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ON THE THEORY OF THIN SHALLOW SHELLS *
By A, A, Nazarov

In the work of V. Z. Vlasov (ref. 1), equations of the equilibrium
of shallow shells are gliven, with account taken of the torsional stress
state. These results are of great importence for practical computations.

Vlasov employed a coordinate system thet coincided with the lines of
curvature of the middle surface of the shell. The survey article by
A. L. Goldenveizer, and A. I. Lurye (rer. 2, p. 579) shows that this cir-
cunstence does not always assure thé applicabllity of the equations of
shallow shells. A sphere referred to the geographic system of coordi-
nates may be used as an example. The coefficients of the first quesdratic
form, in this case, are A =R and B = R sin 6.

The expression in the preceding case of the tangential forces in
terms of the stress function glven by Viasov will approximately satisfy
the first two equations of the momentless theory of shallow shells. The
error, as can easlly be verified, will be of the order of sin 6 com-
pared with unity and, therefore, depends on the choice of the coordinate
system. The error is found to be less the farther the pole of the geo-
graphical system of coordinates is removed from the part of the shell
under consideration. This circumstence may sometimes be met in
computations.

The present report does not employ the lines of curvature as the
coordinate system, but employs "almost cartesian coordinates"”" (the coordi-
nates obtained by cutting the surface into two mutuslly orthogonsl systems
of parallel plenes). This choice of coordinstes will, in certain cases,
be more natural for the problem under consideration, and will also be
free from the previously mentioned fault.

1. Iet the middle surface of the shell be glven by

z = Af(x],X5) (1.1)

where X\ is a certain nondimensionsl parsmeter, and f(xl,xz) is a func-
tion having partial derivatives with respect to the arguments x; and

*ug teorii tonkikh pologikh obolochek.”™ Prik. Mat. i Mekh., vol.
2
XIIT, 1949, pp. 547-550.
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X, up to and including the third order. In deriving the general rela-

tions of the theory of shallow shells, we shall neglect, by comparison
with unity, terms containing the products of a certain nondimensional
factor by the square and higher powers of the parameter A. .

The components-of the tensor of the first differential form are
g1 =1+ (Blz)2 812 = 0712052 g3 =1 + (BZZ)Z (1.2)

where, as shown in the following paragraphs, the index of d denotes
differentiation with respect to the variable of the corresponding index.
Rejécting terms containing squares of the parameter A in expressions
(1L.2), we obtain

=1 gp =0 8pp =1 (1.3)

With the same acecuracy, the relations are obtalned for the covariant,

contravariant, and mixed components of the same tensor, so that

gl = g?% =1 gf =gl =0 gl = gd =1 (1.4)

The decomposition along the axes of the vector normal to the middle
surface has the form

n= -1z - jopz + k (1.5)

The components of the tensor of the second differential form of the
middle surface of the shell are

9..% 9, ,2 donZ .
byy = %l bz = %2 bag = Ez [% =1Jl + (3z9)% + (322)%]

- (1.8)

Therefore, considering the assumed degree of;accuracy,:wé have

bll = XI‘ . blz = AS . bzz = 7\,17

where - (l . 7)

r = 01;f § = Opof t = Opof

L4
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For the covariant, contravaeriant, and mixed camponents of this
tensor we bhave

bt = b =Ar b2 = b2 = s b2 = BZ2 = At (1.8)
1 1 2
The Christoffel symbols I‘EB and I‘aﬁn are connected by the
relations
T T =1 O

Tap = & Topp 56 (Bag&b + ang - wgmB) (1.9)

On the basis of equations (1.3),
T = Tapp = O (1.10)

Hence, the covariant and contravariant derivatives of the vector will,
wlth the assumed degree of accuracy, coinclde with the usual derivatives

VxTa = 9%Tq P = 3 r” (1.11)

The second equation of equations (1.3) Justifies the conclusion that
with the assumed degree of accuracy, the lines x; = constant and x5 =
constant on the shallow shell will be orthogonal; however, in the general
case, they do not coincide with the lines of curvature. Hence, it is not
possible here to directly apply the known formulas of the theory of
shells and the coordinate method of deriving the required formules, and
formulas simlilar to them become unsultable. For this reason, following
the findings of A. I. Iurye and A, L. Goldenveizer, we shall spply the
more generel mathemstical apparatus of the theory of shells based on the
methods of tensor analysis.

2. The positlion of an arbitrary point of the shell is determined by
the radius vector

r=7 + nz (2.1)

where p dis the radius vector of the foot of the normal drawn through
the point to the middie swurface. On the surfaces bounding the shell,

r"‘=p+.-;_-hn r"=p--]2-‘hn (2.2)

The principal vectors of the surface have the form

Ty = D - zbips rz =n (2.3)
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The components of the fundamental metric tensor of the shell are
w2 ’
&4y = 8ix - ZZbik + bd)ibkz (2.4)

In our case, with the degree of accuracy assumed, we have

ay7 = 1 ~ 2Azr 815 = - 2\zs app = 1 - 2zt (2.5)
=1~ 2z2A(r + t) (2.8)
all = 1 + 2zr 822 = 2\zs 822 = 1 + 2zt (2.7)

3. Let vl, v, and vZ be the cdmponenﬁs of the vector of small dis-
placement, v of the points of the middle surface along the lines x; =

constant and X, = constant, and n along the normal. Then

= vkpk + wn (3.1)
The radius vector of the deformed surface is

'p=Dp + V’kpk + wn ) (3.2)

The principal vectors on the deformed surface are

. o
"Do, = Do, + (Vo(}"k - ng) P + (Wy + DoV Yn (3.3)

where V 18 the symbol of covariant differentiation, In our case, ¥ = d.
Then, the six magnitudes &4;,B5; determining the changes of the coeffi-

clents of the first and second differential forms of the middle surface
of & shallow shell, on the basis of formulas (2.1.5), and (2.1.11) given
by A. I. Lurye (ref. 4), are presented in the form

811 = vt - Arw 12 =% (312 + d3gvl) + Asw €22 = dzve - Atw

Bik = Bkvdbia + aikW' + aivqbk& + V%ibkc’ (3.4:)
In the problems under consideration, and with the bending of the

shell, an essential part is alsc played by the deformation of elongation,
the first belng comparable in magnitude with the second. On the basis of
this assumption, it is possible, in the last three equations of eguations
(3.4) characterizing the changes in curvature of the surface, to neglect
the terms containing the displacement camponents vl and vé in compar-
ison with Oixw. We then have

Biy = O¥ Bz = 917 Baz = Oga¥ (5.5)

-
\i
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4, The expressions connecting the forces and moments with the defor-
mations of the middle surface are reduced to the form

Ty = B(&11 + veaz) T2 = B(e2z + ve1l) S =B(1-v)e2
(¢.1)
Gy = - D(B11 + vB22) Gz = - D(B22 + vP11) H=-D(1-~v)}B12
where
3
B =0 D= En7
1 - wa 12(1 - v2)

The statlc equations of an element of the shell, as derived by A. I.
Lurye (ref. 3) can, for our case, be written in the form

1, )

3,8 + ATy - Npht - Nyks + EX = O

BlH+62G2-N2 +Ml=0

Gy + dHE - N, + Mg = O J

In the following paragraphs we shall, in the first two equations of
equations (4.2), neglect the terms NjAr, Npks, Nokt, and NyAs by com-
parison with the others (this is the usual hypothesis which is assumed
even in the theory of large deflections). The equations (4.2) will then
become

\
3Ty + 38 + BL = 0
318 + dgPy + EZ = 0
31Ny + dgNp + Tyhr + Tyht + 28hs + ES = O p (4.3)

O1H + 392G - Ng + My = O
391Gy + JH - Ny + M, o J

In equations (4.3) as in equstions (4.2), El, EZ2, E3, M;, and Mg,

the components of the principel vector and principal moment of the ex-
ternel forces are applied to & point of the surface of an element of the
ghell along its principal directions.
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In the third eguation of this system, we substitue the values df-
the forces N; and Ny found from the last two equations of the system,

and meking use of equations (4.1) easily transform the remaining equa-

tions (4.3) into three equations in the components of the varisbles
that

; 80

5(4.4)

Bllv-l +~3=-£-—! 3y v+ L ;v alzvz - A, [w(r + vt} ]- A(1-v)d,(sw) + §l§= 0)
_ 2
Bzzvz +2‘~;—-‘-’- 511v2+%-v- Blzvl- AOp[w(xv+t)]~ A(1-v)0;(sw) +§1-3-=- 0
‘VZVEW'+-% Aw(r2 + 2vrt + 68 + g8) - % k{r(alvl ;?vazvz) +
1 2 1 E> J
t(azvz +v31v+) + s(1 - v){(3;v® + ov)] - % =0

Further, 1t is easy to show that the static equations of the shell
(egs. (4.3)), can be reduced to two differential equations for the two
functions. For simpliclty of computation, we shall consider the case of
the equilibrium of a shallow shell where, in equations (4.3), the magni-
tudes ELl = EZ2 = M; = My = O. We shall choose the function F so that

Ty = hopoF § = ~hdyoF = Tp = hdyqF

(4.5)

Then, the two first equations of the system (4.3) will be identically

satigfied. We shall call the function F (by analogy with the Airy func-

tion in the plane problem of the theory of elasticity), the force func-

tion. Purther, on the basis of formulas (4.1) and (3.4), we find
Py = B[d;vE + v3gv? - Awl(r +vi)] )

To = B{Bzvz +-v31yl - Aw(t + vr)] &

s =BV 2 3t - 2hew) )

Whence, the followlng relations are easlly obtalned:

T T, = Eh(alvl - Arw)

17 Ve
Tz - VTl = Eh(azvz - XtW") -

2(1 +v)8 = (alv2 + Bzvl - 2\sw)Eh

(4.6)

127%
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Differentiating the first equation of equations (4.7) twice, with respect
to x2, the second twice with respect to x3, and the third with respect

to x; and x3, and subtracting the third from the sum of the first two,
we obtain

Bzz(Tl-vT2)+Bll(Tz-le)-2(l+v)alzs = -XE(razzwa23612w+tallw)
(4.8)

Substituting the forces T3, T, and S 1in place of their values from

equations (4.5), we obtain an equation connecting the functions F and
ws

VZVZF = = );E(I'azzw - Zsalzw + tallW) (4.9)

The second equation of these functions is obtained by eliminating the
forces N, end Np with the aid of the last three equations of equations

(4.3), and successively replacing the forces and moments by the functions
F and w 1n the first of these three equations. This equation has the
form
V2 = Z|E° + An(xdooF - 280 £d4F) (4.10)
v =73 rOppF - 280;0F + %01, ‘
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