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ON THE THEORY OF ANISOTROPIC SHALIOW SHELLS™

By S. A. Ambartsumyan

1. INITTAL ASSUMPTIONS

We shall consider a thin-walled, sufficiently shallow and aniso-
tropic shell whose material, at each point, has a p e of elastic
symmetry parellel to the middle surface of the shell.

For the coordinate surface of this shell, we teke the middle sur-
face in curvilinear orthogonal coordinates o and B, coinciding with
the lines of curvature. Iet k; = k;(a,B), ky = kp(a,B) be the principal

curvatures of the coordinate surface, and A = A{«,B), B = B(a,B), be the
coefficients of the first quadratic form.

In regard to the shell, we make the following simplifying assump-
tions:

(1) The hypothesis of Kirchhoff-Love (ref. 2) shows thaet the recti-
linear elements of the shell normal to the middle surface meintain thelr
initial length after deformstion of the shell, and remain rectilinear
and normal to this surface. The error of this hypothesls, shown in ref-
erence 3, has a value of the order of (8k) compared with unity, where &
is the constant thickness of the shell.

(2) The parameters A(a,B) and B(a,B) are regarded as constants
in differentiation (ref. 4).

(3) Certain terms of secondary significance are neglected (ref. 5).

*ng teorii anizotropnykh pologikh obolochek." Prik. Mat. i Mekh.,
vol. XIT, 1948, pp. 75-80.

1p solution of the analogous problem for a plate has been given by
S. G. Lekhnitskii (ref. 1).
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2. EQUATIONS OF EQUILIBRIUM AND RELATIONS BETWEEN
DEFORMATIONS AND STRESSES

The conditions of equilibrium of an element of & shell, for our
initlal assumptions, are expressed by the equations

oTy d3s . _
By +ASS+ABK =0 | )
oT, d

0]

S
AW-FBE-FABY

- (kT + kpTp) + %[% (BN;) + % (ANB)]+ Z=0

(2.1)

OH 2
BEE-ASB—-ABN2=O

-Aérg.+Ba—OL—l+ABNl='O
Sl + Sz + lel + szz =0 . J

The last relation, in- virtue of the formulas expressing the forces and
moments through deformation of the mlddle surface, is an identity.

For the deformations and the parameters of the changes in curvature,
we have - i

1l du 1 ov 1du, 1dv
.1 =% 5q * E1¥ *2 = § 3Bt kpw =g TEIx (2.2)
_ 1 d%w 1 3% _ 2 3w

where u = u(a,B), v = v(a,B) are the displacements in the middle sur-
face along the coordinate lines, and w = w(a,B) is the normal displace-
ment.

In equation {2.3) we neglected the components u _ and v in com-
parison with the component w. Hence, these relations do not differ
from the corresponding expressions for plates. This interpretetion of
the change in curvature for the general case was originally given by
V. S. Viasov (ref. 5).

922%



4226

NACA T™ 1424 3

Of the three differential relations given by A. L. Goldenveizer
(ref. 6), for the case under consideration, only the last one is re-
quired:

2 2
oe 2 Q%
2 1 0% 1 1
KoXs + KXo + - ———— o o m——— = 0 (2:.4)
21 T PLT2 T 42 5q2 - AB OadB T 2 g2

The equations of the generalized Hooke's law in the chosen triortho-
gonal curvilinear system of coordinates are

O = Aieq + Aigeg + Ajzey + Ajgegg |

op = B128q + Azzep + Azzey + Azgeqp

oy = Ajzeq + Apzep + Azzey + Azgeqg (2.5)
Tor = Aualpr * Aastar (
Tax = A45eBT + A55ewr
Tap = f16% *A2e% tAse®r *Res%ap

In the case under considerations for Oy = 0, we have

Og = Blledl + BlzeB + BlsemB

Bige, + BzzeB + stecm3 (2.8)

12
= Bl

B

ea + steB + BGGeaB

Tap 6
where, following S. G. Lekhnitskii's theories (ref. 1), there is intro-

duced the notation
Bix = (AyiAzz - Ay3hes) /Asz (1,k = 1,2,6)

These stresses produce the following internal generalized forces:
tangential T, S, bending, and torsional moments G, H, which, on the
two principal sections « = constant and B = constant, have the form
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UL

Ty = 8(B1181 + B1282 + Bigw) - \
Tz = 5<B2232 + Blzsl + BZGU-))

53
Gy = - 75 (Byyjxy + Bygxp + BigT)

% - S (2.7)
Gg = - % (Bgoxp + Bypxy + BpgT)
S) = - 83 = 8 = 8(Bggw + Byg® + Bpgtp)

_ 53 -

Hl = - HZ =H= - 13 (BGS’F + Blsxl + Bz_st) )

Substituting the values Gi, G2 in equation (2.1), and H from
equation (2.7), we obtain . '

53 &3 . _ _
Ny = - 73 C(Byy)w Nz = - 73 D(Byy)w (2.8)
where -
1 3% 1 % 1 5 1 33
CBud =211 35 523 " %16 325 2uZap T P127s6) 157 5amp? 726 35 563
3 3 3 3 (=)
19 1 9 . 1 3 1 9
D(B;1.) = Bog =z —x +3Bog —5— ——5— + (Byo+2Bpp) —= ————=+Bip 7 —
1/ =722 53 3p3 T 26 p2) 3pPdq - 18 667 BAZ 3p3a? 18 33 343

3. FUNDAMENTAL DIFFERENTTATL EQUATIONS

For the unknowns, teke u(w,B), v{a,B), and w(a,p}. If &g, €y,
®, ki, ky, and T from equation (2.2) and equation (2.3) are substituted

in equation (2.7), T, Ty 8, Gy, Gy, and H can be determined as func-

tions of wu, v, and w.

Further, substituting the values of the internal forces in the equa-
tions of equilibrium, and considering equation (2.8), there is obtained
& complete system of equations for the three principal unknown param-
eters, nemely, u, v, and w. This system, following the work of V., Z.
Viasov (ref. 5), is presented in table I.

922%
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The equations (see 3.1, teble I, connecting the unknowns wu, v, W),
and boundary conditions meke it possible to investigate the problem of
the equilibrium of thin-walled, shallow, and anisotropic shells by the
method of displacements. The integration of this system 1s, however,
connected with very great difficulties. Making use of the method proposed
by V. Z. Vliasov (ref. 5), for isotropic and enisotroplc shells, the prob-
lem can be reduced to & system of two simultaneocus equations.

We shall assume that X =Y = 0, that is, if the case of a surface
with a normal load is considered.

Setting

2 2
P 1 o% 1 %
382 T2 =232 5 = - 55 555 (3-2)

Q/

L

T =
L BZ

Q/

the first two equations of equilibrium sre identically satisfied. Further,
taking account of equations (2.3) and (3.2), we obtain, from equation (2.4)
and the third equations of equations (2.1)

1 %y 1 % 1
-lk2 =5 == + k1 5 %] + 2= Io(Bix)e = 0
( A% 3a2 - L E23p2) T B 1(B1x)

(3.3)
1 3% 1 3%\ &3
(k. Bz 562+k2 AZ&? +l—2L(Bik)W—Z=O
where
L1(Byy) = 57— (B11Bge - B:Ls) a + 2(By1Bgg ~ BigBig) Ca
A3B aaﬁaa
1 d4
(B11B22 - Bzz) - 2(BqoBgg - BieBop)| 5 ———s +
[ 1 12Bgs - Big 26] 25 3aPai?
1 af 1 84}
2(BooBig - ByoBog) —% ——= + (BsoBp - B2p) — —r 3.4
22816 - P1zPee) 3 S 173 (Ba2Bgg - BSg) % 332 (3.4)
2 [(311366 - B76) (B2zBes - Bag) - (BysBgg - 316326)] (3.5)

Bss
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For the operators we introduce the notation

1 32 1 3%

U = ky -5 2s + kp — V2 =9 (3.6)
T 1 Bz 552 2 Az g;z r r'r
Equation. (3.3), in this case, assume the form ' o
1 5%
=0l Ly (Bypde - Vow =0 - V.0 - 75 L(Byp)w + Z2 =0 (3.7)

where ¢ = ¢(a,B) is the stress function, snalogous in the plane problem
to the functions of Airy, and w = w(a,B) is the displacement function.

From equations (3.7), for k3 = k2 = O, we obtaip the well-known
equations for the plane stress state of a plate LlfBik)w = 0, and for

the bending of an anisotropic plate, L(Bjy)w = 12Z/53.

Thus, making use’ of the mixed method of V. Z. Vlasov {ref. 5), we
obtaln a more compact representation of the differential equatlions of the

theory of anisotropic shells. The system (3.7) may be reduced to an equiv-

alent single equation of the eighth order. We set

v o= Ly (Byy )@ ¢ = BRV,® (3._8)_
From the second of eguations (3.7), we obtaln

122 25 12
Ly (Byp) L(Byy)® + = Vp® = 3 Z (3.9)

We note that thls equatlion 1s a generalization of -the equation given
by V. Z. Vlazov (ref. 7), for isotropic cylindrical shells, and can be
obtained by another method from the system 3.1 (teble I), analogous to
the method by which B. G. Galerkin (ref. 9), obtained the equation of the
isotropic eylindrical shell (ref. 8).

The internal forces, by equations (2.2), (2.3), (2.7), (2.8), and
(3.8), are as follows:

2 2 2
. 19 1 1 9
1 Z e T 2 32 T AB Jadp T

QU
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53 1 1 22
G =73 EBll = +Bz 5 3+ Bie L1(Bix) ®
12 2 S 52 BB AIB &5’

53 1 3% 1 d2 2 22

B2 38
3 2 2 2
6 2 9 19”7 10 ]
H=- B + B + Bog % —3| T (Byx)®
[66 KB Sadp & 16 2 32 26 12 3p2 1\ Pk
83 8>
Ny = - 73 C(Bik)Ll(Bik)q’ Ny = - 12 D(By3) I (Byx)® (3.12)

For the displacement of a point of the middle surface, we have

w = L1(Bp)® (3.13)

1 3%
u=- g [(311366 - Bg)ky + (BizBes - BleBze)kz:] ey

1 %
2(B11Bog - Bi2Biglk (855B1g - BigBoglk +
l 11528 12B16/ %1 - V22716 12726 2‘ AzB S zaB

2 2 1 83<I>
(By1Baz - BSz) - (BizBgs - BieBae)| ki - (BazPes - BZglkz 252 Soop2 +

1 @

(BzzBis - BizPze)¥i 3 3 353 (3.14)

3
1 2 1 Jdvé

v = - == {(BopBgg - Bag)ks + (BizBgg - BieBze)¥1| Z T3 +
Bgs B 3g°

poyel
2(B - B Yk, - (By.Bos - B )k]—l—-——+
[ 22816 = B12Pee! 2 11826 - B12P16'"1] 22 357

2 2 1 3
EBnBzz - BYg) - (By2Bgs - 316326;_\ kp - (B11Bgs - B16)EL) 5.2 ~an 2 |
BA® dpoa

1 a%
(By1 + Bag - BigBig)k2 3 32 (3.15)
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4. LOCAL STABILITY AND VIBRATIONS

Repeating the considerations of V. Z. Vlasov (ref. 5) yilelds the
equations of the local stebillity of an isotropic shallow shell in the
form presented 1n teble II.

Since, in this case, the components X and Y sare pfoportional
to the curvatures k; and ko, they can be neglected. From equation

(3.7), we then obtain

—5281 Li(Bix)® - Vpw = O
(4.2)
89 o 1 awé o 1 d%w o 1 d%w
V.0 + = L(3B w-[T-—-——-+zs—- ~— + Ty =22 |=0
¢ + 15 LB 142 3.2 AB OBda © "2 RZ 32

Thus, the problem likewise reduces to the solution of two simultaneous
equations for the stress function ¢, and the displacement function w.
This system can be reduced to a single equation of the eighth order, for
a single function. From equation (3.8) we have .

128 ' .
L1 (Bix)L(Biy )} ® + -82— V%@_ .

(4.3)
12[0162 o1 % oibz]
= | =5 5 + 28° = + Ty = =11, (Byy)d = O
55 22 32 5B 3a3B B2 3p°
_ From equations (4.2) or (4.3), the equations of vibration of sniso-
Tropic shallow shells cen also easily be obtained by introducing in the
computation, the inertia forces, and by setting T9 = T8 = 8° = 0.

Using t1 +to denote the specific weight of the shell, and g the
acceleration of gravity, we obtain, from equations (7.8) or (7.9),
respectively, -

1 &3 s 32
£5 L1(Biy)® - Vw = 0 Vo + 75 L(By)w + Ié.. %‘i =0 (4.4)
: 12 2. vd 32
L1(By3) L(Byy)® + 52 et g Sz In(Byy)® = O (4.5)_ .

. This problem, for shallow iéoﬁropic shells, was first solved in this
form by V. Z. Viasov (ref. 7). For ky = k5 = 0, there is obtained, from

the equations given, the fundamental equations of stability and vibration -

of anisotropic plates by S. G. Lekhnitskii (ref. 8).

Qo

‘ |
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TARLE I.
u{e,p) v{%,B) w(r,B) (3.1}
198 o 1 % o1 3 _1_32( )_:Laa 1 232 X
11 o7 57 *%P16 A8 Saop P66 F 362 P16 17 5.7 ¥ (Brz *Bes )iy Soxp * Bes 17 5.7 32[E —-(B]lkl-l-Blakz)a&-q- (Elskl‘fstkz)a— z
1 +(+) e i 1 132 3.1 al x
Bis 37 5, 2 By 2 +Bgg m +Bpg 5 32 3p%| 22 32 3p7 T 226 KB 3a3E *P86 SE 3.2 5(Bakz +Bigk Jsg + p{Bagka+ Bighy 3o | 5
2
%'(311]‘1*’3121‘2)%*%@167‘1'?‘3263‘2)% %(3221‘2"' Blakl)a%"'%(ﬁaskz "'3151‘1)% (BJ.J.k:Lz*ZBJ_aklkz*BaekzaH% L(Byy) -%

L(Bik) Bll 4. aai

4 Big 33"%"'2(312"'2366);23_2'_%*’4326 53@55

13
322 B Bﬂd'

w2%T WL VOV
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Table IT.

V(“': B)

V(m.r B)

—

L

S—

2 2
109 1 3
B16 37 557 *Prz + Bec)in Tap *

D 1
FP11ky + By g + T

o

% 1 32 d
Bgg & 2 - k - kyko8° Bygky + Bogkp)-Se + k&0 &
66]3 B,E_!z 1*L BZGB—E——EB_B 12 ﬁ(]_s]_ zsz)a-a- 1° §3p
22 D2 1 32 2
'315"“51 S5+ (B + Beﬁ)lj'ﬁ' + Bon % T -+ ZBog ""‘.]T', ":é‘sa' + L -3:(_399 + By ) + k13 L -‘aw +
A“ a & s LA Bﬁ BB" @3 Ab OGUp B opg® aaa e ke a4 B oop

%%(Bgskz + Blskl) + k25°%* %

)
§{BLgky + Baghy) g3 + Ky ° %-{%

(-
O L. (Byc)+(B 1428y gy b+ Bkh) -

2
(T?_;]’Eg—z+2
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