipoles, etc., are reviewed, and a sin-
gularity corresponding to an element of volume is Introduced. Some
useful relstions between three-dimensional distributions of different .
types of singularities are developed and later applied. Also Hayes'
method for drag eveluatbion is developed in detail.

o

Since this report is exploratory in nature the ilnvestigations made
are frequently incomplete and somewhat 1solated from each other. Some
of the material of Ref. 2 and most of the materisl of Ref. 3 are included
in this report for convenience. The latter has also been published in
The Aeronautical Quarterly, May 1955, under the title, "The Drag of
Non-Planar Thickness Distributions in Supersonic Flow." Permission to
reproduce this material has been granted by The Royal Aeronautical
Soclety. -

P S—
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CHAPTER IIT. SINGULARITIES UTILIZED IN THE "LINEARIZED"

DESCRIPTION OF THE FLOW ABOUT ATRCRAFT

A. BASIC SINGULARITIES

The Source

For incompressible, non-viscous fluids the equatlon governing the
flow is the Laplace equation,

g, 3, Y

=0 (3a-1)
d2 2P 328 >

where ¢ is the perturbatlion velocity potential. A basic solution, which
exhibits spherical symmetry, is the source,

b = -1 (3a-2)
- lm\/(x -t)% (v - n)2 + (z - §)2

This solution can be interpreted as representing the emanation of unit
volume of fluid per unit of time from the point &, n, {. Because of
the linearity of Eq. (Ba—l), other solutions of it can be bullt up by
a superposition of sources through the use of certaln limiting proce-
dures; such resulting solutlons are the horseshoe vortex, doublet, 1line
vortex, ete. Much is known about these solutlions and with them the
flow over wings and bodies can be described mathematically.

In supersonic £low the governing differentiel equation is the
linearized potential equation,

235, 35, 3% _
-B e et 5E 0 (3a-3)

vhere x 1s the coordinate 1n the stream direction end B ==VM2 - 1. Equa-
tion (38-3) can also be considered as the two-dimensional wave equation
where the x coordinate is thought of as the "time" varisble.

If the y and z coordinates in the Laplace equation (Bg. 3a-1) are
multiplied by iBg, then that equation is transformed into the wave equa-~
tion; a similer transformation of the source potentiasl from Egq. (3a-2)
results In
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Bg ~ L _ :(5a-n>
° V(x - £)2 - BQEV -2+ (z - C.){l

which can easily be shown to be a solution of Eq. (3a-3). Equation (3a-4)

is real inside the forward and rear Mach cones, (x - §)2 > ;32 Ey - n)2 +

(z - g)%], and imeglnary elsewhere; however, due to tBe nature of éuper-

sonic flow only the solutlion in the rear Mach cone is used to represent
a source. Since half of the real solution is discarded, the constant

P-4

}

REAR MACH CONE

L , > X

REGION OF INFLUENCE OF SUPERSONIC SOURCE

essociated with the incompressible § must be doubled to represent a unit
supersonic source. Thus the supersonic source at &, 7, { has the potential

(
-1
_ x-g2B|(y-n)2+(2-¢)2
gy = q2x|(x-£)2- 82 [y -n)2+ (- £)2] (38-5)
0 Elsewhere

where the x axis is in the free stream direction. It can be shown that
Eq. (3a-5) represents unit volume flow from the point £, n, £; however,
care must be tasken in the proof because of the singularitlies on the Mach

cone (cf. Ref. 4). In the proof given by Rdbinson(u) he made use of the
concept of the finite part of an infinite integral, an jdea originally
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introduced by Hadamard(5). As in incompressible flow, other solutions
of Eq. (3a-3) can be built up by superposition of the basic source solu-
tions; some of the solutions can also be obtained, as was the source,

by enslogy with the incompressible solutions.

Before going on to other solutions let us examine the supersonic
gource in more detail. Since the velocities are infinite on the Mach
cone from a finite source, care must be taken in using such sources to
describe real flows. It 1s instructive to examine the isolated source
in terms of the limit of a finite line of sources in the free stream
directlion as the length tends to zero while the total strength remains
constant. Under the assumptions of slender body theory, if the line of
sources extends from x = O to x = x, with strength Kx, it represents a

cone of semi-vertex angle K/EU with a semi-infinite cylindrical after-
body (Fig. 3a-la). The velocities are constant along conicel surfaces

JAFINITE AT REAR MACH
VELOCITIES | conE, ZERD AT FORWARD VELOCITIES INFINITE ™
2 MACH CONE AT MACH CONE .

source |
STRENGTH

Fig. 3a-la: Cone-cylinder and Fig. 3a-1lb: Perturbation flow
source distribution repre- lines in x-z plane for super-
senting it sonic source, M = {2
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from the origin; but on the Mach cone from x = x, the velocities become
infinite due to the discontinuity in source strength. The total inte-

grated source strength C is equal to 1/2 Kxo2. If xo 1s allowed to

gpproach zerc while C remsins constant then in the 1limit a concentrated
source of strength C is obtalned. The flow pattern in the xz plane for
the source at M = Y2 is shown in Fig. 3a-1b. (See also Ref. 6.) For a
source of finlte strength the velocities are infinite on the Mach cone.

The Three-Dimensional Doublet .

The three-dimensional doublet (or dipole) is a second basic solution
of the wave equation; it 1s obtained by allowing a source and sink of
equael strength to approach one another while the product of source strength
and distance between source and sink remasins constant (and equal to unity
for a unit doublet). The axis of the doublet is defined here as the
vector extending from the cehter of the sink to the center of the source;
positive values are taken to be those along the positive directions of
the coordinate system. For a doublet with its axis vertical, the above
method of derivation is equivalent to taking the negative partial deriva-
tive of the source potential in the z direction; that is, _

2 = ' o
p = - :-fs = £z 7 XZE (38-6)
gﬂ(xz , Bere)3

where T2 = y2 +'22; Equation (3a-6) represents a positive doublet at )
the origin, 1.e., one wilth the source above the sink.

The Horseshoe Vortex -

In supersonlc theory, as well as in subsonic, the flow around a
wing of finite span can be described by certain solutions of the wave
equation cslled horseshoe vortices. In the subsonic case this singularity
is derived by integrating in the streamwise direction & semi-infinite line
of negative doublets with axes vertical. The supersonic horseshoe vortex

can be derived in the same way as the subsonic one 1f only the finlte

part of the integral, as defined by Hadamard(5), is taken as the solution.
This solution can also be obtained without the use of the Hadamard finite
part if a streamwise line of sources 1ls differentlated.in the vertical
direction; thus, C . B,

N
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The flow pattern for a horseshoe vortex in planes normal to the
free stream axis is shown in Fig. 3a~2. Far behind the bound vortex,

Fig. 3a-2: Flow pattern for supersonic horseshoe vortex
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the flow near the x axis is similar to the flow far downstream around

a subsonic horseshoe vortex and it is this part vwhich gives rise to the
"vortex" drag. The drsg associated with the flow near the Mach cone

is called "wave" drag. Rquation (3a-T) represents a supersonic horseshoe
vortex of unit strength, i.e., unit circulation esrcund the bound vortex.
Since a force pUr is assoclated with a bound vortex of strength I', we
ghall, for convenience, discuss unit lifting elegents which have as their
velocity potentials

¢1 = X2 X 2 Br (3&—8)

EﬁpUrEVx2 - Bar2 — _—— : i

Similarly, the potential for a unit side force elemépt is

4 1 [P g Xy K
SF ° 7 So g df = _ X2 pr _ 5a_9)
oU Sy orgur2lfx® - o2 - - 4

The force associated with Eq. (3a-9) is directed in Ehe positive y direc-
tion; & force in'any direction normal to the flow direction may be repre-
sented by a combination of 1ift and side force elemepts.

In the light of the discussion of the horseshoe vortex, the three-
dimensional doublet (Eq. 3a-6) may be given added significance as a 1ift
transfer element or element of moment. That is, the doublet potential
can be formed by subtracting the pobentlial for a horseshoe vortex at x = Ax
from one at x = 0 (Fig. 3a-3) and applylng the proper limiting processes
(equivelent to differentiating the horseshoe vortex potential); in this
process the trailing vortices from the negative or rear element are can-
celed out by those from the positive one, and the remaining part forms
the doublet or 1ift transfer element.

>4 Z

-
d} - X -+-

Fig. %a-3: Formation of doublet or 1ift transfer element from . -
horseshoe vortices -
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The horseshoe vortex consists of a bound vortex of infinitesimal
length plus two free vortices trailing back to infinity. Since the
vortex drag and the 1lift assoclated with a finite wing can be evalusted
by considering the flow velocities far behind the wing, it is useful to
consider the treiling vortices as they eppear in the Trefftz plane far
downstream from the bound vortex. The Trefftz plane flow represents a
two-dimensional doublet or dipole and its potential is obtained by
letting X-—> in Eq. (3a-7). Thus

= —-——-——-—Z -
on (2 + ) (32-10)

It should be noted that the potential for this doublet is independent

of Mach number, and thus the vortex drag calculations for a given 1lift
distribution are the same for supersonic end incompressible flows. The
flow pattern gbout the doublet will be similar to the planar flow inside
the dashed c¢ircle in Fig. 3a-2.

The Volume Element

Another useful solution is the doublet with its axis in the stream-
wise direction; 1t has as a potential '

3
gy = - % . =X x Z pr (3e-11)

ox En(x2 - B2r2>5/2

BEquation (3a-11) can be shown to represent the potential for a unit of
volume equal to l/U (see Chapter VII) at the origin. A distribution of
volume elements along the x axis with strength £(X) has as a potential

/ R ) as
. g
o Vv

£(¢)
onf(x - £)2 - p2r2

Q.
[}

X-Br X-Br

£'(g)as

-1 (3a-12)
o #Jo f(x - £)° - p2r

The first term in Eq. (3a-12) is infinite; but if only the finite part
of the integral is considered | as defined by Hadamard(5)), then Eq. (3a-12)
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represents the potential for a source distribution of strength £fre).
Thus & body can be bullt up from e serles of volume elements as well as
from a series of sources and sinks. -

The Closed Vortex Line .

Equation (%a-11) can be considered not only as a volume element but

also as a closed vortex line of circulstion strength l/B2 in the yz plane
(Fig. 3a-4a). The line carriles & congtant intensity of forces directed
inward so that the total vector force is zero. The negative of Eq. (3a-1l1)
would repregent an element with the forces directed outward from it. The
potential for the closed vortex line can also be obtained by applying the
gtandard limlting process to an element composed of two pairs of horseshoe

vortices of strength 1/62, one with its axis 1in the negative z and the
other in the negative y direction (Fig. 3a-U4b); when added together the
trailing vortlces cancel leaving the closed vortex lixe. -

¥4

7 r I

x = A -+ @

- -

(a) ()

Fig. 3a-4: Formation of closed vortex line from horseshoe vortices '

Two-Dimensional Singularities = : Z

In subsonic flow two-dimensional sources, obtained by integrating
a line of three-dimensional sources in the lateral direction, have proven
useful in meny problems; so also has the infinite bousid vortex obtained
by a lateral integration of horseshoe vortices. The same types of solu-
tions can be derived for supersonic flow and these provide more insight
into the nature of the supersonic solutions. The two-dimensional source
potential is = B
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11
+%Vx2 Bazz n
Gog = V—m— s an = - 55 x 2 |pz| (32-13)
~f X

All of the disturbance crested by the two-dimensionsl source .is
concentrated on the Mach planes from 1t, thus creating a potential Jump
across these planes. The two-dimensional vortex potentiasl is

lsz
Poy = f W Prsv dn =

z >0
x 2 Iﬁzl (3a-1%4)

+
ol o

z< O

Agalin all of the disturbance is concentrated on the Mach planes. There
is a potential Jjump across the Mech planes and also across the z = 0

plane, the latter due to the discontinuity in the past history of the
£luid particles above and below the plane.
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B. SOME EQUIVALENT STINGULARITY DISTRIBUTIONS

Statement of the Problem - - -

The first section of this chapter reviewed the basic singularities
which represent elements of 1ift, side force and volume in linearized
supersonic flow theory. It was noted tHat these singulsrities may all
be obtained from the source singularity with the ald of the simple proc-
esses of integration and differentiation. The fact that the basic
gingularities are so related will be shown to imply that certaln dis-
tributions of silngularities are equivalent, i.e. they produce the same
flow field, at least outside of a finite region. In _the present section
an equivalence theorem wlll be proved regarding constant strength dis-
tributions of sources, lifting and side force elements and vortex sheets.
Such & theorem will later prove useful in the study of interference
between distributions (Ch. IX B,C,F). Note that if the distribution A
is part of a larger distribution (A,B) and if A 1s replaced by an equiva-
lent distribution A, then the drag of (Al,B) 1s the same as that of (A,B).

This follows from the fact tThat the substitution of Ay for A does not
change the flow field at infinity (Ch. IV).

The distributions to be studied will be located on a cubic shell
which has two faces perpendicular to the free stream directlon. One
face of the cube will be covered by sources of constant strength and
the opposite face by sinks of constant strength. The remainlng four .
faces will be encircled by vortex llnes of constant strength. Two cases
may then be distinguished: (A) The source distribution is on a face
parallel to the free stream; (B) The source distribution 1s on a face
normal to the free stream. These two cases are illustrated in Fig. 3b-1.
The source, sink and vortex distributions are uniform and of constant
intensity as indicated. The vortex lines are continuous around the cube
with the circulation directed so as to induce in the interior of the
cube downwash velocities in case A and upstream velocities In case B.

AL [sourcEs T~ VORTEX LINES
Z
(STRENGTH R) (CIRCULATION R )
=l LY | |~ Y
7 A—{— > 2i
AT ~ | M + | -
—_— .| q; L- e N Y 4 —_— ¥ < b4
7~ = — -} —
VORTEX © (% o /Tz O’/-}./)— \_SI/V/\‘S'
LINES P “— SINKS SOURCES {7} .~ - (STRENGTH"ﬁ"é)

@IRCULATION R ) - (STRENGTHR) (STRENGTH %h )

CASE A CASE B

Fig. 3b-1
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We shall now prove the following theorem.

Theorem

In both cases A and B the perturbation velocities are zero every-
where outside the cublic shell. Inside the shell the downwash 1s constant
in case A (w = -k) and the pressure is constant in case B (u = -k).

This theorem implies in particuler that the source sink distribution,
say 1n case A, 1s equivalent to the negative of the vortex-line distribu-
tion in case A, in the sense that the assoclated flow fields are identical
outside the cube. Note that in case A the vortex distribution on the
front and rear faces gives rise to e lifting force, whereas the vorticity
on the side feces produces no force. In case B the vorticity on the top
and bottom produces 1ift and the vorticity on the side faces produces
side force.

The theorem will first be proved by a geometrical argument and then
an alternetive proof by analytical methods will be outlined.

Geametrical Proof of Theorem

Conslder first case A. We shall construct a geometrical configu-
ratlon which corresponds to the distribubtion of singularities indicated
in Fig. 3b-1l. This construction will proceed in several steps by succes-
slvely cutting down configurstions of infinite extent. The vortex dis-
tribution on the front face is equlvalent to a distribution of lifting
elements of constant strength.

To begin with we shall assume the whole infinite plane containing
the front face to be covered by lifting elements. This may be physically
realized by a cascade of doubly infinite (two-dimensional) wings of con-
stant angle of attack o and such that the vertical distance between two

neighboring wings 1s equel to the wing chord divided.by‘VM2 -1,

(Fig. 3b-2). In the limiting case of zero chord length the plane x = -X
is then covered by vortex lines with the circulation (of strength k)
oriented as in Fig. 3b-1l. The value of the constant k is then k = 2dU.

The 1ift per unit area in the plane x = -¥ is then 2apUS. Since the

winge are spaced so ag not to interfere with each other but still influence
every polnt downstream of the cascade, the flow field at any point P with
X > -X may be described as follows (Fig. 3b-2). The point P receives a
unit of downwesh (-w = alJ) from the wings A and B each. It also receives

a positive unit of pressure \-u = oJ VMB - 1jfrom A and a2 negative unit
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Fig. 3b-2
of pressure from B, The net pressure (referred to pm) recelved at P is
then zero and the net downwash 18 -w = 24U = k. _

The cascade mey now be terminated from above by a wedge of opening

angle 2o located in the plane z = Z with its exterior surface parallel
to the free stream direction (Fig. 3b-3). Actuslly thils wedge corre-
sponds to a source distribution of constent source strength k = 2dU.

If the cascade is removed for z > z the flow fleld is zerc there since

the wedge isolates this region from the rest of the cascade and since

the exterior surface of the wedge is at zero angle of attack. For z < %

the flow field is unaffected by the introduction of the wedge. To see
this consider a point P with z < 2z (Flg. *b-3). The wing at B acts as

before to produce s downwash of -aU at P. Only the point C on the wedge

A/ \\C r2d2=§
77"§‘“‘-————-7r_~‘~_ B i
'4.2'4 /\'D )
— 7 .
/
B <
Fig. 3b-3 -

affects the point P and this point C is already in the downwash field -al

of wing Ap. Thus the wedge turns the flow downward only by an angle a

-
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so that the total downwash at P is again -20U0. Conditions at P are the
same as in the infinite cascade.

Similarly the cascade msy be terminated from below at z = -z by
placing a wedge there of opening angle -2c.. This corresponds to a dis-
tribution of sinks of strength -k.

The cascade msy then be cut down to finite width by placing plenes
of zero thickness parallel to the plane at y = ty and removing the part
of the wings for ‘y] > ¥. BSlnce no sidewash is present the flow field
is undisturbed by the introduction of these planes. Thus for x > -X,
lyl <75, z| < Z the downwash is -w = 200 = k and the pressure 1s zero.
Outside this region all perturbation quantities are zero.

Finally one may restrict the flow field to the inside of a cube by
taking the negetive of the above configuration and placing it at x = X.

Thus the resulting flow field has constant downwash and zero pres-
sure inslde the cube -X < x< X, -§<¥y<7¥, -2< z2< Z. Outside this
cube the perturbation velocity is zero. Thus the front face is a cascade
of 1ifting wings at en angle of attack «, which bends the flow down. The
rear face is a cascade of wings of angle of attack -a whlch stralghten
the flow out again. The top and bottom faces consist of wedges whose
inside surfaces follow the direction of the flow which has been bent by
the cascade. These outside surfaces are parsllel to the free stream.
(Note that for the wedge of negative angle the "interior" top surface is
directed downward at an angle 2o and the "exterior" bottom surface is
parallel to the flow.) Finally the side faces are planes that carry no
forces. For each such plane the downwash 1s -w = 2qJ on the inside and
w = 0 on the outside. These plenes are then surfaces of constant vortic-
ity. However, the vortlcity vector is parallel to the free stream and
hence no force results.

Thus & geometric configurstion (using a wedge of negative opening
angle) corresponding to case A has been constructed and the theorem has
been proved for this case.

The corresponding construction for case B will only be indicated.
The source distribution on the front face is obtailned by placing wedges
there (Fig. 3b-4) of half-angle a = pk/aU.

A~ z2=7

3

p S
g;;: x b4
« P
K

< >

N Z=-F
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At a point P then the downwash 1s zero and the pressure is given by -
- = 2a2U/VM2 -1=xk. : -

By inserting planes of zero thickness at z = tz, y = ty and removing
the wedges outside these planes the infinlte configuration is cut down
to a configuretion with a finlte cross section. Outside these planes the
flow 1s undisturbed. 1Inside these planes -u maintains its value -

2aU/VM2 - 1l = k. These planes are then pressure discontinuities and
hence carry 1lift and side force respectively They are also vortex
sheets.

Finally the configuration may be terminated by placing its negetive
et x = +X.

A geometric configuretion (egein using wedges of negative opening

angles) corresponding to case B has thus been constructed and the theorem
has been proved for case B. ) .

Analyticel Proof of Theorem (Outline) o

Case A. Source Distribution Face Parallel to Free Stream

Consider a cube with sources of strength k on the top and -k on the
bottom, and with 1lifting elements of strength pUk on the front face and v
-pUk on the front face and -pUk on the rear face. On the side faces of
the cube there are no forces associlated with the vortex lines parallel
to the flow direction; these are the trailing vortex system of the ele-
ments on the rear face. : L -

In computing the potential due to the slngulerities on the cubic
shell, various reglons of the flow field are congsidered separately. For
the region shead of the foremost Mach waves from the cube no dlsturbance
is possible in supersonic flow. Behind the cube, 1f the forward Mach
cone from & polnt includes &l of the shell, the potential at that point
maey be found simply by integrating the total effect of the singularities
covering the shell. The potential due to indlvidual unit source elements,
1lifting elements, and side force elements are given in Egs. (3a-5), (%a-8),
and (3a-9). The strengths of the distrlbutions considered in thils case
are indicated in Fig. 3b-5. _ T



NACA ™ 1421 17

z ¥
(X,3,2) T 4(-( )

SouRCES () L,¢ I,.. A o

—NEGATIVE
X4, 2) +/ r/- L g LIFTING )
v | ELEMENTSCPU.R
M ot
A VYA

PosrTIvE |/ Q3! 7
LIFTING A I
ELEMENTS FF42

(pui) -+’ — .
CX; ¥ E) / (X,-4,-2)
SINKS(-£)

/X, 5,-Z)

Fig. 3b-5

The potential for the entire shell 1s then

Q’IW

X+ % (Z'Zo)dyo dzg _
( )f f_y [(_y yo Z_Zo)e]/(“i.)e_ 52[(y-y02+(z-z0)2]

% zZ nY (2 - 20)d¥, dzq
( )“/':'Ef'?‘gy-yo)2+(Z-ZO)E]V(X-E)E-BE[(Y—YO)2+ Z_Zo)e]

| pE T dxo 9y -
2n [;ﬂ;ﬂx_%)e_ 52{y-yo>2+ (z —'2')2]

y yo) 4-(Z4-Z)é]

f_xf V(x Y dxo o - (3b-1)

This, after evaluating the integrals, equals zero.
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A third region of the flow field contains points slightly behind
and far to the side of the cube, where forward Mach cones from the points

include part, but not all, of the cube. For this region, Heyes' method(l)
can be used to show that the potential agsin is zero. This method is
described in Ch. IVC. It requires that the distance from the cube to any
point P where the potential is to be computed must be large campared to
~the dimensions of the cube. In additlon, P must lie near the Mach cones
emanating from the singularities on the cube. P 1s_then a point at some
angle 0 (measured from the horizontal plane) on a distant cylindrical
control surface surroundlng the cubic shell. An “"equivalent lineal dis-
tribution" of singularities is formed by finding the singularity strength
intercepted from the cube by a set of parallel planeg originating at
angle 6 on the control cylinder and inclined at the Mach angle to the
free stream direction. The singularities intercepted by a given Mach
plane are lumped together at the intersection of the Mach plane and the
axis of the cylinder, such that the total strength of the equivalent
distribution is equal to the total strength of the orilginal distribution.
After determining the strength (h) of the equivalent lineal distribution
which represents the cubic shell for a fixed 6, the effect of all those
singularities which influence the flow field at P cen be summed Heyes
writes the expression for h as . = o = -

h=+f - g, sin 6 - g, cos 8 (3b-2)

where £ 1s the source strength (per unit length), gZ/B the circulation
gtrength (per unit length) of -the 1ifting elements, and gy/B the circu-
~lation strength of the side force elements. B

Figure 3b-6 indicates the notation to be used in describing the
geometry of the Intersections of the Mach planes with planes containing
the x,y,z axes. The Mach plane 1s inclined to the axis of the control

cylinder at the Mach angle u = sin‘l(l/M) and it is tangent to & cross-
section of the cylinder at angle 6. The ftrace of the Mach plene in a
horizontal (x-y) plane is inclined to a normal to the flow direction at
angle 5, where tan & = cot L cos 8 =f cos 6. The trace of the Mach
plane in a vertical (x-z) plane forms an angle o with a line parallel
to the z-axis, where tan o = B sin ©.

A T
»
i
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With this brief description of Hayes' procedure in mind, an equiva-
lent linesl distribution of singularities is now to be computed for the
specific case of the cublc shell described previously. Figure 3b-Ta
shows the intersections of two parallel Mach planes with the shell; the
Mach planes are assumed to be separated by an infinitesimal distance.

The case 1llustrated shows only three faces of the cube Ilntersected by
the Mach planes since the procedure would be the same 1f four faces were
affected. In order to better define the geometry and notation, Fig. 3b-Tb
shows the cubic shell as though it were cut along the corner edges and
flattened out in one plane.
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The net singularity strength cut out by these Mach planes must be
The totel source strength is the

lumped along a length dx of the axis.

Y
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Fig. 3b-Tb

product of the strength per unit area (k) end the area intercepted from

the top surface of the cube by the Mach planes: .

x X X1
£ =k - 1 dny =k —b— dx = -k —
cos(& _ g)‘ |tan 8| B cos @

(3b-3a) |

(The negative sign is inserted because 8 is in the ségond quadrant fofn
the example shown, but £ is positive.) The total 1lifting element strength
is pUk multiplied by the area intercepted from the front face:

z
_ 1
L= otk [cos(x - 8)]
Xy dx
= Uk —=— ltan 8| = -pUk
tan“co

dnz = bUk;l'dz[tan-el

Xy dx

Bgsin € cos ©
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Agaln, a negative sign is inserted because cos 8 1s negative while 1
should be positive. There are no forces on the side faces. In computing
the strength of the equivalent lineal distribution from Eq. (3b-2) it
must be remembered that &ys 8 from that formule are circulation strengths

multiplled by B; i.e.,

Then

h =4+ - g, sin 6 - gy cos 8

~kxq dx -pUkx; dx
i S ii( bt )sin 8 =0 (3b-4)
5

Bcos 8 pU\p2zin 6 cos

That is, the net singularity strength is zero. This is true for all
angles 9, and similar calculations show that 1t is also true for every
station x along the cylinder axis. Therefore, the velocity potential
is zero at all distant points for which Hayes' method 1s applicable.

There remains to find the veloclity potential in the neighborhood
of the shell. The cube may be subdivided into smaller cubic shells,
each similar to the original. Singularities on interfaces of adjoining
shells then cancel so the net singulerity distribution is unchanged.
Those shells which lie behind and outside the forward Mach cone from
any point cannot influence the velocity potential at that point. It
was shown earlier that those shells which lie completely inside the for-
ward Mach cone from the point also do not Influence the potential there.
Therefore, only those shells lying along the forwerd Mach cone need be
considered. However, these may be further subdivided into cublc shells
of elementary proportions so that the distance from the point to any
one of the shells is very large compared to the dimensions of that shell.
Then the analysis based on Hayes' procedure shows that these shells do
not contribute to the velocity potential at the point elther. This indi-
cates that the velocity potential 1s zero everywhere outside the cubic
shell.

To find the velocity perturbations inside the shell, agailn consilder
it divided into smaller shells. None of these except the one contasining
the point P can influence the potentiel at P according to the preceding
analysis. Therefore, all of the small shells located more than a dis-
tance € ahead of P can be removed without affecting the potential at P.
The forward Mach cone from P then intersects only the front face of the
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remaining part of the original cube, so that, effectively, P is aware
only of an infinite distribution of lifting elements. Since this result
is independent of the location of P inside the original cubic shell, the
downwash Inslide the shell must be constant.

Case B. Source Distribution Face Normal to the Free Stream

Consider now a cube with lifting elements of strength pUk on the
top face and -pUk on the bottom face, with side force elements of
strength pUk, -pUk on the side faces, and with sources of strength B 2y
on the front face and Bek on the rear face.

: LIFTING ELEMENTS
SOURCES o U"e/)y 9
('962’6) I 7| _——SINKS
L e
rlr ""T""""’Ef
¥ //{J—/H (x, 9_?-2)

xTH R I

SIDE FORCE
ELEMENTS(EPUR)

Fig. 3b-8

First, the potential ahead of the foremost Mach waves of the cube
is, of course, zero. At a downstream point whose forward Mach cone
includes all of the sources and 1lifting elements the potential is

-
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£ |(z-7 (% -%0)&%o o _
¢ = f f [ 7o) +(z-E)2N(;-xo)2-Bz[(y'-yo)2+(2-5)2]
(2+7) j:-zf? (x - x0)dxs dyo N

-F lgy_ y0)2+ (2 +E)2]R xo) -p2 [y yo) + (z+7%) ]

(y- Y)f f (- xo)dxo o - -
[ - z Zo —JVX xo [(y ?)2+(z—zo)2]

(y+y)f (x-xo)d’xoizo .
f [y+y)2 (=- Zo)z]ﬂx'xo)z‘52[(5’*?)2*(2-2032]}

£ ¥ AZ dyo dzg -
o B/;—,_/:gwx _ 'f)2 _ BE Ky _ yo)2 + (z - z0)2]

Vo o (30-5)
f f’/xﬂc)z {32[(Y-Y0)2+(Z'Zo)2}:l

Carrying out the integration, it is found that

¢ =-2kx for y<y<yand -z<z<z

¢ =0 Elsewhere
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By Hayes' procedure, when forward Mach cones from distent points
include only paert of the singularities, the potential at those polnts
is the same &s would be contributed by a linesl distribution whose
strength, h, can be computed in the manner¥ described previously. For
Mach planes intersecting the cube in the same location illustrated for
another case in Fig. 3b-7, one finds that

Xl dx Xl dx Xl dx

K —— = Uk ———, 1 = -pUk ——— b-6
sin 6 cos 6’ O P sin 6 P*% B cos © (3 )_
and so T - )
X, dx X, dx x, ax
h=ke———  _ & ~pUk 1 cos 6 - £ -pUk 2 Jsine = 0
8in 6 cos © pU B sin @ pU B cos B
(30-7)

Thus, the potential due to the cubic shell is zero atjall distant points
of the flow field which lie near the Mach cone of the shell.

In the neighborhood of the cube, the shme arguments used for the;

zero there also. Therefore, the perturbation velocitles are proved to
be zero in every reglon of the flow field external to the cubilc shell.

To find the potentiael et a point inside the shell, the shell is sub- _ _
divided as before into smaller shells, each similar to the original. The
analysis just completed shows that the velocity perturbations at P cannot
be influenced by any of these shells except the one cqntaining P. There-
fore, all of the small shells located more -than a distance ¢ ahead of P
can be removed. The net singularity strength intersected by the forward
Mach cone from P then includes only sources oh the front face of the
remeining group of cubes. Effectively, then, conditions at P are the
same as behind an infinite distribution of sources of constant intensity.
This result is independent of the lccation of P inside the cubic shell,
so the pressure must be constant inside the shell and the potential is
of the form ¢ = ex. o



NACA ™™ 1421 25

CHAPTER IV. THE EVALUATION OF TRAG

A. THE "CLOSE" AND THE "DISTANT" VIEWPOINTS

The non-viscous dreg for a wing and body moving at supersonic speeds

may be obtained from two different points of view(l), using linearized
theory. First, the drag can be evaluated by integrating the local pres-
sure times frontal ares over the wing and body surfaces. Second, the
drag can be evaluated from momentum or energy conslderations involving
the flow field st a great distance from the aircreft. These two pro-
cedures are actually variations of the seme basic method.

In the latter case part of the drag due to 1ift is associated with
the production of kinetic energy in the trailing vortex system, and is
called "vortex drag." This drag is identical with that produced by the
same spanwise 1lift distribution in an incompressible flow, (frequently
called "induced drag").

The remelinder of the drag due to lift and all of the drag due to
thickness is associated wilth the production of energy near the surface
of a downstream Mach cone whose vertex 1s in or near the aircraft. This
is called wave drag, and the associated energy is half kinetic and half

potential(l).

The wave drag plus the vortex drag 1ls equal to the drag evaluated
at the wing and body surfaces by the first method. (It may be necessary
to retein nonlinear terms in the expression for pressure coefficient to
get this agreement.)

The momentum theorem 1s utillized in both of the ebove methods but
different "control surfaces" are used. In the first case the control
surface 1s close to the aircraft surface, but iIn the second case the

control surfece i1s a dlstant one. For example Hayes(l) uses & circular
cylinder with axis passing through the aircraft end parallel to the free
stream direction. The radius of the cylinder i1s chosen to be very large
compared to the aircraft dimensions since this simplifies the calculations.

The wave drsg of the aircraft is then evaluated from the rate at
which momentum (in the free stresm direction) is carried across the sur-
face of the cylinder. (If the control surface had been chosen &s & sur-
face contalning streamlines instead of a perfect cylinder, then the wave
drag would have appeared as pressure on the streamline surface.)

The cylindrical control surface is closed far downstream by & plane
normal to the flow direction. The vortex drag is then determined, as in
incompressible flow, by the rate at which the kinetlc energy of the
tralling vortex system passes through this plane, or alternatively
through momentum and pressure considerations.
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B. GENERAL MOMENTUM THEOREM FOR EVALUATTION OF DRAG

In the present section & momentum integral fox the drag, a8 glven
by linearized theory, will be derived (Egs. 4b-33,3Lk). The drag will be
given as an lntegral over an arbitrary control surface enclosing the
golid. The integrand is a quadratic expression in the veloclty compo-
nents asg glven by linearized theory.

First a more genersl momentum inteégral will be considered. Consider
a control surface S enclosing & solid (Fig. 4b-1). A surface element

on S8 of area dS will be represented by its outward normel dn where the »
length of dn is equal to the ares of the surface element. Thus dn (ds)n

if n is the outward normsl of unit length. Let the hydrodynemicel stress

Fig. ib-1

tensor be denoted by o, and let I be the region inside S and II the
reglon outside S. Then

> > - _ _
f = o dn = Force exerted by II on I across surface element (bb-1)

: R

If a system of coordinates %y, X, X3 is chosen dn mey be repre-
sented by its three components (dn)i and o by a 3x35 matrix Gij The
above equation may then be wriltten

3 _ _ :
= (O' d-I)l)i = Z crij(dn)j B (hb-?.)

3=1

where (o dﬁ)i is the ith component of the force.
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For a non~viscous fluid the only hydrodynamical force is the pres-
sure.p and the stress tensor is '

o = =BT = ~(551)) (o-3)

where I 1s the identity tensor whose matrix is the Kronecker delta aij'
In this cease the force across the element is

f=opdd)=--pad (kb-lt)
or
£y = -p(dn)y

The hydrodynamical momentum equation states that the stress tensor
is balanced by flow-of -momentum tensor. (This is actually a restatement
of Newton's law that force = (mass) times (acceleration).) To define
the flow-of-momentum tensor we first introduce the concept of a dyadic

product of two vectors. ILet 3 and. 'ﬁ be two vectors with components (ai)
and (bi). The dyadic product is then the tensor vwhose iJ component

(g . g)ij is &ibj, i.e.
Z . :; = (a'i . bJ) (Ll'b-s)
Note that if 2 is any vector then

(g . g)-c>= (Z (aibj)cj) = (aiijcj) = 3(% . %) (4b-6)

>
where b . ?: is ‘the ordinary dot product.

The flow of momentum tensor is then the dyedic product of 0q
(momentum per unit volume) and q velocity:

>
Flow-of -momentum tensor = pz . q (4b-7)
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[

Its physica.l interpretation may be seen by applying: this tensor to the _' “': -
normal dn :

‘lwlt

9 -
(p-; . E)d.; = pa(q_ . dn) =\Momentum transported through dS per unit time.

(io-8) _

The basic momentum equation for stationary flcw for a surface S;
which does not enclose a body is then - : e

[s (o3 . Daf =

1

fscaﬁ | (4b-9)

This is analogous to the law of conservation of mass'___“which states that

f 0d . dn =0 _ (4p-10)
5, _ e T

Consider now the composite surface congisting of the surface S in

Fig. 4b-1 and the body surface . Let dn denote normels on % which point
outwards with respect to the body (i.e. into region I). From the defini-
tion of the stress tensor o

N .
F = Total force exerted by fluid on body = f o db (¥p-11)
' z

Since the flow through I is zero one obtains by applying Eq_ (4b- 9) to
the composite surface S =8 + Z

fs<pa.a>aﬁ=fsua;- fzdz (4b-12)

The minus sign in the last term is due to the convention that on the_

surface L the quantity dn denotes the inwerd normael with respect to the
region I. Comparing Eqs. (4b-11) and (4b-12) one obtains
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§=-f (pa.a)az+f o dn (4p-13)
v 8 S

This is the fundsmental momentum formule which gives the totel hydro-~

dynamicel force on the so0lid as an integral over a control surface

enclosing the solid.

Note that in Eq. (4b-11), the force is given by an integral of the
stresses on the body surface. This is the "close" point of view for
eveluating the force. Eq. (4b-13) shows how the same force may be evalu-
gted from the distant point of view.

A slight modification of Eg. (4b-13) will be needed later. Denote
the flow quantities at infinity as follows

-> .
'3, P, D, 0 at infinity = U, p,, Py, 0y, Trespectively (ko-1k)

The difference between a flow quantity and its value at iInfinity will
be denoted by a "prime.” Thus

> > >
4" =a-U, p' =D ~Dgs P' =p ~ pgs O =0 - g, (4p-15)

From the continuity equation (Eq. 4b-10) it follows that

> >
Uf 0d . dn =f (o0 . Q)dn = 0 (kb~16a)
] S
Furthermore, since o, = Constant

f o, & =0 (4b-16b)
s

Subtracting Eqgs. (4b-16a, b) from EBq. (4b-13) one obtains

F= _f (03" . F)dB + f o' an (¥b-17a)
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where, for a non-viscous fluid,
f o' 4B = -f p' di (4b-17b)
5 S T

This is the fundamental momentum formula in terms of perturbation

quantities. Note that the latter are not assumed to be small.

>
The drag 1s the component of F in the free stream direction. We

shall take this direction as the x-dlrection and use the following -

notation.

> > N
U = Ui) -a = (u,V,W), E' = (U.','V",W'__) ()-l-b—lB)
where

u=U+u', vi=v, w=w

From Eq. (4b-17a) then follows the fundamental momentum formula for drsg:

> . .
Drag=§.§=_fpu'c1’.d3+i.fc'dﬁ (¥b-19)
Jg 5 -

The momentum integrals may be further simplifled for special choices
of the control surface S, in particular by letting S recede to infinity.
However, we shall first derive an approximate form of the drag formula,
valld within linearized theory. In the following sectlon this linearized
formulse will then be specialized to a special infinitely distant control

- surface (method of Hayes(l)).

Inviscid Second-Order Drag : - o

It will be shown below ﬁhat for a thin or slender body the largest '
contribution to the drag mey be evaluated by an integrel of a quadratic
expression of the linearized perturbstion velocitles. It is usually

stated that the drag is of second order. However, it should be remembered

that the values of the perturbation velocities are computed from first-
order (linearized) theory. The result 1s a formula for drag according
to first-order theory. The term "second-order drag" refers to the fact



NACA ™ 1h21 31

the integrand is quadratic in u', v' and w' and hence of second order

if u', v' and w' are themselves of first order. Furthermore, the second-
order correction to u', v' and w' will contribute nothing toc the second-
order expression for drag. The final formula is given by Egs. (4b-33,3k)
and the reader interested only in the final result msy skip the deriva-
tion now presented below.

We shall first assume non-viscous flow, so that the stress tensor
is given by Eq. (4¥b-3). Furthermore, we shall assume that the solid
is characterized by a parameter e, which 1s small, e.g. the fineness or
thickness ratio. We shall furthermore assume that the flow quantities
may be expressed by power series in e:

u = U+e,ul+e2u2+. .. (4b-20)
v = €Vy + €2'V2 + .
w = er + €2W2 + .

P = po + epl + egp2 + . .

2
Py * €Py + €Tp, + .

°
I

Such an expansion is valid at a dilstance from the body. It should
be remembered, however, that in slender body theory, terms involving
log € are of importance very near the body.

The coefficients of e are the first order terms and are given by

linearized theory. The coefficients of €2 are the second order terms,
etc. The lowest order term in the expression for the drag will now be
found using the isentroplc pressure-density releation and Bernoulli's
law.

From isentropy it follows that density is a function of pressure
alone. One defines

dp
dp
constant entropy

a2

where a 1s the isentropic speed of sound. Then

o= py+ ;ig(p - Po) + ... (¥p-21)
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from which then follows : .

P .
b, = = ) - (bp-22) -
l a02 - )

Bernoulli's law may be written . _ . Ce— - o

a(u2 + v2 4+ w2) N

arF = 0O
2 —
where - B
P _
P = f dFP- -
Pg
or -
(' +U)2 + v2 + w2 4+ 2P =U° - (bb-23)
Using Eq. (4b-21) P may be expanded to second order - -
2
d 1] l 1 l 1
P = J[L__EL_T_-= __l/ﬁl . E = dp' = —l|p' - ﬁE_l_E (4b-24)
o. + E_ % Poo Po 20080
o 302 E

Expanding the terms in Eq. (4b-23) to second order oré obtains

2 2 2 2p. 2
u + v + W €<p
eUug +'e2Uu2+e2 L r 1L +—l €p; + ep, - —=— L =0
2 Po 2 2 a2
Po®aq

Collecting the terms of order ¢ one finds the lineariE_ed Bernoulli's
law

Pp + p1U=0 B . (bb-25)

1y
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Comparing with Eq. (4b-22) one sees that
-0p —= (kb-26)

The terms of order e2 yield the following expression for Py

2, g2, 42 22
U+ VS W Polly
poUuy + oy — Z Loyp, - =>—=0 (4b-27)

where Eq. (4b-25) has been used and

M=
8g

In the momentum formule, Eq. (hb-lT), the stress and momentum flow
tensors may be combined to form a tensor A

A=-pq" . q-p'I
Using Egs. (4b-20, 25, 26) one may evaluate Ayq
Ayy = -pu'(U + u') - p'

= -e(poulU + p1>— ez(pouaU + o0 + pou12 + p2>

= -e®p, (Uue - M2u;2 4 uy @ - Uu, - w® v32-2 + . “12"12>
Finally
A = o %[Mz - w2+ w2 ng] (tv-29)
Similarly

Ao = -pu'v' & -ezpoulvl (Lb-29)
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Ay = -pu'' * —e2oquy | (4-30)

Since only the first row (All’ Aqo, AlB) enters in the drag computation
we have proved the following:

1. The dominant term in the drag formula is of second order in ¢

2. The integrand in the drag formula is, to second order, a second
degree polynomial in the first order velocity perturbations. The velocity
perturbations of second order, or pressure and density perturbations of
second order, do not enter into this expression. -

Thus while drag i1s of second order, it may be computed on the basis
of first order theory (linearized theory). On the other hand, one may
eaplly check from the above expressions that in general the 1ift has a
first order term. Furthermore to compute 1ift to second order one needs
to know uy, that 1s, u to second order. . . _

In the remainder of this report we shall only be concerned with the
drag as given by linearized theory. It is then convenient to introduce
a change of notation. We shall let u, v, w stand for the linearized
velocity perturbation; in other words

€uy, €vy, ewy are replaced by u, v, W (4p-31)

Furthermore a veloclty potential ¢ wlll be 1lntroduced such that

Grad § = u, v, W ” (hb 52)

The above results may then be summerized as follows. The drag to
second order is given by the formula = S

D = /; R, . an .- | (kp-33)

where S = Control surface enclosing the body
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5 - (A11, A12, A13)

+pg %(Bqu + V2 + w2), B2 = M2 _ 1

£

(Lo-3k)
Ajp = =pouv

Al} = ~pouW

and u, v and w are the components of the perturbation velocity given by
linearized theory.

C. HAYES METHOD FOR PRAG EVALUATTION

The method developed by Haeyes in Ref. 1 consists in applying the
dreg formuls Eg. (4b-33) to a special control surface, & truncated cir-
cular cylinder, surrounding the body and in considering the limiting
case when the control surface recedes to infinity. The genersel momentum
integral for the drag then assumes & simplified form. (This results in
certain simplifications in the integrand.) Furthermore, if the body is
represented by singularities (sources, 1lifting elements, etc.) as dis-
cussed in Ch. ITT, the velocities at large distances msy be represented
very simply in terms of the strength of the singuwlarities. As a result
the drag may also be represented as an integral over the singularities
(distribution of source strength, etc.). This result of Hayes' gener-

allizes a previous result by von Kefrmdn(7) for a body of revolution.

First a somevhat detailed demonstration of the method of Hayes will
be glven for the case of a lineal source distribution. This part may
be skipped by & reader not interested in mathematlcal detalls. Then the
results of Hayes and related results will be stated in intuitive terms
for general three-dimensional distribution of sources, lifting elements
and side-force elements. Detailed proofs will not be given. However,
the results may be proved by methods closely analogous to the method
exhibited for the case of a lineal source distributilon.

Hayes Method for Lineal Source Distribution

We shall consider a distribution of sources along the x-axis between
X =0 and x = L. The corresponding solid is then a body of revolution.
The source strength will be denoted by £f. It will be assumed that

£(0) =0, f(L) =0 (he-1)
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These assumptions lead to certain restrictions on the body shape.
Iet the radius of the body be r(x). The cross sectional area S(x) is

then nr2(x). Since £(x) = U 8'(x), £(0) means that r(0) . r'(0) = O.

This is fulfilled 1f r ~ x®, n > 1/2 near the origin.” In particulsar,

f£(0) is equal to zero if the body starts in a point with finite slope,
i.e. r ~ X near x = 0. The analogous condition at x = L insures £(L) = O.
In addition, f(L) = 0 1f the body ends smoothly in a cylinder with con-
stant radius, i.e. 1f S(x) = Constant for x 2 L and S'(x) is continuous
and hence zZero at x = L. It will be indicated in the proof below why

the restrictions on f are necessary. ' i )

Expréession for Velocities o ) . - o

The potential due to the source distribution is then

1 pEPr £(t)at |
Barr) = - 5 fo Py (he-2)

where r2 = y2 + z2, For x - Br = L the upper limit may be replaced by L.

=

 Using the condition £(0) = O one finds by partisl integration of
Eq. (4c-2) and differentiation that the perturbation velocitles are

x-Br

de - L £r(g)as oo
Px 2x J VZX = g)§¥; 35:5 B (ke-3a)

X-Br _ '
3. =_2_:1%f R &)Z (g)d%_ (bo30)
0 V(x- €)% - g2 L
In Eqs. (4c-3), the upper limit is replaced_ by L for x-- pr Z L.
We shell introduce the notation . -
_ _Br N — ) -
tg =X - £ ) (h-c-’-&)

Then t; = 1 on the downstream Mach cone from x = § and 0 < t < 1 inside
this Mach cone. For x - Br 2 L one may also write the veloclty comporents

as s
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L | -3/2
R ROl CHD g M CRDL
L -2 232
o FAEOCT R RS (bo-52)

L -3/2
g, = ;% . £(t) [(x - e)2 - Bzrz] por at

L -3/2
-2 NEOICE £) Py (1 - 6%) " a (he-5b)

Hayes' Control Surface

Following Hayes we now lntroduce the control surface shown in
Fig. be-1. It consists of a circular cylinder of radius rq, truncated

by a front disc x = Constant< O and a rear disc x = x; > L. The drag

FORWARD
oIsc

X

REAR DISC

Fig. be-1
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integral (Eq. ¥b-33) will be evaluated for this control surface as ry
and x; tend to infinity. The ratio between x; and r; will be determined

later in such a way thet the contribution of the rear disc to the drag
will vanish in the 1limit. -

Contribution of Rear Disc N ;

According to Egs. (4b-55,34) the contribution of the rear disc to
the drag is . : - )

o Ty
D=2 . (52¢X2 + ¢2)enr ar (Le-6)

The veloclty components may be evaluated as follows. Write £(&)
a8 a difference of two positive functions

£(8) = £4(8) - £.(8),  £4(8), £_(¢) =0 (he-7)

Then by the mean value theorem and Egs. (4c-5a,b)

fOL £,(2)a fOL £_(e)as

2n (x - g3)2(1 - t§52)3/2 _ en(x - ég)e(lﬂ- t§22)3/2

¢x=

where 0 £ §3, 52 S L. A similar expression is_validﬂfor ¢r' Note that

in Eq. (4c-8) the continuous source distribution is replaced by a posi-
tive source st §3 and a sink at &,. However, 53 and £, depend on x -

and r.

As 1s easily seen
OSX—LSX—gi, tLZ'tgi, i=2,5

lSl+t§5, l+t§252
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Hence, replacing §3 and £, by L increases the absolute magnitude of
both terms in Eg. (Lc-8). Hence, on the rear disc x = x7, O S r < ry,

d.2 < 282 (4e-10)
x (Xl ] L)h‘<l ) tL2)3 c

where A is independent of x; and ri, and

¥1 2 A 1 1 28 dr
r[32¢ dr < f Br B (4c-11)
j(; * (a-r)BYo M- y2PE -k

If one puts y = L - t;2, then dy = -2ty dby = -ty . 28 dr/(xl - 1).
Hence

1 y
frl rp2d, 2ar < "_A__Ef & 'A—e[i:\ . (he-12)
0 (kL - )2y ¥ 2(x - 1)PRh

where ¥y = 1 - (l - 61)2 = 2el - el2 and €1 is explained in Fig. hke-1.
Equation (4c-12) may be written

fi b rpPglar < ( B < S (ke-13)
0

2 - 2
xl - L) €l2 I‘l €2

where C is independent of ry and x; for r; and X, sufficiently large;
¢ is explained in Fig. 4c-1. The fact that xl/(xl - L)—al, e/el -1
a8 r—>w has been used above. It is then clear that if ¢ is constant
or if € = r~8, a< 1, then the integrand in Eq. (4ec-13) tends to zero

as r—>®, A similar estimate may be shown for ﬁ'¢r2@. A comparison

with Eq. (kc-6) shows that:
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Contribution of rear disc to drag is zero even if e decreases Toe

as r increases. However, e should decrease more slowly than r-l,

Since the distance BC is of the order er 1t follows that this

distaence becomes infinite in the limit. ) )

Contribution of Cylindrical Part _ z ST
Since the contribution of the forward disc to the drag integral is
identically zero it follows then in the 1imit r;, x; —>«= the entire drag

contribution comes from the cylindrical part, provided ¢ varies as pre- i
scribed above. Thus : ) ) =

D = Limit Dy~ =~ (he-14)

where Dy, the contribution of the cylindrical part, is

x+Brle ' - = ce T
Dp = ~pgenry __¢x¢r dx' _ (%0'15)Tﬂ

fi

-
(Note that the redial component A;, Of the vector Aj in the. drag formula
Eq. (4b-3k) is -po¢x¢r.) In the sbove equation 1/1 « ¢ has been replaced
by 1 + € which may be done without loss of generality.

To evaluate Dy, We write Eq. (4c-3a,b) in the following form

g oL [T f(a)in o
* 7 2n fx' - &y Yx' - &1 + 2pry - ST
(4c-16)
' x',L £1E,)B X' 4 Bry -k, .
Fp = = ’ (t2) L7725,
ardo Fx' - & Vx' - 8o + 287y Pr1_ -
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The upper limit is x' for x' £ L, and L for x' 2 L. Hence

Y e I I I G [
2" E; 0 o 0 2

2 Vx' - gle' - ko Vx' ~ &1 + 2Bry )

VEBr x'+ pry - &
L : L "2lag, ae, ax’ (ke-17)
Vx' - §2 + EBrl Brl

Limiting Case for Infinitely Distent Control Surface

We shall now evaluate Dy as ry—>, The three ratios within the
second bracket all tend to unity as rj—>« and may hence be neglected
in the l1imit. Note that this approximation implies

L ~ 1 (4c-182)

1 1 _ 1
V(x - 51)2 - pere V(x - E,l) - Br J2pr Vx' - &1 [2pr

Furthermore, applying the same approximetion to Eq. (4c-16) one obtains
thet

G ~ -BPx (4c-18b)

¢, and @, both vanish as l/VEBrl. Their ratio, however, is given by the
above equation. The corresponding relstion with ¢r replaced by ¢y is

exact for two-dimensional flow. Thus the flow is approximately two-
dimensional st lsrge distances near the Mach cone from the leading edge
(e small, 1.e. ty almost unity for 0 S ¢ < L).

Hence

D = Limit Dy = %‘l I (4e-19s)
7

where

B x', L Ax',L. F1 f!
r . f erj‘_f ’ f ) (_‘31) (€2) g€, de, dx’
0 0 0

yx' -__gz y:c' - £
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The domain of integration is a reglon in x', €1, &o space whose cross-
section for x' = Constant is the square 0 < €1 <x!, 0S5 P < x' for
0= x' <L and the square 0 X §;, &, S L for L < x' SBery. Let Ij
be the integral where O <y < L and I, the integral over the domain _
LSy < Ber,. Since the integrand is symmetric in &, and &5, half its
velue 1s obtained by lntegrating only over the triangle ABC in the §,,

€5 plane ( . g < §2) as shown in Fig. Ye-2. In evéluating I; over
LA
A
x1£ cC
o -
A N o 33
Fig. hc-2 _

its domain (a truncated triangular cylinder with base at x = L and vertex
at x' = 0) we shall first integrate along a line parallel to the y-axis.
For gl, §2 fixed this line 1s inside the pyramid only when &4 <x'"<L.

€, may vary inside the triangle between O and &5, and for 52 any value
between O and L may be chosen. Hence I may be written _

- gf fﬁefg f’ 51 (52) dx' agy dtp (ILC-QQ-)

- gl Vx' -

The integral I, is (domain is triangular cylinder)

fﬁerlf fge gl f’(ge) dgl dgz ax! (ll-c-2l)
0 fxT - By yx -
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Interchanging the order as above one obtains

L & Ber .
I =13 +Is = 2f0 fo 2 fx(gl)f:(gz)fgz l‘/x! -Zjlcvx' - g2_1og clag; ae,

(4e-22)

Here C is & constent and 1t has been introduced under the assumptlion that

L
d[‘ £'(g)dt = 0, which, since £(0) = O means £(L) = 0O
0

(ef. BEq. Le-1). (Note that the limit of integration for &, may be
replaced by L if the factor 2 is omitted.)

Now
Bery 1 Bery
— 8  _1og C= |log(2x'-&. -E +2)x"-E '-g] - log C
ko "xn -ty ’xx = §2“ ‘: ( 1 °2 (x 1) x 2) ko
- -log (§2- §l) + log zﬁerl = g]_ = §2 +2V(2€r1 'gl)(Berl _§2) (4c-23)

i
Hence if one chooses C = hBerl, the second term will tend to log 1 =0

ag rj—>®. Note that for this it 1s essential that Eryj—>® as r{—>w

(cf. pg.IV16). In other words the simplicity of the proof depends on
the fact that €—»0 as r;j—> (cf. Eqs. 4c-18). On the other hend ¢
may not tend to zero so fast that er; remains bounded. In this case the

above proof would be invalidated. Actually a drag contribution would
come from the rear disc in that case.

By combining the Egs. Lc-192, 22, 23 one obtains the final drag
formula

p. pL pEp
D= -25(—°f0 'fo f'(gl)f'(ga)log(ga - gl)dgl at, - (be-2k)
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This is von Kéfmén's drag formuls for a lineal source distribution

such ‘that- £{0) = £(L) = O. Tt has been derived ebové by the method of

Hayes. Thls derivation has the advantage that it may be extended

immediately to cases of a more general distribution of singularities. _ -

Such generalizations wilill now be discussed.

General Three-Dimensional Source Distributions f ? -

We shall now consider a more general case of a spatial distribution
of sources. It will still be assumed that no 1lifting or side force ele-
ments are present. The source strength will be denoted by f(x,y,z).

Tt will be assumed that f = O outside a certain finlte region V. A
special case is a planar distribution, say in the plsne z = O in which
case £(x,y,z) = £5(x,y)8(z). Another speciel case is the lineal distri- _

bution on the x-axis which was discussed above. In thls case ' -
£(x,y,2) = £1(x)8(r). It will be shown below how in a certain sense the

drag evaluation for the general three-dimensionsl case may be reduced

to a consideration of certain equivalent linesl distributions. In the ’
course of this discussion certailn restrictions on f£(x,y,z) will be made

in addition to the requirement that it vanish outside a finite region.

Consider a line in the streamwlse direction passing through V. The
position of the line which will be taken as the x-sxis is actually arbi-
trary, but for practical purposes it will be assumed that it is "well
centered." This is, of course, a somewhat vague requirement. However, )
if for example £ has rotational symmetry, the x-axis will be its axis -
of symmetry. On the x-axis choose as origin a point, O, whose downstream
Mach cone containe V. For convenience choose this point as far down-
stream as possible. Also choose the point, L, for convenience as far
upstream as possible, whose upstream Mach cone contains V. An equivalent
requirement is that the downstream Mach cone from L is contained within
the downstreesm Mach cones from every point in V. Iet the value of x at
point L be L. Thus the downstream Mach cone from x = O and the upstream
Mach cone from x = L touch but do not penetrate V. We now introduce a
control surface and define ¢ and €1 &8s in the lineal case (ef. Fig. khe-1).

This is shown in Fig. 4c-3. Tt will be assumed that ry and X1 tend to
infinity as described in discussion of the lineal case.
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Fig. L4e-3: Hayes control surface in three-dimensional space

Thet is as x; and ry tend to Infinity e and ¢; will tend to zero. In

that sense the line AC will come arbitrerily near the Mach cone from the
origin. On the other hand ¢ and e will tend to zero slower than l/rl

so that the line AC becomes infinitely long as r{—>«.

By the same methods that were used in the lineal case, it may be
easily seen that the contribution of the rear disc, x = x;, becomes zero

in the 1imit. All the drag thus comes from a portion on the cylindrical

surface arbitrarily near the Mach cone from the origin and is hence pure
wave drag.

To evaluate the drag contribution from the cylindrical surface we
introduce cylindrical coordinates x, r, © vhere

X=rcos @, z=rsin 8 . (4e-25)
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Iet the dreg contribution of a strip on the cylinder between 6 = 8¢
and 8 = 8 + A8 be AD. We define

%g = Drag contribution per unit engle = lim ﬁ% as A8 —>»0 (4ec-26a)

Then

D = Total drag = f % ae _ (4c-26b)

Consider riow a fixed meridilian plane 6 = 65, and a point P = (xo,rl,ecg

on the cylinder between A and C (Fig. 4c-3). The potential @(P) depends
on the contribution from all sources inside the upsiream Mach cone from P.
The contribution from a source at Q = (&,n,{) is proportional to the
source strength f(Q) and inversely proportional to the hyperbolic dis-~
tence ry,(P,Q) between P and Q where -

Th™ = (xo - §)2 - Be[krlcos 8o - n)2 + (rl sin 84 - g)é] (be-27)

This hyperbolic distance is constant on hyperbololds of revolution with

r =1y, 8 = 6o as axis. Consider now the sources between two such hyper- _“'

boloids which intersect the x-axis st x = £ and x = £ + dé. To evaluate
the contribution to ¢(P) of these sources one mgy transfer their total
source strength to the axis. In this way the distribution in V is
replaced by an equivalent lineal distribution i.e. by an equivalent body
of revolution. So far this lineal distribution depends on x, and r; as

well as Oq.

Consider now, still for fixed 8'= 6y, the limit as ry—>c. Then

the hyperboloids may be replaced by Mach planes which intersect the )
meridisn plane 6 = 8,5 orthogonally along Mach lines. _Note that for this

it is necessary that as ri—>« any point between A and C comes arbi-

trarily near the downstresm Mach cone from the origin in the sense .
described sbove. The source strength between two such neighboring planes

h

<
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Fig. Lc-4: Evaluation of @(P)

may then be transferred to the x-axis as above. However, in this limiting
case the resulting equivalent body of revolution depends at most on 9g5.

It becomes independent of ry and xo. The corresponding lineal source
distribution will be denoted by f(x;eo). A consequence of the iIndepend-
ence of x5 and r; is that £(x;6) may be used for computing ¢r and ¢x as
well as ¢ at P. In general 1t may not be used for computing ¢9. Clearly
¢e is zero for a lineal distribution, whereas the ¢9 resulting from the
original volume distribution is not. On the other hamd ¢G is not needed
for drag evaluation on the eylindrical surface.

Since ¢, and ¢, may be computed from the equivalent body of revolu-

tion for fixed 6 it follows that dD/dG may be computed in exactly the
same way as the dreg of a body of revolution was computed. The result
will differ from Eq. (4ec-24) only by a factor 2x. Hence we have proved
the following: The drag D of a volume distribution of sources of
strength £(£,1,{) is given by the formulas
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2 aD
D =L % as (4c-28a)

i L pé o
% - %J; ﬁ : £1(850) £ (£256) 208 (o - £7)dE7 dtp (4c-28b)
F8s0)a8 =fff r(@)aq (lc-28c)
v(e,0)

where V(£,8,) is the region contained between two Mach planes perpen-
dicular to 6 = 8o and Ilntersecting the x-axis at x = & and x = ¢ + d§.

This result was obtained by Hayes in Ref. 1. It is thus seen how
Hayes' derivation of von Kérmén's dreg formule for bodies of revolution
admits an easy generalization to the general three-dimensional case.

This proof obviously presupposes the following requirement on the
strength distribution £(Q) in addition to the requirement that i1t vanish .
outside a finite volume: f(Q) must be such that for each 6 £(x;0) sat-
isfies the same requirements as £(x) in the lineal case. In particular
for each 6: f£(0;8) = £(L;0) = O and £(x;6) must be differentiable with
respect to x.

If £(Q) has rotetional symmetry, i1.e. depends on r and x only then
it may obviously be replaced by one equivalent lineal distribution,
independent of 8, for computing the distant flow field and the drag.

In the special case when £(Q) is lineal to begin with, Egs. (4c-28)
reduce to the previously established formula (Eq. l4c- 24)

Extension to Include Iift and Side Force Elemerits

For simplicity only sources have been considered in the preceding
development. However 1lift and side force elements can be included and
were included by Hayes in his original report. We will not go into the
details here, but merely indicate the final results, since the funda-
nental ideas of the method have been illustrated in the discussion of
source distributions. ’

Following Hayes we define a function h such that

h=f-(gzsin6+g:;,cos e) | (ke-29)
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where
f = £(&;0) = Source strength

pUgZ/B = 1(&;0) = Lifting element strength
pUgy/B = s(&;0) = Side force strength

The term (gy sin 6 + g, cos e) is proportional to the component of force

in the direction 6, and is the only component contributing to the wave
drag in the Hayes calculation. Equation {4c-28b), as extended to include
1ift and side force elements, is

- L pta '
<%§>wave = ZﬁE\/; \j; h (Else)h (sa;é)log(gz - §1>d§l dg?

_ L pL
= A AT CYOEY CRDEEE

7T

£y - el‘dgl G (ke-30)

where h(£;0) is the equivalent lineal distribution (for a given station 6)
of the originsal spatial distribution of singularities.

This equation makes it possible to determine the wave drag of an
arbitrary spatial system containing thickness and cerrying both 1ift
and side forces. In order to determine the total pressure drag of the
system 1t is necesssry to evaeluate the vortex drag produced by the 1ift
and slde force. In Hayes method the vortex drsg appears as a momentum
outflow through and a pressure on the end of the cylindricel control
surface. It can be evaluated by calculeting this momentum and pressure
or by determining the kinetic energy associated with the vortex system
in the Trefftz plene. Since this is identical with the induced drag
problem of incompressible flow, we will not discuss it further.

D. LEADING EDGE SUCTION

The evaluation of the drasg of a lifting wing of zero thickness by
integrating local pressure times frontal area over the wing surface 1is
not .theoretically complete until leading edge suction is accounted for.
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This means that the infinite negative pressures acting on subsonic
leading edges should be included. In practical applications this leading
edge suction is sometimes discarded since in many cases only a fraction
of the theoretical value 1s actually reaslized.

However, from the distant viewpolnt, leading edge suction cannot
be 1soleted. This 1s true because there is no point-to-point corre-
spondence between the close and the distant control surfaces. At the
distant control surface the velocity fleld created by the wing leading
edges is merged with the fields created by other areas on the wing and

body.

From the distant point of view leading edge suction is automatically
assumed to be fully effective, and therefore it must be so assumed from
the close viewpolnt to get correspondence in the drag values.

E. DISCONTINUITIES IN LOADINGS

For a planar wing, vortex drag is dependent only on the spanwise
1lift distribution. A discontinuity in the ordinates of this 1ift dis-
tribution produces a concentrated vortex of finite strength and infinite
energy, which corresponds to infinite drag. )

Wave drag is similarly affected by discontinuities in loadings.
For exsmple, consider a distribution of sources on a streamwise line.
If there is a discontinulty in source strength, then the drag evaluated
on the distant control surface is infinite.

To prove this, assume a source distribution with a discontinuity
at the point x = X (see sketch). The velocity potentisl at & point (x,r)
downstream of the rearward Mach cone from X may be written

X-Br X £1(&)dE
d=-L £(¢)ag _ 1 115765 N
2“—/(‘) V(x - §)2 - B2r2 2 “/;) V(x - §)2 - BEI‘E
fx-ﬁr £o(¢)at (he-1)
X f(x - £)2 - p2
(%)

+§,x
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The u-component of veloclity at the point (x,r) is found by differentiating
Eq. (4e-1) axially. (In order to avoid indeterminant forms in the differ-
entiation, the equation is first transformed by means of the relation

£ = X - Br cosh u.) This process gives the result (assuming £(0) = 0):

_ ég =__]; X fl'(g)dg x-pr fg'(g)dg - AF (X)
h fo “J /

ox 20 lJo [(x-£)2- 2P (x-£)2-p2r2  |(x-%)2- 622

- (be-2)
where AF(X) = £1(X) ~ £5(%).

At the distant control surface it previously was shown (Ch. IV-C)
that one need conslder only conditions very near the Mach cones from the
source distribution. Introducing the approximations used in Heyes'
method (i.e., (x - &£)/pr = 1), Eq. (4e-2) can be expressed

Xr '(ﬁ)dﬁ x' £ '(E)di =
u= - f f AL (ke-3)
En EBr x' - X
where X' = x - Br and x' - § << Br. Since the radius of the control sur-

face is large compared to the length of the source distributlon, the Mach
cones originating at the sources are essentially plane waves when they
intersect the control surface, so that the radial component of velocity
(st the control surface) is (Eq. Le-18b)

v = gu (be-k)

The drag, being equal to the transport of horizontal momentum across
the control surface, is proportlional to the product of u and v integrated
axially along the control surface. From Egs. (4ke-3) and (he-l) it is
readily seen that the drag includes s term of the form

Dr@ﬂa
jp - x) ax’

The integral 1s non-convergent. An infinite drag contribution therefore
results from a discontinuity in the strength of the source distribution.
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F. THE USE OF SLENDER BODY THEORY WITH THE DISTANT VIEWPOINT

If slender body theory is applied, then the source strength is
assumed proportional to the rate of change of cross-sectlonal ares,
dS/dx, for a corresponding body of revolution. This means that infinite
drag will be predicted (by the distent procedure) for all bodies of _
revolution having discontinuities in dS/dx. Such a prediction is, of
course, incorrect, and the error is caused by the application of slender
body theory to bodies which are not sufficiently smooth.

The use of slender body theory requires that smoothness should be
maintained at the nose and tail of the body and therefore dS/dx should
be zero at these locations. In order that dS/dx should be zero at the
nose or tail of a closed body of revolution it is necessary that the
variation of body radius, R, with distance, 4, from the nose or tail

should be of the form R ~ ld|<l/2)+k where k > 0. This does not elimi-
nate blunt noses or talls emtirely, bubt excludes "excessive" bluntness,
(Note that the Sears-Haack optimum shape is blunt.)

The linearized theory requirement that all velociEy perturbations
be smell theoretically excludes all bluntness, but this is unimportant
if very small reglons of the flow field are affected.

Bodies which begin or end in cylinders also may satlsfy the sm¢0t57

ness requirements.

For & body to be sufficiently smooth to permit the use of slender
body theory, 1t 1s necessary to restrict the "short" wave length fluctu-
gtions in the plot—of cross-sectional ares versus length. The word

"short" cannot be defined exactly here, but should probably apply to
all wave lengths less thsn the body dismeter times JM2 - 1.

Figure 4f-1 illustrates the effect of wave length bn'the acéuracy
of the slender body theory. The drag for an infinitely long corrugeted

cylinder according to strict linear theory was found by von Kﬁfméh(T)._
Slender bvody theory is in good agreement with these results only where
the reduced wave lengths are large compared to the cylinder redius. At
the other extreme two-dimensional theory is approached.

It should be remembered that when the distant viewpoint is used
the drag of a singularity distribution is evaluated. The body shape
corresponding to the singularities may be determined either by "exact"
linear theory or approximated by slender body theory. For example in
Fig. 4f-2 a specific source distribution 1s considered, and is inter-
preted as a "bump" on a cylinder by "exact" linear theory and by the
slender body approximation. For this ratic of wave length to cylinder

LI
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diameter the bump shapes and locations are quite different. It is of
interest however that the net volumes contained in the bumps are iden-
tical. This has been proved by Lagerstrom and Bleviss and generalized
by Bleviss in Ref. 22. (This suggests thet "volume elements" may retain
thelr significance even when slender body theory does not apply.)

G. THE DEPENDENCE OF DRAG COEFFICIENT ON MACH NUMBER

Hayes(l) has pointed out that, for a distribution of singularities
on & single streamwise line, the drag, evaluated from the distant view-
point, is independent of Mach number. If the singularities are sources,
and slender body theory is aepplied, this indicates that the drag of a
given body of revolution is independent of Mach number. However the
application of slender body theory in conjunction with the distant view-
point requires that dS/dx = O at the tail of the body.

Hayes' result is therefore consistent with a fact previously deter-
mined, that the drag coefficient of a slender body satisfying the
"eclosure" condition (dS/dx = O at the tail) is independent of Mach
number.

If the singularities are not confined to a single streamwise line,
then the distant vliewpoint gives a drag coefficient which varles with
Mach number. This can be seen from the fact that the projection of the
singularity distribution onto a single streamwise line varies with the
inclination of the Mach planes used for the projection.

H. SUPERPOSITION PROCEDURES AND INTERFERENCE DRAG

In all the developments discussed in this report the linearized
supersonic flow equation 1s used. Thls means thet one flow field and
the 1ift (or volume) distribution which causes it can be '‘superimposed
on a second flow field with its corresponding 1ift (or volume) distri-
bution. If the individual flow fields satisfy the linearized flow
equation, then their sum does also.

For example, let a pressure field, Py, correspond to a downwash
field, «q, and a second pressure field, pp, correspond to a second down-
wash field, ap, then the pressure field Py + Pp corresponds to the down-
wash fleld o + ao.

However, the drag of the sum of the two fields is not in general
the sum of the drags of the individual fields. For example, the drag S

of the flrst field would be Dy = prldl dS, where the integration extends
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over the wing and body surfaces, and similarly the drag of the second

fleld 1s Dp = Jf§2“2 d8. However, the drag of the cCombination is
Do = J[kpl + p2)<a1 + ag)ds. The terms involvingzéross products give

the interference drag, Dy = J/Kplge + pgal)dS.

I. ORTHOGONAL DISTRIBUTIONS AND DRAG REDUCTION PROCEDURES

If the interference drag is zero then the two distributions are
sald to be orthogonal. The use of orthogonal distributions for reducing
drag has been studied in Refs. 8, 9, 10, and 11. n

For example consider two types of 1ift distributions which are __
orthogonal and assume that each one carries a net 1ift. It has been_
shown (see for example Ref. §) that some combination of the two will
carry a given total 1ift with less dreg than would be produced if either
one of the individual types of distribution carried all of the 1lift,

On the other hand, eny given (non-optimum) 1lift distribution can
be improved by adding the proper amount of a non-orthogonal type of dis-
tribution which carries zero net 11ift. The improvement is obtained by
utilizing negative interference drag. This can be seen as follows. The
total drag of the combination is the sum 6f the individual drags plus

the interference drag. The interference drag can alWays be made negative

by proper cholce of the sign of the distribution that carries zero net
1ift. Also, since the strength of the zero lift distribution enters
linearly into the interference drag, but enters quadratically into its
individual drag, the magnitude can be so chosen that the interference
drag dominates. Thus the total drag of the combination can be made less
then the drag of the given (non-optimum) 1ift distribution.

J. THE PHYSICAL SIGNIFICANCE OF INTERFERENCE DRAG

It has been stated that the interference drag, @i, ise jQplae + pgai)ds
vwhere the subscripbts designate the two flow fields which have been super~
imposed, and the integration is to be carried over all surfaces. Assume . _
that both flow fields are produced by thickness distributions. Then the
o values are the body surface inclinations which correspond to dS/dx,

the rate of change of cross-sectional area Tor the body. The u/;lag as

il

Ya
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glves the drag produced by the pressure fleld of the first body acting

n

on the cross-sectional area distribution of the second. The term Poaq 4
has a similer interpretation.

Assume that both flow flelds are produced by 1lift distributions.
Then d[ilag dS is the drag created by the downwash field of the second

distribution acting on the 1lifting elements of the first distribution.
(The surface which supports the 1ift corresponding to_pl must be inclined

further because of the downwash due %o p2.>

Let the first field be produced by a lift distribution and the second
by a thickness distribution (a body). Then J[ilag dsS is the drag produced
by the downwash field of the thickness distribution acting on the 1ift
elements plus the drag caused by the pressure field of the 1ift distri-
bution acting on the cross-sectional area distribution of the body. The

J[fzal dS gives no contribution to the drag in this case.

Assume that the first field is produced by a 1ift distribution and
the second by & slde force distribution. The Py dS 1s drag corre-
sponding to the downwash field of the side force distribution acting on
the 1ift elements, while the J/52a1 dS is produced by the sidewash field

of the 1ift elements acting on the side force distribution.

K. INTERFERENCE AMONG LIFT, THICKNESS, AND SIDE FORCE DISTRIBUTIONS

For planar distributions of 1ift and thickness (the 1ift being normal
to the plane) there are no interference drag terms, and the two problems
can be studied independently. However, for spatial distributions, inter-
ference generally exists. This has been discussed by Hayes, and the
Physical meaning of the interference drag has been discussed in the
preceding sections.
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Suppose that a source and a
lifting element are located as shown
in Fig. Lk-1, the direction of flow
being perpendicular to the page.
Then the component of the 1ift which
lies 1in the line connecting the two
singularities causes all of the
interference. If the 1ift element
were located on the y-axis (corre-
sponding to a planar wing problem)
there would be no interference.

For 1lift and side force ele-
ments, as shown in Fig. Lk-2, there
is interference between the force
components which lie in the line
connecting the singularities, and
also interference between the com-
ponents normal to the connecting
line.

If the side force element lies
either on the y-axis or on the z-axis
(a8 shown in Fig. 4k-3a and b), then
there is no interference. This can
also be seen from symmetry considera-
tions, which show that the 1ift ele-
ment produces no sidewash at the
slde force element and similarly
the side force element produces no
dowvnwash at the 1lift element.

NACA T 1h21
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L. REDUCTION OF DRAG DUE TO LIFT BY ADDITION OF A THICKNESS DISTRIBUTION

Consider the two-dimensional system sketched in Fig. 41-1. The
cross-hatched area is a thickness distribution lying partly in the pres-
sure fleld of a flat-plate wing. The relative geometry of the thickness
distribution and the lifting surface are indicated in the figure. Also,
the pressure distributions, relative to the two-dimensional pressure 2ag/B,
are shown in parentheses.

Fig. L1-1

~ As long as the pressure field of the thickness distribution does
not intersect the flat-plate, the 1ift of the system is the same as for
the flat-plate by itself. On the other hand, the interference between
the pressure field of the flat-plate and the thickness distribution pro-
duces a negative drag contribution, so that the total drag of the system
(omitting friction) is 12- 1/2 percent less than the drag of the flat-
plate alone. Thus, the total 1ift in this case is unaffected by intro-
duction of the thickness distribution and a drag reduction is obtalned.

This example i1s related to the Busemann biplane. The result obtained
illustrates the fact that, in the general case (non-planar systems),
sources and 1ifting elements have an interference drag.



60 _ NACA TM 1421

CHAPTER V. THE CRITERIA FOR DETERMINING OPTIMUM DISTRIBUTIONS ’

OF LIFT OR VOLUME ELEMENTS ALONE

A. THE "COMBINED FLOW FIELD" CONCEPT

The ides of the "combined flow field" was introduced by Munk(le)

and extended by R. T. Jones(13'1%) . Consider e aistribution of lifting
elements in a free stream of given velocity. A certain downwash velocity
and pressure are produced at-each polnt in the field. If the direction
of the free stream is now reversed without moving the 1ift elements or
altering the directions and megnitude of these 1ift contributions, then
in general different downwash veloc1ties and pressures are produced at
each point in the field.

One-half the sum of the downwash velocities produced at a given
point in the forward and reveérse flows is called the downwash velecity
of the combined flow fleld at that point. —A similar definition applies T
to sidewash velocity. One-hsalf the difference of the pressures in the
forward and reverse flows is called the pressure in the combined flow
field. These definitions follow from the super-position of the
perturbation velocity fields for forward and reverse flow. It should
be remembered that in the flow reversal the lift distribution (not the
wing geometry) is fixed. N . Ce— e

The same ideas may be applied 1f other singularities such as. sources,
side force elements and volume elements are considered. When sources are
used the signs must be reversed when the flow direction 1s reversed. A
source in forward flow becomes & sink in reverse flow.

B. COMBINED FLOW FIELD CRITERION FOR IDENTTFYING _
OPTIMUM LIFT DISTRIBUTIONS = _ T

A necessary and sufficient condition Tfor minimum wave plus vortex

drag was glven by R. T. Jones(lB) in connection with planar systems. The
condition is that the downwash in the combined flow field shall be con- ~
stant at all polnts of the planform. This result depends on the fact
that a palr of lifting elements has the same drag In forward and reverse
flow, which is also true when the 1lifting. elements are not in the same
horizontal plane. Hence the above criterion can he extended immediately
to 1ift distributions in space by requiring constant downwash (in the
combined flow field) throughout the space. S T=
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Q

THE COMBINED FLOW FIELD CRITERION FCR
IDENTTFYING OPTIMUM VOLUME DISTRIBUTIONS

A necessary and sufficlent condition for minimum wave drag due to

thickness was given by R. T. Jones(l3) In comnection with planar systems.
If total volume is fixed then the optimum distribution of volume gives

g pressure gradient in the combined flow field which 1s constant over
‘the planform.

As in the case of lifting elements this criterion can be extended
to cover thickness distributions in space. It is then necessary for the
pressure gradient in the combined flow field to be constant throughout
the space.

D. UNIFORM DOWNWASE CRITERION FOR MINTMUM VORTEX DRAG

A necessary and sufficient condition for vortex drag alone to be
a minimum is that the downwash velocity throughout the wake of the wing
system shall be constant in the Trefftz plane. (The wake cross-section
is the projection of the wing system on the Trefftz plene.) This condl-

tion was given by Munk(ls).

If the wake of the wing system has an elliptical cross-section then
a constant intensity of 1ift over the cross-section satisfies the above
condition and gives the minimum possible vortex drag. (See Appendix V-1).
In particular when the cross-section of the wing wake degenerates into
a horizontal line, (corresponding to a planar wing) the familiar require-
ment of elliptic spanwise load distribution is obtained.

E. ELLIPTICAL IOADING CRITERION FOR MINTMUM WAVE DRAG DUE TO LIFT

In special casges elliptic loadings identify minimum drag configura-

tlons, as has been shown by anes(lh). Let the space containing the
lifting elements be cut by a serlies of parallel planes each inclined at
the Mach angle to the flow axis. Consider all the 1ift intensity cut by
any one plane to be located at the intersection of the plane with the
flow axis. 1If the resulting load distribution on the axls is elliptical,
and if this is true for all possible sets of parallel planes (inclined
at the Mach angle), then the wave drag is a minimum.

In Hayes(l) procedure for calculating drag (see Ch. IV) this con-
dition corresponds to obitaining the minimum possible drag contribution
at every angular position on the cylindrical control surface.
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Such minima cannot be attasined in general since the condition is
sufficlent but not necessary. However 1f they are attained and If the
vortex drsg 1s also a minimum then the more generasl criterion (constant
downwash 1n the combined flow f£leld) is satisfied.

F. THE "ELLIPTICAL TOADING CUBED" CRITERION FOR
MINIMUM WAVE DRAG DUE TO A FIXED TOTAL VOLUME

Sears(l6) and Haack(l7) in determining optimum shapes for bodies
of revolution In supersonic flow have alsgo determined sufficient condi-
tions for identifying optimum distributions of volume elements within
a prescribed space.

We consider a distribution of volume elements within a prescribed
space and ask how these elements should b€ arranged in order that they
should cause the least wave drag while providing a fixed total volume.
If the equilvalent body of revolution for a given angular position 87

on the distant control surface (see Ch. IV) conforms to the Sears-Haack
optimum shape then the wave drag contribution at 6, is & minimum. There-

fore if the equivelent bodilies of revolution for all values of & are
optimum shepes the total weve drag is a minimum. -

The density of the lineal distribution of volumé elements repre-
senting the Sears-Haack optimum shape corresponds to the cube of an
elliptical distribution over the length of _the line.  Hence if all the
equivalent lineal distributions have this form an optimum is ensured.

Such minima cannot be attained in general since the "Elliptical
Loading Cubed" criterion is a sufficient, but not a necessary condition
for minimum drag. When such minime are attained the more general cri-
terion (constent pressure gradlent in the combined flow field) is also
satisfied. :

G. COMPATABILITY OF MINIMUM WAVE PLUS VORTEX DRAG S

WITH MINIMUM WAVE OR MINIMUM VORTEX DRAG

It is possible for minimum wave plus vortex drag to be obtelned
when neither the wave nor the vortex drag i1s individually a minimmm.

For example consider that the "space" within which lifting elements

may be distributed is the planform shown in the figure. For the vortex
drag to be a minimum it is necessary to maintain an eiliptlc spanwlse-
loading over b. This requires a finite load on "a" which in turn pro-

o

duces infinite wave drag if the chord for "a goes to zero. However

o
.
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the minimum dreg due to 1ift for the planform is certainly finite (load
the end pieces only and consider them as isolated wings) hence minimum
vortex drag is not consistent with minimwm total drag in this case.

On the other hand, for a plenar wing of elliptical planform minimum

wave drag and minimum vortex drag are obtained with the same (constant
intensity) 1ift distribution.

H. ORTHOGONAT LOADING CRITERIA

Optimum distributions can be ldentified also through orthogonality

considerations(8:9). The optimum distribution of 1lifting elements in =
space 1s orthogonal to every distribution carrying zero net 1lift and is
not orthogonal to any other distributions.

A similar statement can be made for the optimum distribution of
volume elements alone (assuming for the moment that negative local vol-
umes are not excluded). However if 1ifting (end side force) elements
are introduced 1n addition to volume elements, then the criterion must
be modified. TFor example the rotationally symmetric wing plus central
body having zero wave drag is orthogonal to all singularity distributions
although it contains e net volume.¥

The criterie discussed in preceding sections of this chapter have
not been thoroughly investigated for cases Involving 1ift and volume
elements simultaneously. However, some material on interference between
1ift and volume distributions is given in Ch. IX.

* See p. 103 £f. Since the wave draz is zero the disturbances on a
distant control cylinder are identically zero. Hence its interference
with any other singularity distribution is =zero.
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APPENDIX V o

DISTRIBUTION OF LIFT IN A TRANSVERSE

PIANE FOR MINIMUM VORTEX DRAG

As stated by Munk's Stagger Theorem(l5), the vortex drag of a spa-
tial wing system is not changed if =all 1ift and side force elements in

the system are projJected onto & single plahe normsl to the £light dlrec- _

tion (see Fig. A5-1). Furthermore, if there are no side force elements,

=

A A

D/STRIBUTION OF Y
LIFT (N SPACE

PROVECTION OF LIFT
" onro Y& PLANE

2 N .

Fig. A5-1 __

then Munk's criterion for minimum vortex drag is that in the Trefftz
plene, the downwash in the wake must be constant. (The wake cross-
section is defined as the projection of the wing system on the Trefftz
plane.) Assume that the downwash fileld associated with .the optimum 1ift
distribution is w = -wg and that a uniform field w = +Wo 18 superimposed
on the original field in the Trefftz plane; then the resulting two-
dimensional flow pattern is equivalent to a uniform flow around & golid
body. Munk gives the expression for the 1ift distribution in the trans-
verse plane in terms of the veloecity potential of this new flow for
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certaln bodies symmetrical with respect to the x-z plane; for example,
i ¢ is the two-dimensional potential flow around an elliptic cylinder,
then

Y4

Lopt = 2PU<%Q)
Z/boundary -

x :
¢ ~——
J
and \
W
dvortexpin = ("1%)10p'b %

Fig. AS-2

where 1 and 4 are the 1ift and drag intensities per unit area in the
transverse plene. For an ellipse oriented as in Fig. A5-2, the

potential is (18)

¢ =wyla + b)cosh<§ - go) sin q

where

v+ iz = faa - b2 cosh(t + in)

The curve £ = £, corresponds to the boundery of the 1lift distribution
in the transverse plane. From the above equations one obtains

. 2;,U<§9- Eﬂ) _ 2pUwo(a + D)
dn dz gt b

so that the lift intensity in the transverse plane must be constant to
obtain minimum vortex drag. With S = wmab, the drag is

W L2
Dyortexpin = <—O‘)L =
Fmin © \U kgS(1 + a/b)

where I, is the total 1ift generated. Thus to obtain minimum vortex drag
for a spatisl distribution of 1ift whose Trefftz plane projection is an
ellipse with one axis vertical, the 1lift should be distributed so as to
glve a constant intensity when projected on the Trefftz plane.
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This proof can be extended to cases in which the projected 1ift

distribution covers a rolled ellipse, as shown in Fig. A5-3. If only
1ift (and no sideforce) elements are

allowed, Munk's criterion of con-

L stant downwash stlll holds, but the
' lack of symmetry precludes use of the
formulas gilven sbove. However, the
q optimum 11ft distribution can be
///w \ determined by a superposition of two
w symmetrical optimum distributions,
tt]r as shown in Fig. A5-4. I, and Ly
Fig. A5-3
— - —
L=L,*L,

= (Tl oy (2
O =

@) (6) ©)

Fig. A5-k

are constant intensity 1lift distributions over the elliptic areas which
produce constant downwashes wy and wy over those areas. Because the

governing equation is the laplace equation, which is linear, the 1ift
distributions 17 and Lo and the flow fields they produce can be super-
imposed. If Iy =L cos $ and Ly = L sin ¢ and Fig. AS-hc 1s rotated

through the angle ¢, then Fig. AS-4c corresponds to Fig. A5-3. There
is a uniform downwash w corresponding to the uniform 1lift L. Thus
Munk's criterion is satlisfled and the drag is & minimum. It can be
shown by symmetry thet the total Interference drag between the Lift
distributions I, and L2 is zero so that the drag of L is obtained

simply by edding the drags of L:L and L2; that is -

]
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_ ;2 . Lp? _ 12(a s1n2g + b c032¢)
Pvortexyin = Los(1 + a/b) © baS(T + b/a) bgs(a + D)

It should be noted that for this optimum rolled ellipse case there i1s
also a uniform sidewash generated. If a distribution of side force
elements were available, it would be possible to utilize the uniform
sldewash to reduce the vortex drag below the value given above.
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CHAPTER VI. THE OPTIMUM DISTRIBUTION OF LIFTING ELEMENTS ALONE

A. THE OPTIMUM DISTRIBUTION OF LIFT THROUGH A SPERICAL SPACE

Consider a sphere of radius "R" with its center et the origin, and
let a total 1lift “L* be distributed through the sphere with local inten-

L _
» ¥ being the radisl distance from the
n2R2fR2 - r2 - -

origin, then elliptic loadings are obtained when the sphere is cut by
any set of parallel planes (see Appendix VI for derivation). The fact
that elliptic loadings are produced when the planes are inclined at the
Mach engle (to the free stream direction) insures that the wave drag is
a minimum (Ch. V). The cross-sectlon of the wake is circular, and if
the 1lift intensity is projected onto a plane normal to the free stream
direction it can be shown that the 1ift is uniformly distributed over
this circular cross section. This insures that the vortex drag 1is also
a minimm (Ch. V). :

sity "1." If 1 =

The 1ift distribution I =

L . then gives the minimum poqi

2R2|R2 - 2

sible wave and vortex drag. By Hayes' procedure it can be found that
L2 2

the minimum wave drag is Dpip wave = :
Eﬂq(2R)2M2’

the minimum vortex

2 o
darag(15) is Doin vortex = —=— and the minimm total drag is
2nq(2R)

_1_12 |2 _ 1|

The largest planar wing of circular planform contained in the sphere

(1o

Dmin

has a minimum drag(lu) which 1s greater by the ratio —-%ME——. Thie is

. M= -1
s factor of 1.885 at M = {2. However, the drag comperison is, of course,
not complete without consideration of the viscous drag (and thickness
drag). For the spatial 1lift distribution described above, the required
wing area is infinite and so, then, 1s the viscous drag, But the same
minimum of wave and vortex drag can be achieved with a number of wing
systems having finite wing area. For example, consider the infiinite set
of cascades enclosed in a spherical space as shown in Fig. 6a-1l. At

Lo
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Fig. 6a-1l: Cross-sectional view of an optimum set of finlte area
lifting surfaces in a spherical space

M = {2 this set of cascades covers the region adequately so that the
equivalent linear distribution will be continuous. Determining the 1lift
dlstributions for the cascades is essentially a stepwlse process in that
the vortex drag criterion is satlsfilied over part of the space and then
the wave drag criterion over part, alternating back and forth until both
conditions are satisfled everywhere. In this example rotational symmetry
1s essumed and the center cascade is used to satisfy the vortex drag

requirements; thus, the outer region —% < r <R of this cascade must
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carry a constant intensity of 1ift. The cascades of radius R/V§'are
used to give the equlvalent linear distribution the required elliptic
shepe for R/|2< & < Ry2. The next step is to evaluate the distribution
over another sectlion of the center cascade to give constant 1ift inten-
sity when elements are summed up in the free stream direction, then
satisfy the wave drag criterion with the next cascade, etc. This proc-
ess is continued working inward to the center of the space; although

an infinite number of cascades are requlired the total wing area is
finite. Each of the small cascades has a radius l/{é times the radius

of the next larger one and the totsl wing area is § = 2.172q«R° (Ch. VI B).

It should be noted that this is not ne¢essarily the minimum wing area
that could be used, so the distributlion obtained is an optimm one with
respect to wave and vortex drag only and not with respect to friction
drag. . '

B. THE OPTIMUM DISTRIBUTION OF LIFT THROUGH AN ELLiPSOIDAL SPACE

The spherical space with its optimum 1ift distribution can be
changed into an ellipsoldal space with a corresponding lift distribution
by & scale transformation of one of the cartesian coordinates. This
transformation transforms pleanes into planes so that elliptical loadings
are preserved for the ellipsoid and minimm wave drag is obtained.

Also & constant intensity of 1ift over the weke cross-section is
maintained for the ellipsoid so that the vortex drag is also a minimum.

Although the optimum 1ift distribution for an ellipsoid is obtain-
able from the spherical case, the value of the minimum drag is not nec-
essarlly the same. For an ellipsoid formed by revolving an ellipse of
semi-major axis B and semi-minor axis R about the free stream (maJor)
axls, the optimum distribution of 1ift is :

L

1 _ .
K1 - (x/5)2 - (/)2 - (a/R)2

opt - 1/2
The wave drag, computed by Hayes' method, is - =

s212 - .
8xqRZ [(B/ﬁ)e + B2]

Dmin wave <=
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and the vortex drag is also a minimum,

L2
8rqgR2

Dmin vortex =

so that the totel drag is

Dmin = L2 2 Bz + 1
8xqR [(B/R)z N 52]

For B = R the results reduce to the spherical case.

Beveral 1imiting cases can be examined; in one an ellipsoid is
collapsed into a horizontal planar wing of elliptic planform carrying
constant pressure. Optimum cases of this type were first discussed by

R. T. Jones(lu). Another limiting case which glves minimum drag occurs
when an ellipsoild is collapsed into & plane normal to the flow direc-
tion (B/R——>O). Then the wing system can be interpreted as a uniformly
loaded airfoil cascade (of zero chord and gap) within the elliptical
cross-section. The entire cascade can be analyzed as a two-dimenslional
system. If the chord is chosen to be B times the gap then the airfoils
in the cascade are non-interfering but the 1ift distribution is suffi-
ciently continuous (Fig. 6b-1). In other words, when the cascade is
cut by planes inclined at the Mach angle, the resulting load distribu-
tions used in Hayes' method will be continuous. The total wing area is
then B times the ares of the ellipse.,
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INTERFER/ING NON-INTERFERING NON-INTERFERING
A/IRFO/INLS AIRFO/LS AIRFOILS WITH SUFFICIENTLY
CONTINUOUS LIFTDISTRIBUTION

FPig. 6b~1: Examples of airfoil spacing in cascades
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A third limiting case is the slender body obtained when B/R—>w;
then . .-

2 2y 2 = -
L L
Dyin = + —2 = Dyortex *+ Dwave

Enq(ER)2 Enq(éB)Q _ -

The wave drag portion is the same as that obtained by Jones for a planar

slender wing(lB), while the vortex dreg for the spatial distribution 1is
one-half that obtained by Jones for the planar distribution.

C. THE OPTIMUM DISTRIBUTION OF LIFT THROUGH A "DOUBLE MACH CONE"

Consider s space consisting of two Mach cones placed base to base
(Fig. 6¢-1). If a uniformly loaded cascade of airfoils (with zero gap
and chord) 1s placed at the meximum cross-&&ction of this space then

RADIUS = R

Fig. 6c-1: Double Mach cone space - =TT

with optimum cascsde =~ =~ - o

elliptic loadings will he obtained when the space is cut by planes
inclined at the Mach angle. This airfoll cascade conféquently produces
the minimum possible wave drag for wing systems contained within the
space and carrying a specified 1ift. The uniform distribution of load
over the circular cross-section insures minimmm vortex drag also, so
the 1ift distribution is an optimum for the double Mach cone.

The value of the minimum weve drag (obbained by Hayes' method) 15

_ 2 -
Dyave = %__a%gg;ﬁjgnd the vortex drag has the same magnitude in this
2 ) _

case. - ; T T

b
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L2
nq(2R)
the minimm vortex drag alone for a planar wing of span 2ZR. If the air-

foil cascade is compared to the largest planar wing of diamond planform

which can be contained within the.double Mach cone, the minimum wave )
plus vortex drag of the dismond planform is approximately 1.52 times

greater than for the cascade(g) .

The wave plus vortex drag is then D = . This is equal to

2

Again it must be emphasized that the drag comparison is not com-
plete without the inclusion of viscous drag and thickness drag for the
wing systen.

Since the circular cascade is an optimum arrangement, it satisfies
Jones' criterion (Ch. V). This can be checked as follows: By two-
dimensional anslysis the downwash, €, in the aft Mach cone 1s 2a where o
is the angle of attack of each airfoil (Fig. 6c-2). Since the downwash
is zero in the fore Mach cone, the downwash veloclty in the combined
field is constant and equal to oU throughout the double Mach cone.

STREAMLINE
/ EXPANSION WAVE

REAR MACH CONE OF CASCADE

$—— COMIPRESS/ON WAVE

Fig. 6c-2: Two-dimensionsel analysis of downwash in rear Mach cone
of an optimum cascade
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Far behind the cascade in the wake of the wing system € = o; this
can be shown by equating 1ift to rate of change of vertical momentum.
The individual wings of the cascade are non-interfering and, in the
limit as gap and chord go to zero, have two-dimensionel wing character-
1stics. The wing area for a sufficlently comtinuous 1ift distribution
(Ch. VIB) is equal to the cascade cross-sectional area A times B. Con-
sequently L = CraS = (4a/p)a(BA). By Munk's criterion (see Ch. V and

Ref. 12) the downwash in the Trefftz plane over the area behind the
cascade 1s constant; thus, the vertlcal momentum of the fiuid in the
downwash reglon behind the cascade 1s (pAU) (¢U). The vertical momen-
tum of the surrounding fluid can be evaluated from the known "virtual
mass" of a solld cilrcular cylinder of cross-sectional area A moving
downward in the fluid; this latter momentum is equal to that of the
dowvnwash region itself. Thus, by the momentum theorem, L = 2pAU(eU)
and equating the two expressions for L gives e = a.

The airfoll cascade is not the only distribution of 1lift in the
double Mach cone which has minimum wave drag. A true lineal distribu-
tion of 1ift distributed as an elliptic loading along the axis of the
double Mach cone will produce the same minimum value of wave drag. So
also will a 1lift distribution of constant intensity throughout the entire
double Mach cone. However, the latter two cases will not give the mini-
mum value of wvortex drag; in fact, the true lineal distribution will
have infinite vortex drag. '
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APPENDIX VI

DERIVATTION OF CPTIMUM DISTRIBUTIION OF LIFT THROUGH A SPHERICAL SPACE

A sufficient condition for minlmum drag 1s that each equivalent )

lineal distribution of 1lift should be elliptic (Ch. V). For the spherical _
space these equivalent lineal distributions will be the same at all angu- .
lar stations if the optimum 1ift distribution is rotationally symmetric.
For simplicity, examine the problem from the angular position 6 (on the
control surface) equal to 90°; then the Mach planes will be parallel to
the y -axis. The notation to be used is illustrated in Fig. A6-l; cylin-
drical coordinates ({,S,f) and the radial coordinate r will be used.

If the spatial 1ift distribution is i(r) = z( 2 + 52> then the equiva-
lent linesal distribution along the { axis will be

F(E) =fsjm_/;: z(ﬁ)s d¢_ds = 2::.];‘[@ sz<V§2 + 52>a.s

s
ig
2
57" =R*-5
N
Fig. A6-1

However,

F(8)opt = k|1 - (£/R)2
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where K depends on the total 11ft of the sphere. Introducing the radial
cocrdinate r, the integral equation to be solved is -

R
KVl - (Q/R)E = 211;/; ri(r)dr _ =

The solution to this equation, found by differentiation with respect ' —
to £, is e

2R V32

i(xr) =

The total 1ift of the sphere is

f k|1 - (¢/R)2 ag = % _ -

so that the distribution of 1ift for minimum wave drag is

L ) ) .
nEREVRg - r2 -

For applicatlion of Hayes' method, the equivalent lineal distribution
along the x axis is needed. A plene { = {' Intersects the x axis at
x = -M{'; since the distribution 1s spread.out over a larger distance
along the x axis, its meximum intensity will be less; thus,

F(X)O];Jt = §Vl - (X/MR)2 = ﬁﬁgfiﬁtff;7ﬁ§357 -

T |“

1l

(r) =

il

Heyes defines two functions such that for the lifting case (Ch. IV)

F = pUgZ _ =
B e L
h = —gz ﬁin g = M 1 - (}(/IvtR)2 "

7tpUMR -
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The expression for the wave drag contribution at each angular station 6
is, from Eq. (4c-30),

3_163. = é—j%[/'h'(xe)h'(xl>ln|x2 - xl\dxl ax,

and the total wave dreg is

2

= 4D 30
Duwave o a8

The integration for dD/de has been carried out by Sears(l6) in terms of
a Fourier series expansion of an arbltrary function h. For the wave
drag optimum the distribution h i1s elliptic and only the first term in
the series for h appears. (Note the similarity to the vortex drag opti-

mums in incompressible flow.) If h = CVl - (x/'MR)2 then dD/ds = p02/16.
Substituting in the equations above leads to the final result,

paLe

Dy, = = _ _
ave 8angM2
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CHAPTER VII. THE OPTIMUM DISTRIBUTION OF VOLUME ELEMENTS ALONE*

A. THE SINGULIARITY REPRESENTING AN ELEMENT OF VOLUME

The investigation of 1ift distributions is simplified by the use of
a singularity which represents an element of 1lift. This singularity is
the elementary horseshoe vortex. The Intensity of 1ift corresponds to
the strength of the singularity and the location of the 1ift force is
identicsl with that of the bound vortex. The study of volume (or
thickness) distributions 1s similarly simplified by identifying the sin-
gularlty which corresponds to an element of volume.

Consider a source and sink of equal strength and located on the same .

streamwise line. In each unit of time a certain quantity of fliuld is
introduced into the flow pattern by the source and the same quantity is
removed by the sink. The volume occupied by the fluid flowing from source
to sink depends on the strength of the source and sink and the distance
between them, and slso depends on the velocity and density of the fluid
flowing from source to sink. However, if the volume 1s to be considered
a linear function of the strength of the singularitles, then the mean
value of density times velocity must be unaffected by the perturbation
velocities created by the source and sink. This means that in a line-
arilzed treatment of the problem the fluld flowlng fraom source to sink
mey be consldered to have free stream density and velocity.

Iet m = Mass of fluid introduced per unit time

d = Distance between source and sink
Py = Free stream density -
U, = Free stream velocity

Then the volume occupled by the fluld is

vol = md/(poUo)

Since the volume 1s proportional to md, doubling the intensity of
source and sink and halving the distance hetween them should produce a
shorter, but thicker volume of the same megnitude. This suggests pro-
ceeding to the limiting case (as in incompressible flow) where the source

* The contents of this chepter have appeared in the paper "The Drag of
Non-Planer Thickness Distributions in Supersonic Flow," published in
the Aeronauticasl Quarterly, Vol. VI, May 1955.
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and sink are combined in a dipole with axis in the’ free stream direction.
This singularity should represent an element of volume, although the
fineness ratio of the element is zero.

The potential for & unit source at (£,0) in supersonic flow is

g = =L
2ﬂWx - £)2 - per2

Where B = VME - 1; x and § are coordinates 1n the streamwise direction
and r is radial distance from the x axis.

Differentiating with respect to x gives

- (x - &) - ¢v
X
o[ - 812 - 222

where ¢v 1s the potential for the unit dipole or an element of volume
equal to l/Uo.

Ps

B. TEE DISTRIBUTION OF VOLUME ELEMENTS

For a distribution of volume elements along the & axis with inten-
sity £(&), starting at £ = O, the potential is

X~pr

g=-21 £(g)(x ~ &)de
2
o -z e

Integration by parts gives

x-Br x-Br

- £(&)
QﬂV(X - £)2 - p2r2

o1 £'(e)aE
0 2t Jo f(x - £)2 - gor2

The first term in the expression for the potentisl is infinite,
and apparently corresponds to the "roughness" of the body, which is an
assembly of blunt elements (see illustration).

—- ————
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The smoothly faired body (indicated by desh lines) is all that we .
are concerned with, and this creates the finite part of the potential.
This £inite part is also the potential for a source distribution of _ N
intensity equal to +£'(£). This source distribution can be used to con- .
struct a body of revolution extending from -1/2 to +1/2.

The shape of the body of revolution created by the singularity dis-
tribution may be obtained approximetely by slender body theory or more
accurately by "exact" linear theory. In the first case the volume is

T2 g(e)ae ) ' -
d/\ / = which agrees exactly with the sum of the volume elements.

1/2 S -
An example of the second case is shown in Fig hr-2 where & singularity
distribution on the axis is interpreted first by slender body theory
then by "exact" linear theory as a "bump" on a cylinder. The bump shapes
and locations are quite different but the volumes are identical. This
has been proved by Lagerstrom and Bleviss and generallzed by Bleviss in
Ref. 22.

A planar distribution of volume elements may be interpreted by
("exact") linear theory as a thin plenar wing. The volume contailned in
this wing is exactly equel to the sum of the volume elements.

The concept of the volume element is not necessary for the study of -
smooth slender bodles of revolution and planar wings, since these con- '
figurations are relatively simple. BHowever the use of the volume element
does help to clarify problems involving more general spatlal distributions :
of thickness. - — N Co-

The points to be emphasized are that fixing the sum of the wvolume
elements fixes the total volume, and fixing the distribution of volume
elements determines the drag. It is therefore possible to study the
drag of a distribubtion of wvolume élements without celculating the exact
shape of the corresponding body. This is analogous to the fact that the _
dreg of a distribution of 1ifting elements can be studied without calecu- = __ _
lating the twist and camber of the corresponding wing surfaces.

C. THE DRAG OF VOLUME DISTRIBUTIONS ON A ) _ _
STREAMWISE LINE AND THE SEARS-HAACK BODY _ .

A body of revolution may be constructed from a dlstribution of vol-
ume elements along a streamwise line, or from the equivalent distribu-
tion of sources. The body constructed from volume elements 1s an
"infinitely rough" body and has infinite drag. However, discarding the
infinite part of the potentiasl leaves z "smooth" body (with finite drag) .
which is equivalent in every respect to the body created by a source '
distribution. N
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If f(x) is the intensity of the volume element distribution for a
body of revolution of length "1" then the drag is given by(l6)

+1/2 p+l/2
/2 U/11/2 )f"(xz)lnlxl - xaldxl ax,

To maintaln constant 7otal volume according to linearized theory
+1/2
it 1s necessary that u/\ ) f(x)dx = Constant. The body shape giving
-1/2
minimum drag for a given length and volume has been determined by Sears(lS)
and Haack(1T) independently. The corresponding f£(x)} (which is propor-
tional to the cross-sectionsl area) ig given by

Lopt(x) = ™ 7 T 3x  1/2

+1/2
l6i% _ (g%>2]5/2 d[:1/2 Fx)ax _ 8Us volume E__ <2x 2]3/2

Thus the optimum distribution of volume elements along the axis
corresponds to the cube of an elliptical distribution. (For lifting
elements the optlimum m distribution is elliptical.)

The value of the minimum drag is

f+Z/2 (
by dax
Dty = §g<1>2 -1/2 ) _ 92(1)2 volume 2
T Uo(2/2)° ®\2/ 1 (1/2)3

2

D. THE SEARS-HAACK BODY AS AN OPTIMUM
VOLUME DISTRIBUTION IN SPACE

If the volume elements are not confined to a single streamwise line,
then the drag contributions et different angles, 8, on Hayes' cylindrical
control surface are not necessarily the same. For any one angle, 0, the
drag is glven by

3D +z/2f +1/2

1/2

£ (x1,0) 2" (x an —xld.xdx
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Here £(x,0) is determined by the use of "Mach planes" for the
angle 6. All the volume elements intercepted by any one "Mach plane"
are transferred (in the plane) to the streamwise axis. The resulting

distribution along the axis is £(x,0). The problem of finding the mini-

mum drag contribution at the one angle 6 is then similar to the Sears-

Haack problem. If £(x,0) corresponds to the cube of &n elliptical dis-

tribution for every @, then the total drag is a minimum, and the dreg

contribution at each 6 is e minimwmm and corresponds E_ thet of an equiv-

alent Sears-Haack body.

It 18 not always possible to simultaneously minimize the drag
contributions at all angles 6. However if we conslder the optimum
distribution of thickness
within a space which has
rotational symmetry =sboub ~
8 streamwise axis, then -
it may be possible that
all the equivalent bodies
are Sears-Haack bodies
having the sasme length. _

For example, consider that ' : - \
a double Mach cone bounds
the space within which
thickness is to be distrib-
uted. The Sears-Haack _ J
body placed on the axis - =T
is an optimum for this
space. It has the same - -
drag contribution at SEARS~-HAACK BODY BOUNDED
every angle on the cylin- BY DOUBLE MACH CONE SPACE
drical control surface, -
and of course, the
"equivalent" body of .
revolution for any angle 6 is identical wi'bh the real body Howe'vef,
a "ring" wing (which carried no radiasl forces) plus & central body of
revolution can be designed : o
to have exactly the same
drag as the Sears-Hsack
body. The equivalent
bodies of revolution are
all identical with the
Sears-~Haack body. This
is discussed in the next
section. (For the case
in which radial forces
are carried on the ring
wing see Ch. IX.)

A
\s

s

RING WING PLUS CENTRAL
BODY HAVING SAME DRAG
AS SEARS—-HAACK BODY

K

il

ik |

| ‘i] I I‘jllli-
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E. RING WING AND CENTRAL. BODY OF REVOLUTTION
COMBINATION HAVING THE SAME DRAG AS A SEARS-HAACK BODY

Consider a ring-wing plus a central body of revolution contained
within the space bounded by a double Mach cone. Because of the rota-
tional symmetry of this particular system, the equivalent body of revo-
lution is independent of the engle 6 on the cylindrical control surface.
In this case, if the local radial force on the wing is everyvwhere zero,
the drag of the equivalent body of revolution is, according to Hayes'
formula, identical to the drag of the original system. Thus, a ring-
wing (which carries no radial force) plus a central body of revolution
will have exactly the same drag as a Sears-Haack body if the equivalent
body of revolution is a Sears-Haack body.

To design such s system, we may select any smooth, slender profile
for the ring-wing and compute the cross-sectional areas cut from this
wing by a set of parallel Mach planes. These areas must then be sub-
tracted from the cross-sectional areas which would be cut from a central
Sears-Haack body by the corresponding Mach planes. The resulting area
difference defines the ares distribution (in the Mach planes) of the
correct central body. (This area must be projected normal to the flow
direction to obtain the cross-sectional area of the central body defined
in the usual way.) This body, together with the ring-wing originally
selected, is an optimum distribution of thickness within the double Mach
cone space.

As an example, consider a ring-wing with thickness distribution
corresponding to a bil-parsabolic arc profile. The camber necessary for
zero local radial force need not be determined, since it does not affect
the shape of the central body. Assume that the wing is six percent thick
and located half-way between the exis and the apex of the space. If the
central body of revolution is designed so that the equivalent Sears-Haack
body is of fineness ratio 5, the resulting shape of the central body of
revolution is as shown in Fig. Te-1l.
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EQUIVALENT BODY OF
REVOLUT/ION

CENTER BODY OF
REVOLUTION

Fig. Te-l: Cross-sectional view of ring-wing end central body
(an optimsl distribution of thickness within the double Mach
cone space)

F. OPTIMUM THICKNESS DISTRIBUTION FOR A
PLANAR WING OF ELLIPTICAI PLANFCRM

Tt is desired to find the optimum thickness distribution for a
planar wing of elliptic plenform and given volume; this problem was

first solved by R. T. Jones(lh). A geometrically simpler problem, which
will be examined first, i1s to f£ind the optimum thickness distribution

for a circular wing of given volume. The method of anes(l) in which
the drag is evaluated by summing increments of drag at each angular sta-
tion around a cylindrical control surface far away from the body, will
be used. For the total drag to be a minimum, the increment of drag at
each angular station should also be & minimum.

If the thickness distribution of the circular planform is rota-
tionally symmetric, then the equivalent bodies at each anguler station
will have the same shape (although different “fineness ratios") due to
symmetry. If t(r) is the thickness distribution to be optimized for a
glven volume V, then :
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R
vV = 2::]2) t(r)r dr- - (7E-1)

where R 1s the radius of the circuler wing and r, 0 are polar coordinates
from the wing center (Fig. 7f-1). The area cut out at each point along
the £ axis by plenes normal
to that axis is

s(g) =

I
+
>s]
ll\)'.:U
U ]
)
ct
ol
0

2 52
The equivalent lineal distribution along the x axie is
R
S(x) = 2 cos p,f __% (7f_3)
x cos p fr2 - x2cos?y
with
+R sec pu
f 8(x)dx = V
-R sec p
For minimum drag, this distributlion should be (Ch. VF)
513/2
S(x) « [l - (%/R sec u)] (7£-4)

Thus the integrel equetion to be solved for t(r) is

K[; - (x/R sec u)é] = 2 cos er

X COS U Vr2 - xecosep

R t(r)r dr

(7£-5)
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where K 1s a constant dependent upon the given wing volume. By a suit-
able transformation of coordinates, Eq. (7£-5) may bée written in the form

K¢5/2 f t(a)da | (78-6)

R sec p - {":‘;

where _ —
¢ =1 - (x/R sec p)e
a=1- (r/R)2

Eq. (T7f-6) is called Abel's equation and its solution is well known,
c.f., Ref. 19. The solution to Eq. (7f-6) is i

t(r) = E-(r/R)]

IR cos p

end substitution of this in Eq. (7f-1) determines K; then -
2
t(r) = 35%5[% - (r/R).} (7£-7)
R

Equation (7£-7) thus gives the distribution of thickness which will
result in minimum drag for the circular planform wing of given volume.

To apply the circular planform solution to the original problem of
finding the optimum thickness for an unyawed elliptic planform, make
the following change of coordinates:

X = .
R
+b (7£-8)
Y = BY B
o Pl 2
— T

L

Fig. 7f-2
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The circular wing is then transformed into an elliptic wing whose equa-
tion is :

(& (&) -

It can be verified that the thickness distribution

cER-ERE] e

obtained fram Eq. (7£-T) through the transformation Eq. (7£-8) is the
optimum for this more general case; that is, the equivalent linear dis-
tribution for Eq. (7f-9) with a set of Mach planes inclined at the
angle p as shown in Fig. 7f-2 is

s(x) = i[ - @ﬂ 7 (7£-10)

3l l

where

1 = VQE + bztangp

Since Eq. (T7£-10) represents a Sears-Haack body, the thickness given by
Eq. (7f-9) is optimum for the unyawed elliptic wing.

Determination of the total drag in this optimum case involves an
integration of the drag increments from these Sears-Haack bodies as
seen at each angular reference station. If the reference station is

at an angle 6 from the horizontal, then the Mach planes cut the elliptilc
planform at an angle p defined as (Ch. IVC).

ten p = M2 - 1 cos © (7£-11)

and the totel drag 1s

2
D=f D 35
o a8
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The increment of drag at each reference station is (Ch. Ive)

_ .9 mfms" s"(¢)infx - glax a o -
ae meo 0 &) (_g)nlx gL : : T T

(1e-12)
ll'qv2 o - ) - . . _- il —
2, ) _ _ -

s

and the totael drag for the optimum thickness distribution Eq. (7f-9) is

2 ME -1 2:
hqv b
Dopt = (7£-13)
N 2\
M= -1 4 22
| B8
Defining - T T

and - .

D = Cpawab

then

Cp_, == . - (7£-1%)

This result agrees with that given by Jones(lh).
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CHAPTER VIII. UNIQUENESS PROBLEMS FOR OPTIMUM DISTRIBUTIONS IN SPACE

A. THE NON-UNIQUENESS OF OPTIMUM DISTRIBUTIONS IN
SPACE - "ZERO LOADINGS"

In the subsonic flow of a perfect fluid the only drag caused by a
lifting wing is vortex drag. The minimum possible vortex drag for a

planar wing is obtained when the spanwise 1lift distribution is elliptical.

According to Munk's stagger theorem(l5) the chordwise location of the
1ifting elements is unimportant, so there are infinitely many distribu-
tions of 1ift over a given planform which produce the minimum drag.

In supersonic f£low 1lift ceauses both vortex drag and wave drag. The
chordwise location of lifting elements is still unimportant in deter-
mining vortex drag, but does affect the wave drag. For this reason the
optimum 1ift distribution for a planar wing is generally unique in super-
sonlc flow. However, spastial 1ift distributions offer more freedom in
the arrangement of lifting elements and the optimum distributions in
space are not generally unique even in supersonic flow.

For example, the minimum wave dreg due to 1lift in a double Mach
cone space can be attained with each of three different simple 1ift dis-
tributions. (See VI-C.) The first is a constant intensity over the
circular disc located at the maximum cross-section of the space. The
second is an elliptical intensity concentrated on the axis of the double
Mach cone. The third is a constant intensity throughout the entire
double Mach cone. If the first two distributions are superimposed, one
carrying a unit of positive 1ift and the other a unit of negative 1ift,
the result is a net 11ft equal to zero. Also, the net strength of the
1lifting elements intercepted by any cutting plene inclined &t the Mach
angle is zero. This means that the comblned distribution has zero wave
drag. Furthermore, there are no disturbances whatsoever produced on
the distant control surface near the Mach cone and no wave drag inter-
ference can exist with any other loading. If another such combined dis-
tribution with opposite sign is placed on the same streasmwise line with
the first one, then, by Munk's stagger theorem, the vortex drag is zero
also. This is one example of a "zero loading" (see illustration), and
many others can be constructed.
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ACZERO LOADING ’PLACED WiTHIN AN ELLIPSOIDAL SPACE

Such & "zero loading" placed within any space alters neither the
1ift nor the drag of the originsl 1ift distribution. For this reason
optimum 1lift distributions in three dimensions are never unique (unless
the space degenerates into a surface).

Similar arguments can be applied to optimum distributions of volume.
For an example of non-uniqueness in such cases see Ch. VII.

B.  UNIQUENESS OF THE DISTANT FLOW FIELD ° B o -
PRODUCED BY AN OPTIMUM FAMILY

It has been shown that optimum 1ift or volume distributions in
space are not generally unique, since a group of optimum distributions
can be obtained from one given optimum distribution by superposition of

"zero loadings." Each member of the group produces the same (minimum)
value of drag for a given total 1ift or volume. _

From the method of construction of this group (by the use of "zero
loadings") it follows that each member produces the same velocity per-
turbation field in the Trefftz plane and on the distant control surface
near the Mach cone. It can also be shown that there are no optimm dis-
tributions outside this group, since all possible optimum distributions
are indistinguishable from the "distant”™ viewpoint.

Assume theat flo t(&,n, t) and fzo t(g,n,;) are members of the opti-

mun family not included in the original group (whose members were related
through "zero loadings"). Assume also that flopt and f20pt do not pro-

duce ldentical perturbation velocity fields far from the singularity
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distribution. Then the drag of flo " equals the drag of f, £ (or
P op
- . . . i £
Dlopt DEopt) by definition of the optimum family. Also 2opt may be
set equal to flopt + Af, where Af carries zero net lift (or volume),

but has a wvelocity perturbation field which is not identicalLy zero far
from the singulerities.

The distribution Af is orthogonal to (does not interfere with) flopt'

This follows because any given 11ft or volume distribution can be improved
through combining it with a distribution having zero net 1ift or volume
if there 1s interferenceé drag. However flopt’ by definition, cannot be

improved, and must, therefore, be orthogonal to Af.

Since Af is orthogonal to flopt’ D20pt = Dlopt + Dpp, but we also
know that Do £ Dy £ and, therefore, Dhp must equal zero. Here we -
op op

can obtain a contradiction since both the vortex drag and the wave drag
depend on the sgquares. of velocity perturbations (in the Trefftz plane

and far out on the Mach cone) and the drag contribution from each portion
of the control surface is non-negative. TIf Af produces any disturbances
fer from the lifting system it must have positive drag, and so Af must
produce identically zero disturbances to have zero drag.

The above contradiction shows that all the members of the optimum
family are indistinguishable from the distant viewpoint.

If drag is computed from the "close" viewpoint the above argument
cannot be made. Drag contributions then appear as the product of local
pressure times angle of attack on the wing surfaces, and these quantities
are not necessarily non-negative at every point on the surface.

C. UNIQUENESS OF THE ENTIRE "EXTERNAL" FLOW FIELD
PRODUCED BY AN OPTIMUM FAMILY

It has been shown that any two members of an optimum family produce
identlcel velocity perturbations on the distant control surface.

If flopt(ﬁ,ﬂ,C) and feopt(é,ﬂyg) are two members of an optimum

femily, then flo.t - £y + must produce identically zero veloclty per-
D opL .
turbations on the distant control surface, and the drag will be zero.

Iet "S" designate the space within which the singulerity distribu-
tion fq 6 " fs " exists, and let "E" represent the external flow field
op op _
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consisting of points whose aft Mach cones - E ER -
do not intersect "S." Assume that at

some point in the external field "E" the
resultant velocity wvector is inclined to
the free stream direction. Then an ele-
mentary wing can be inserted at that

point with the angle of attack adjusted

to give negative drag on the wing. Since
the singularities in "S" are outside the
aft Mach cones of all points in "E," the
net drag change produced by the elementary
wing i1s negative. However, fchpt feopt

is a singularity distribution causing zerc
drag, s0 flopt feopt plus the elementary

wing is a system having negative drag, although it is an isolated system
inserted in a uniform flow field. However, the dreg of this system eval-
uated on a distant control surface comes from a summation of positive
quantities and camnot be negative. This contradiction shows that the
external flow field "E" produced by flopt-; féopt must consist of velocity
vectors aligned with the free stream direction. These vectors must also
have the magnitude of the free stream velocity; hence, the externsl flow
field 1s completely undisturbed, and it can be concluded that all members
of the optimum family produce the same flow pattern in the external )
field "E." .
It is of interest that a similar proof Cénnot be made for subsonic.
flows. In such cases there is no external region where an elementary
airfoll can be ilnserted without producing interference effects at the

original singularities. : = %

D. EXISTENCE OF SYMMETRICAL OPTIMUM DIS‘IRIEﬁTIONS
IN SYMMETRICAL SPACES

It can be shown that, if the boundary of & space hdgs a horizontal
plane of symmetry, then there is one member of the family of optimum
1lift distribution within the space which is symmetrical about the plane.
The proof is as follows:

Iet lopt(x,y,z) represent an optimum 1ift distribubtion in the space; )
The distribution Eopt(x,y,—z) has the same drag and 1ift (the drag of - g

Sl
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the individual lifting elements
is unaltered by the change of
position, and the interference
drag of any element pair is
unaltered also).

Since 1.4(x,y,-2) has the
same 1lift and drag as lopt(x,y,z)
it is also a member of the optimum
family. All members of the opti-
mum family produce the same exter-
nal flow field, and any distribu-
tion producing that field is an
optimum. The distribution,

%7'O'p't<x:Y: -2) + %Iopt(x:y;z) pro-

duces the same external flow field

as Zopt(x,y,z). It is, therefore, an optimum, and since 1t 1s also
symmetrical about the horizontal plene the proof 1s completed.

Similar proofs can be developed for cases where 1lift, thickness,
and side force elements axre present.

symmetry can be used.

Also certain other planes of

93
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CHAPTER IX. INVESTIGATION OF SEPARABILIf§ OF LIFT,

THICKNESS AND SIDEFORCE PROBLEMS*

THE SEPARABILITY OF.OPTIMUM
DISTRIBUTIONS PROVIDING LIFT AND VOLUME -

|=

Separabllity Questions - ' - —

For the purpose of drag evaluatlion a complete gaircraft 1s repre-
sented by a distribution of 1lift elements, volume elements and possibly
sideforce elements in space. A certain net 1ift must be provided to
support the weight and & net volume must be provided to house payload,
fuel, structure, etc. The drag should then be made as small as possible
with the net 1ift and volume equal to the prescribed values. -

Several questions arise. Can we first study the problem of how

- best to provide the required 1ift (with no net volume ), then determine
the best way to provide the regquired volume (with no net 1ift), and
finally by superposition obtain the optimum distributions of singulari-
ties for simultaneously providing the net 1ift and volume? If this
procedure is possible will the drag of the combination be the sum of
the dregs of the two superimposed distributions? Does the optimum way
of providing the 1ift with no net volume require only lifting elements
or are volume and sideforce elements necessary? Similarly does the
optimum way of providing the volume with no net lift require singulari—
ties other than volume elements?

For horizontal planar systems the answers to these questions are
comparatively simple. The 1ift and volume problems can be studied sepa-
rately and the optimum singularity distributions superimposed. The drag
of the combination is the sum of the drags of the individual distribu-
tions. Finally, the optimum way of providing the 1ift requires only
lifting elements and the optimum way of providing volume reqpires only
volume elements. B

All of the above results follow from the fact that in horizontal
plenar systems there is no interference drag emong 1ift, sideforce, and
volume elements. However this is not true in general for non-planar
systems, and consequently the above problems must bq:re-investigated
for these more general configurations. . ) -

¥ Portions of this chapter have appeared in the paper "The Drag of
Non-Planar Thickness Distributions in Supersonic Flow," published in
the Aeronautical Quarterly, Vol. VI, May 1955. -

ul
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Optimum Distributions Providing Lift and Volume

In non-planar distributions of 1lift, sideforce and thickness there
is generally interference smong the different singularities. This means
that the drag for a given net 1lift may in some cases be decreased by
adding thickness or sideforce elements and taking advantage of negative
interference drag. :

In order to study such cases let 1(x,y,z), t(x,¥,2z), and s(x,y,z)
represent respectively distributions of 1ift, thickness and sideforce
in x,y,z space within some boundary. Here we will exclude, without loss
of genersality, those distributions of 1 and s which are completely equiva-
lent to elements of volume or thickness (see IIT-A, the closed vortex

line). Tet lll(x,y,z) + 5,°(%,¥,2) + 51°(x,y,2) give the minimum pos-

sible drag for one unit of net 1lift and zero net thickness and sideforce.
(The superscript simply indicates the net 1lift or thickness or sideforce

of the distribution.) Also let 1,°(x,y,z) +_t21(x,y,z) + 85°(x,¥,2) glve

the minimum possible drag for one unit of net volume and zero net 1lift
and side force. We ask what distribution gives the minimum drag when
both the net 1lift and net volume are simultaneously prescribed and equal
to L, and V, respectively?

Consider the distribution A(x,y,z) = Ly [7'11"' 'tlo + slé] + Vg [7.2°+ t21+ szﬂ

which gives the prescribed net 1lift and volume. For this to be the opti-
mum it is necessary and sufficient that 1t be orthogonal to every distri-
bution 1° + t° + s°, which contains zero net 1lift, zero net volume and
zero net sideforce. For example, any loeding 1° + t° + s° multiplied by
an arbitrary constant C can be superimposed on A without altering the

net 1ift, L, and net volume, V,. TIf this distribution 1° + t° + 8° vere

not orthogonal to A, then C could be adjusted to give a negative inter-
ference drag with A grester than the drag of C(1° + t° + s©) by itself.
Hence the distribution A could be improved and therefore would not be

an optimum. It is also true thet any possible improvement of A must be
obtainable by superposition of a loading of the type C(1° + t° + s°) on A.
So for A to be an optimum it is both necessary and sufficient that A be

orthogonal to any loading 1° + t° + s°.

However, 1,7 + £1° + 5;° and 1,0 + t21 + 850 are each orthogonal to

any 1° + t° + s° since each one is an optimal distribution in its own
restricted class. Therefore because of the linearity of the interference

terms Lo(lll + t1° + slo) + VO(12° + tzl + sQO)is orthogonal to any
1° + t% + 8% and A(x,y,2) is the optimum distribution having lift = L
and volume = Vg.
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The Drag of the Optimum Distribution Providing Lift and
Volume in a Region Having a Horlzontal Plane of Symmetry

The drag of the optimum distribution A(x,y,z) must next be deter-
mined. If 191 + ©,° + 8;° is orthogonal to 1,° + tyl + 8,0 then the

drag of A(x,y,z) is just the sum of the drags of Lo( 197+ tl + 81 )

and of VO(?.EO + tT + B ) We know that (2 + bt + 52 _L (tl + slo)
so the questlion arises is (120 + tgl + sgo) also _L?,j_l? (Here the sym-
bol "|" indicates orthogonality.)

In order to answer this question it is conxenient to represent
19 (x,y,z) by a concentrated 1ift of one mnit 215 plue a distribution
contalning zerc net 1lift Zlo(x,y,z). The concentrated unit of 1ift can
be placed anywhere in the space and then 1;°(x,y,z) is simply the dif-

ference between lll(x,y,z) and. Zlal' Similarly it Is convenient to
replace t12 by t125 + t°2(x,y,z). The optimum distiibution is then

Alx,y,2) = Lo (11_51 + 2%+ 5,°% slo) + Vg (t%l +_12° + .0 + 520)
The distributions in brackets are orthogonal iﬁ?
st Lot + 1%+ 1p° + 85
or if
togt L 1ygT + 170 + 51° 4 8,° ) | - -

The concentrated unit of 1ift 2151 may be located at any polint in

the space and has the same ilnmterference drag with (tzsl + 120 + t2° + 520)
for all locations. Thus if there is iﬂx point in the space where a unit
of 1ift has no interference with (t26 + 7.20 + t2° + 520) the orthogo-

nelity of the two components of A(x,y,z) is assured. (This does not
depend on the connectivity or the convexity of the space.)
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For example, if the boundary of a space has a horizontael plane of
symmetry, then there are optimum distributions in the space having sym-
metry properties. (The proof is similar to that given in Ch. VIII for
a lift distribution.) If scme portion of the plene of symmetry is con-
talned inside the space then the concentrated unit of 1ift can be located
in this plane and orthogonality demonstrated.

B. THE NON-INTERFERENCE OF SOURCES WITH OPTIMUM
DISTRIBUTIONS OF LIFTING ELEMENTS IN A SPHERICAT. SPACE

In general there is interference between non-planer distributions

of sources and 1lifting elements, as shown by Hayes(l). This means that
in general the optimum distribution of singularities which provides one
unit of 1ift msy contain volume elements or sources as well as lifting
elements. However for certain spaces it can be proved that there is no
interference between a source and the optimum distribution of lifting
elements alone. §So for these spaces the optimum way of providing 1ift
requires no sources.

Following is a proof that a single source placed &t any point within
a sphere has no interference drag with the optimum distributions of
lifting elements alone in the sphere.

An optimum distribution of the total 1ift, L, within a sphere of
radius "R" (center at the origin) is glven by (see Appendix VI-1)

L
7'o t =
P 2R2fRE - £2

where r = Spherical radius to
any point. Iet a source loca-
ted at an srbitrary point, P,
within the sphere be denoted
by S, and let P' be the pro-
Jection of P on the horizon-
tal (x-y) plane. The poten-
tial of S is 1dentical with
that caused by some lifting

element distribution, i, :

on the line between P asnd P' plus a source S' at P'. (See Ch. IIT
Section B. The shells which have sources and sinks on the top and bot-
tom faces respectively are arranged to form a vertical column of infini-

tesimal cross section.) The distribution 1t hes zero net 1ift.

— X
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The interference between Zopt and S is equal to the interference

between Ilopt and S' plus the interference between lopt and 1L, Tme first

component is zero because of the symmetry of zopt about the x-y plane,

(see the discussions of interference in Ch. IV). If the second compo-
nent were not zero it would be possible to obtain a distribution of
lifting elements alone with lower drag than zopt' Since Iopt has the

minimum dreg by definition, the second interference component is also
zero. This completes the proof for a particular 10pt'

This proof can be extended to the entlre family of optimum 1ift
distributions in the sphere as follows. As previously mentioned, all
of the optimum distributions produce identicel effects far out on the
Mach cone and far behind the wing system. Interferente drag terms can
be computed from these distant effects alone. Hence & source has the
same Iinterference drag with each of the opbtlmum distributions, and this
is zero for all cases since 1t has been proved zero for one case.

This proves that source distributions in a spherical volume cannot
reduce the drag attained with any of the optimum distributions of 1lifting
elements alone in that volume.

Similer methods may be applied to ellipsoids having one principal
axis vertical, to double Mach cones, and ‘to many other volumes. It is
sufficient that the volume have & horlizontal plane of symmetry, and that
the vertical lines connecting all points in the volume with this plane
are entirely contained within the volume.

C. THE NON-INTERFERENCE OF SIDEFORCE ELEMENTS WITH OPTIMUM
DISTRIBUTIONS OF LIFTING ELEMENTS IN A SPHERICAL SPACE

As shown by Hayes(l) there is, in generel, interference between
non-~planar distributions of 1lifting elements, sideforce elements and
sources. It has been proven in Ch. IX-B that there 1s no interference
between & source and the optimum distribution of 1ifting elements alone
in a sphericel space. It remains to show a similar result for the inter-
ference of a sgideforce element with the same optimum 1ift dlstributions.
The proof will be carried out in a manner similar to that of the previous

proof.

Consider an optimum distribution of total 1ift L in e sphere of
radius R; the 1ift distribution is given by

L

lopt = =
ﬂEREVRa - 1@

- .E.H at l []

i
|| |...L€h HE-
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where r is the radius to any point from the center of the spherical
space. Iet S be a sideforce element at a polnt P within the sphere,
and let P' be the projection of P on the xy plane.

o X

Fig. Gc-1

As part of the proof it is necessary to show how a sideforce ele-
ment can be transferred from one point to another along a line parellel
to the y eaxis. The procedure 1s shown 1n Fig. 9c-2. First a vortex
ring of infinitesimal height and finite wildth, 4, is superimposed on the
original sideforce element; the strength and placement of the former is

: y /tc— / .

c— d 2
P,%2) I / l
G— A
Vot c__
hd P(Yyd,Z)
-
S/OE FORCE |  VORTEX LIFTING LINE _ SIDE FORCE
ELEMENT RING + pousLET = ELEMENT

Fig. 9c-2

to be such that the sideforce at P(x,y,z) is Jjust canceled. The poten-
tial for the vortex ring can be found by integreting the potentials for
constant-strength infiniteslmal vortex rings (Ch. IITA) distributed along
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the line x,z = Constants. The second step 1s to superimpose on the
vortex ring & finite width 1ifting line “doublet." This latter singu-
larity is formed by taking the 1imit as two equal and opposite strength
finite width 1lifting elements sre brought together keeping the product
of 1ifting element strength and distance apart constant. The potential
of the original sideforce element at P(x,y,z) plus the two added ele-
ments, ¢S(x,y,z) + ¢V + ¢D, is 1dentical to that for a sideforce element

at P(x,y-d,z).

Thus the potential of a sideforce element "S" ingide the spherical
space 1s the same as that for a finite vortex ring "V," plus a lifting
line doublet "D," plus a sideforce element "S'" in the vertical plane of
symmetry (at P' in Fig. 9c-1). The interference drag between the opti-
mum 1ift distribution 10Pt and S is equal to the interference drag

between lopt and S' plus that between lopt and V plue that between lopt
and D. The last of these drags must be zero since D 1s a 1ift distri-
bution having zero net 1ift; if this were not zero D could be combined
with lopt to form another distribution having less drag than lopt
(Section 4H), in contradiction of original assumptions., Since V can be
thought of as bullt up from distributions of infinitesimal vortex rings,
which in furn are made up of source-sink doublets with axes aligned with
the stream direction, the interference drag between V and lgpt 1s zero

by the proof given in Ch. IX-B.

The only possible interference drag with lopt could be that of the
sideforce element S' in the vertical plane of symmetry, and this can be
shown to be zerc because of the symmetry. Consider the interference
drag of S§' with 1ifting elements in the rear Mach cone of S' as shown .
in Fig. 9c-3a. The interference drag will be due to the downwash of S

e e
p T .
s o7 QFe= Lrse -
~
e ~ s /
QL,. 1L; — > X 6:— L 1?51-36
// ~
N 4 P g A 73
AN T A
N\ Wy \\
N N
~ ~
AR
@) - (8)

Fig, 9c-3 ' ' .
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acting on the lifting elements (see Ch. IV-J); for each 1ift element lb
which receives a downwash from S' there is another 1lift element lg of

the same strength which receives an upwash of equal magnitude. Hence
the interference drag of S' with each pair of lifting elements in its
rear Mach cone is zero. Consider now Fig. 9c-3b representing S' and s
pair of 1ift elements in its fore Mach cone. The interference drag

here is due to sidewash fields from the 1ift elements acting on S'. But
for every 1ift element 1lg producing a sidewash vg on S' there is a sym-

metrically placed 1y, producing a sidewash Vp = =Vg on S'. Again the

interference drag 1s zero. Thus there is no interference drag between S'
and lopt and hence none between S and lopt for this particular lopt-

Following the same type of reasoning as is given in Ch. IX-B, this proof
can be extended to all optimum distributions within the sphere; this is
50 because of the uniqueness of the optimum external flow field.

Thus it is proven that sideforce distributions, as well as source
distributions, in a spherical space cannot reduce the drag attained with
any of the optimum distributions of 1liftlng elements alone in that space.

Similar methods may be applied to other speces if those spaces have
both & horizontal and a vertical plane of symmetry containing the free
stresm direction and meet certain convexity regquirements. The latter
can be stated as requirements that straight lines from each point within
the space which extend to the planes of symmetry and are perpendicular
to them must lie entirely within the space.

D. INTERFERENCE PROBLEMS IN CERTATN SPACES
BOUNDED BY MACH ENVEIOPES -

Iet some region "R" be chosen in the y-z plane, which is perpen-
dicular to the flow direction. Consider the space "S" consisting of
points such as "P" whose fore or aft Mach cones intersect areas in the

=z A?C)LUVZIA&?Y:;)F’
REGION R
IN Y-Z PLANE

OF AIRFO/ILS
N Y~-Z PLANE

A set of parallel Mach planes cutting this source distribution determines
an equivalent lineal source distribution according to the method of Hayes.
For convenlence, this equivalent lineal source distribution will be denoted
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y-2z plane which are completely contained in the region "R." An optimum *
distribution of 1lift in this space 1s given by a uniformly loaded cascade

of airfoils (of infinitesimal chord and gep) covering the region "R,"

since thls gives constent downwash Iin the combined flow field. . -k

. The resulting flow pattern is two-dimensional within the space "S."
It then follows that the sidewash and pressure are 2ero in this spece
and sideforce elements or sources introduced in "S" have no interference =
with the optimum 1ift distribution. B - - -

E. THE INTERFERENCE BETWEEN LIFT AND SIDEFORCE ELEMENTS
AND AN OPTIMUM DISTRIBUTION OF VOLUME ELEMENTS

Consider a Sears-Heack body placed on the axls of a double Mach1 _
cone, and place a 1lifting element as shown in the illustration. The_
interference drag between body

and lifting element is composed LIFT ELEMENT-
of two parts, the effect of the ___Q_, TRAILING
body nose on the lifting element \ VORTICES
and the effect of the 1ifting ) - ]
element on the tall of the body. _ a
- e p -
The nose of the body corre- ; i

sponds to a source distribution - !
and produces an upwash velocity at .
the 1ifting element. This causes Lo
negetive drag. The lifting element produces a positive pressure at the

tail of the body. This also causeg negatlve drag so the total inter- -
ference dreg is negative. (This argument, of course; applies not only
to the Sears-Haack shape but to other shapes also.)

The total drag of the combinstlon i1s equal to the drag of the
Sears-Heack body alone plus the drag of the 1ifting element alone plus
the interference drag. The drag of the lifting element .alone is pro-
portional te the square of the 1ift it carries. However, the lnterfer-
ence drag is proportional to the first power of the 1ift on the element
and to the first power of the strength of those sources and sinks in
the body which are affected by interference. The lift carried by the
element can, therefore, always be made small enough so that the drag of
the element alone is less (in absolute magnitude) than the interference
drag. Thus, the total drag of the combination can be made less than
the drag of the Sears-Haack body slone. N ‘ . .

This suggests placing elements of 1ift and sideforce in a ring
about the Sears-Haack body, and so arranged thet the force on each ele- -
ment is directed radially outward from the body. Thls process may be
used to construct a central body plus cylindrical shell which has zero
drag (see Ch. IX-F). -
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Such a system was investigated first by Ferrari(21) and later by

Ferri(zo), and its two-dimensional analogue is the Busemann biplane.

1t, therefore, appears that the optimum distribution in space of
volume elements alone ylelds minimum drag velues consistent with the
Sears-Hasack values. However, the optimum distribution of volume elements
plus 1ifting and sideforce elements should give zero drag for any total
volume.

F. RING WING AND CENTRAL, BODY OF REVOLUTTON HAVING ZERO DRAG

The theoretical minimum drag value for a distribution of thlckness
elements that has no interference with 1ift or sideforce elements is the
drag of a Sears-Haack body. It has been stated in Ch. IX~E that inter-
ferences between thickness distributions and distributions of 1ift or
sideforce may provide negative drag contributions which reduce the theo-
retical minimum wave drag of & system to zero. This Section illustrates,
for the double Mach cone volume, a central body of revolution which,
together with a certain distribution of radisl forces on a cylindrical
shell, has zero wave drag. The method employed here to design such a
system makes use of certain equivalences between sources and line distri-
butions of elementary vortex shells. (These equivalences are discussed
in Ch. III-B.)

Consider = radlaelily symmetric, continuous distribution of sources
filling s cylindrical space contained within the double Mach cone volume.

oYL INDER
AILLED
WITH

DLOVUBLE MACH
CONE VOLUME
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by F(x). Because of the radial symmetry of this case, F(x) 1s inde-
pendent of the angle © on the distant control surface. A central body
of revolution which i1s represented by the negative of F(x) will just
cancel the velocitles induced at the distant control surface by the
original sources. The drag of the combined system is then zero. The-
remaining step 1s to relate the original source distribution 4o a dis-
tribution of radial forces around the boundary of the cylindrical space.
It can be shown (see Ch. III-B) thet a source and a sink of equal
strength, lylng on the same line parallel to the flow direction, have
exactly the same effect at the distant control surface as a line of con-
stant strength elementary vortex shells comnecting the source and the
sink. If such vortex shells are considered to replacé a source distri-
bution whose strength is independent of the radial distance, the forces
on adjoining shells inside the cylinder cancel one antther, while the
forces on the outer sides of the shells next to the boundary of the
cylindrical space determine the radial force. A cylindrical shell having
this radial load distribution plus a central body of revolution which
corresponds to the source distribution -F(x) constitute a system having
zero drag.

As an example, suppose that a cylinderﬁwithin a'dbubie Méch ébne-
volume 1s considered to contain a source distribution which veries lin-

early with axial distance but is independent of radial distance. That
is, the source strength per unit area inside the cylinder is

oo

where x is measured from the leading edge of the cylinder, c 1s fhé
cylinder length, and fo is the strength of the sources at the rear face

of the cylinder. The equivalent linear source strength corresponding
to this originel distribution is given by

E; F(x) = (%?)?fo -( - %;? é% 1l - <§%)2 + cos’l<é%> +
/
k-

2 2 _
_EE-F(X) =(§C5) fo[-x(l--i—x-):l BR<x<C - R
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where R is the cylinder radius. UNow, if the negative of this source
distribution is assumed to represent a body of revolution, then within
the accuracy of slender body theory the area distribution of the central

body is
X
s(x) = - %L/nBR F(x)dx

For illustration, the dimensions of the cylinder are assumed to be
such that BR/C = 1/2; that 1s, the radius is half the distance between
the axis and the apex of the double Mach cone volume. The shape of the
central body of revolution which cancels the effect of the original
source distribution for this case is shown in the accompanying figure.
The distribution of radisl force which can replace the originel linearly
varying source distribution is

X
_ eV 2x _ PVELC iy X

ev
L(x) =z
/,
2 () 4
¢ (TE) « 2
Co /af- ,6,2(4‘0 5
PUEC
RADIAL FORCE DISTRIBUTION
ON CYL/INDRICAL SHELL
st 0

%
2> ob- ~ - -

CROSS-SECTIONAL
DOUBLE MACH SHAPE OF CENTRAL 8ODY
CONE vorume OF REVOLUTION WHICH

CANCELS (AT DISTANT CONTROL.
M=Va SURFACE) DISTURBANCE DUE
7O RADIAL FORCE

CENTRAL BODY OF REVOLUT/ION AND RAD/AL
FORCE DISTRIBUTION HAVING ZERO WAVE DRAG
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CHAPTER X. RESULTS AND CONCLUSIONS

It appears that certain idealized spatial distributions of 1ift
and thickness may produce materially less wave drag and vortex drag than
comparable plenar systems. It is by no means certain that such advan-
tages can be reallzed in practical alrcraft designs, but further inves-
tigation of specific configurations is warranted.

One of the interesting features of spatial 1ift and thickness dis-
trivutions i1s that optimum arrangements are generally not unique. This
may raise the problem of determining which member of an optimum family
has the least surface area or 1s best adapted for structure.

Another interesting property of spatial distributions is the inter-

ference which may arise between 1ift and thickness distributions. This _

interference can be used to account for the zero wave drag of a Busemanh
biplane or of Ferrari's ring wing plus central body. However it 1is
shown that in some cases thickness distributions have no interference

with an optimum spatial distribution of 1lifting elements, and so cannot

be used to reduce the drag due to 11ft in such cases.

A number of other results are obtained in this repbrt and detalled
discussions of the basic singularities and Hayes' method of drag evalu-
ation are included. However it is clear that the scope of the field 1is

such that this investigation must be regarded as a preliminary exploration.
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