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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1425

ON THE CALCULATION OF SHAIILOWSHEIL3*

By S. A. Arriiartsumyan

1. We shall consider a sufficiently thin shallow shell of nonzero
Gaussian curvature. In this case, neglecting certain small magnitudes,
the problem, as shown by V. Z. Vlasov (ref. 1), can be reduced to a system -
of symmetrically constructed d~ferential equtions as follows:

1 2V2@. (HV~-LV~)W=0~Vee

- (HV~ - LV~) @-
J453

V:v:w+z=o
12(1 - V2)

(1.1)

These eqyations were constructedby the mixed method through the intro-
. duction of only two functions, namely, the stress function $3,and the

displacement function w.

.
The forces Tl, T2, and S are expressed through @ as follows:

(1.2)

For the transverse forces N1 ma N2Y we have the formulas

Nl=-
E53 lav2w N2=- E83 La 2

U(L - ~2)Ez ‘= ) 12(1 - ~2)B@ew (1.3)

*“K raschetu pologikh obolochek.w Trik. I&t. i Mekh., vol. XI,
1.947,pp. 527-532.
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In these formulas, & denotes the constant thickness of the shell,
v the Poisson coefficient, E the modulus of elasticity, A = A(a,~) and
B cmB(a,~) the coefficients of the first quati.aticform of Gauss,
kl = kl(aj~) and k2 = k2(a,P) the principal curvatures of the coordinate

surface in the orthogonal coordinate curves, P = constant, and
a= constant. Furtherj the differential operators of..thesecond order of
the elliptical and hyperbolical type are defined as follows:

The mixed operator HV~ - LV~, in which H= 1/2 (kl+kz)

L= 1/2 (kl - k2), is defined by the formula

(1.4)

— —

and

(v: = E,: - [w ‘)+$(*k’$] “*5)L,:)=+ ~ Ak2~

2. We present equations (1.1) in a somewhat different form, so that
.

+p:@- V:w=o, -V~@-DV~w+Z=O,

As shown by B. G. Galerkin (ref. 2), we note
of the system (2.1) is satisfied”by
function Q(a,p), through which the
are

The

expressed as

w = v$q,

(l). E53

12(1 - V2))

(2.1) -

that the first equation
introducing a certain displacement
required &nowns of the system (2.1)

second equation of equations (2.1), then assumes the form

(2.3)

Considering equation (2.2),we give the formulas expressing the
computational magnitudes in terms of the displacement function as
follows:

*

—

.
—
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0

.

.

J

(2.6)

Thus, the problem of computing shallow thin shells with arbitrsry
normally applied loads reduces to finding the displacement function
Q = 9(G,P), which is determined by the differential equation (2.3).

3. Investigations by Y. N. Rabotnov (ref. 3) and A. L. Goldenveizer
(ref. 4), show that the coefficients of the first quadratic form A and
B, for a certain pm% of an arbitrary shell, behave almost like constants
in differentiation. Hence, in the differentiation of products of the
form Aw (or kw), the derivative of A maybe neglected, and we can
set d(Aw) = Adw.

If it is assmed that u and P are absolute coordinates, then, on
the basis of the previous discussion, we may set A = B - lj we then
obtain

(3.1)

Equation (2.3) then takes the form

the
Now equations
formulas

V8($J+V%%’=; (3.2)

(2.4), (2.5), (2.6), and (fig. 1), are determined by

a2-& H.- ,(1 -
a2

T2 = E5 v) ~
act

G1 =D

@(p, G2
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4. As an example, let us consider a shallow shell, rectangular in
the plane, freely supported on its contour, and subjetted to a normal S
load. Let a and b denote the dimensions of the shell in the direc- ti
tions a and p. —

The boundary conditions of the problem are

w= 0, u=O, Tl=Oj G1=O for a=O, a=a ..-.

(4.1)
w= o, V=o, T2 =0, G2=Ofor~ =0, ~=b

These boundary conditions are satisfied by a solution of the form
.- ..—

(4.2) -
—.>:

Expanding the external normally applied load into a double trigonometric
series, and substituting the results obtained in equation (3.2), yield

ua b

k“ ?8 Zsin~sin~ dad@
DJCab~

00

where m and n are odd positive numibers,

& = [(m2 + A2n2)4 + Cc] (u>b, A= a/b)

(4.3)

-_. .

(4.4)

(4.5)

5. Let us consider the loading of the she11 by a
P, applied at an arbitrary point (q,~). According to
have

concentrated force
equation (4.3), we

.

.._,
-z

(5.1)

.—

-.. ..—
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Hence, from equations (4.2) and (3.3),we have

+m.Ftl xx.m2~
T2 =-—

a2 c
Al

mn

5

(5.2)

-
In the present and succeedi~ discussion, there is introduced for

brevity, the notations .
s

E&=&, sin * = S@,sin sin ~ = %~> sin $ = ~~

(5.4)
ME

Cos ~ = ~, Cos y = %p> Cos + = ~~, Cos — = Cng
b

Further, from eqyation (2.2), we obtain

(5.5)

Making use of the identity

xx(m2+ X2n2)

xx xx

%
-c (5.6)

A. = (m2 +~2n2)2 ~ n %
mn mu

where

. ~ . (m? + A2n2)2 & (5.7)
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.

we obtain from equation (5.5),

s
The first term of this formula is the expression for the deflection

Cn

of a rectangular plate, freely supported on its contour at the sides a
and b under a concentrated load P, and applied at an arbitr~y point

(9)%)● ~KLOtiW the deflection of’the p~te W w*, we.obtain

The possibility of separating the deflection of a plate from the
e~ression for the displacement w of a circular cylindrical shell was
first shown by T. T. Khachatryan, in an unptilished doctoral dissertation.

Further, making use of the new expression (5.8), we obtain

.

●

—

k“
_..
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In the preceding formulas, the magnitudes.denoted with asterisks
correspond to the bending of a rectangul= plate (axb), coinciding with
the contour of the shell. For computing these magnitudes, the well-

known tables of B. G. Galerkin (ref. 5) maybe used.

7

The remaining magnitudes in formulas (5.9) represent the effect of
the additional internal forces that srise as a result of the curvature

of the shell (the curvatures kl and k2 enter in equation (2.1) in

the composition of the secondary differential operator of the mixed type,
and play the part of coefficient of elastic base, with respect to the
flat pkte).

By an analogouS method, the formulas maybe obtained for a dense,
uniformly distributed load q = constant, over the entire surface of the

shell, and are shown as follows:

N2= N:-
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6. In conclusion, a numerical exemple is given of the computation
of a shell, rectangular in the plane, and freely s~orted over the
contour for a uniformly distributed normal load. .

We take L = a[b = 2, the ratio “K=R~R2 = 2, the Poisson coeffi-
cient v = 0.3, the intensity of the load q, and Young’s modulus E.
According to equations (4.5), C = 20.

E
For the deflection w, we obtain the formula

G

w= - ~ (v” - Aw)
E5

(6.1)
—-

where W* is a numerical coefficient taken from the previously mentioned
tables (ref. 5), and & is an additional deflection depending on the
curvature of the shell, so that .

Restricting ourselves to two terms of”-theexpans-ionin formula
.

(6.2), the following results of the computations for~everal points (~,j3)
of the shell are given: #

W* 0.0843 0.1106 0.0760
AX? .0449 .0608 .0431
w*.& .0394 .0498 .0329

For the bending moments GI and G2, we obtain the formulas

G1 u qb2(m~-~l)Y G2 = qb2(& -AM2) (6.3)

where ml and %* are coefficients taken from table 111 (ref. 5), and

.

-- .-.-
*W

—
-.

.. -=.,.- --—-. . .
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.
Restricting ourselves to two terms of the expansion in formula

(6.4), the following results of the computation for several points are

m~ 0.0446 0.0464

AUl .0241 .0276

*-% .0205 .0188

% .0807 .1017

4 .0444 .0583

$-%2 .0363 .0434

For the forces T1 and T2, we have the formulas

.
where

0.0304

● 0195

,0109

.0773

.0412

.0361

“2 “+mzauin=in~mn

Restricting ourselves to three terms of the expansion in these
formulas, the results of the computations are:

(6.5)

Atl 0.4252 0.5569 0.3928

At2 ,1333 ● 1010 ,0711
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